IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
Applicants: Bednorz et al.
Serial No.: 08/479,810
Filed: June 7, 1995

Date: November 27, 2006
Docket: YO987-074BZ
Group Art Unit: 1751
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents
United States Patent and Trademark Officè
P.O. Box 1450

Alexandria, VA 22313-1450

APPEAL BRIEF

PART IX

CFR 37 § 41.37(c) (1) (ix)

SECTION 1

BRIEF ATTACHMENTS A TO Z

VOLUME 4

Reg. No. 32,053
(914) 945-3217

IBM CORPORATION
Intellectual Property Law Dept.
P.O. Box 218

Yorktown Heights, New York 10598

BRIEF ATTACHMENT A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
Applicants: Bednorz et al.
Serial No.: 08/479,810
Filed: June 7, 1995
NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND. PREPARATION

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir:

In response to the Office Action dated July 28, 2004, please consider the
following:

ATTACHMENT A

CRC Handbook
 OF
 Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

EDITOR
ROBERTC. WEAST, PhD.

Fonneth Proforus of Chemetry at Caxe Inititute of Technotogy
ASSOCIATE EDTOOR
MELVIN J. ASTLE, Ph:D.
Fornery Profexsor of Organic Chemistry at Gise Institute of Technology and
Mamager of Resemin at Gudiden-Durkee Divinon of ScM Carporation

Incoliaboration with a large number of professional chomists and physioists whose assistance is acknowtedged in the list of genteral collaborators and in. connection with the particular tables or sections involted.

CRC PRESS, Inc.
2255 Palm Beach Lakes Blud, West Patra Beach, Fioiida 33409
F. H. Spedding

Stmbol	Cryital Streture at Roon Temperaturo $25^{\circ} \mathrm{E}$		Allotropio Forms Tinansition: Temperatiurea Exprossod in ${ }^{\circ} \mathrm{C}$	
Sc	Hex (to 1335 ${ }^{\circ}$	a=3.3088A, $c=5.2680 \mathrm{~A}$	bectabove 1335°)	
$\boldsymbol{\gamma}$	Hex. (to 1478 ${ }^{\circ}$)	$\mathrm{a}=3.6482 \mathrm{~A}, \mathrm{C}=57318 \mathrm{~A}$	bco (above 1478 ${ }^{\circ}$)	- 04.08 A
\underline{L}	Hex (to 310°) (usualiy contalins fce also)	$037740 \mathrm{~A},=12.171 \mathrm{~A}$	$\begin{aligned} & \operatorname{cec}\left(310^{\circ}-865^{\circ}\right) \\ & \text { bot }\left(9 b o v o .865^{\circ}\right) \end{aligned}$	amb 26 A
Co	$\mathrm{fcc}\left(-0^{\circ} \mathrm{to} 726^{\circ}\right.$)	R-5.60A	Ccc(bolow 15% on cooling) (up to. 94° on hoating)	$0=4.85 \mathrm{~A}$
			Hok (bolow 23° on coioling) (up to 168° on tiesting)	$\begin{gathered} 3.68 \mathrm{~A} \\ 0 \end{gathered}$
Bi	Hex. (to 795 ${ }^{\circ}$)	2 3 36721 Ac	bco(above 795°)	ab 4 , 2 A
Ne	Hek (to 863°)	- 3.6583 A , m 11.79668.	bco(above 8630)	-4.438
8 m	Rhom (to 926)	$0=8.9834 \mathrm{~A}, \mathrm{a}=23^{\circ} 49.5^{\circ}$	bee(ibove $926{ }^{\circ}$)	a-4.07A
8 E	bee.	004.58274		
Od	Hex (to 1235°)	a $3.63364,00.78104$	becoforve 1235%	omasat
Tib	Hak. (to 12890)	0.360554 .06966 A	bec(abowe 1289 ${ }^{\circ}$)	-4,02A
Dy	Hex (to 1381°)	- $=35915 \mathrm{Ac} 56501 \mathrm{~A}$	bec(fobve 1381°)	-698At
Ho	H6x.	a 3.5778 A c- 5.6178 A	- Not prezent pupe metals	
Er	Hox.	a $3.55924 \mathrm{c}=5.5850 \mathrm{~A}$	Not privent pure metals:	
Tm	Hex.	am3.5375A, o-5. 5540 A	Not present pure metals	
Xb	Hex (to 795 ${ }^{\circ}$)	- A 5.48488 .	boctubvo 795°)	dam:44
La	Hex.	$=3: 5052 A,-5.5494 \mathrm{~A}$	Not present pure metals	

\dagger Extrapolated from magneatum alloy atudes. Hox, rofors to close packed hexogonal La, Co, Pr, and Na have a stackerng ABC, bre refers to body centered cubic. These high temperature forms are vety son and deform wery casily.

PERIODIC TABLE OF THE ELEMENTS
PERIODIC TABLE OF THE ELEMENTS

a 0 z	0
z	0

[^0]
Cycles in Ceramic

 HistoryFridedick H . Norton
Anyone studying the world history of ceramics must be aware of the alternating periods of activity and quiescence. I have found the causes of these cycles of great interest and am therefore setting down some thoughts on this subject.
 produced a rather soft earthenware. Hand molding and wheel throwing was usual, but some ware, such as the Tanagra figurines, was formed in fired clay molds. Terra cotta was made in rather large pieces. Glazes containing lead and tin were commonly used with a variety of colors. An original surface finish for earthenware, called Terra Sigrillata, was used in Greece and Italy. The finish consisted of a fine fraction of clay separated by suspension in water. When applied as a glaze it could be dried and fired to a smooth dense layer on the ware.
In this period ceramics were used largely in the household, but art ware,

The Nineteenth Century
potter made a pair of exquisite vases as a present, which took him 5 years.
They were small vases and the surfaces were covered with him 5 years. modeled in the finest detail. The eyes of the dragons twinkled when the

 It would seem that the quality of the potter's ware was influenced by the unhurried life-style at this time and the uninterrupted apprenticeship of the young potter to the masters.

Why did the quality of the porcelain ware decline after the Ming
Dynasty? Some believe it was due to the exhaustion Dynasty? Some believe it was due to the exhaustion of the natural body
material before the Chinese had learned to make a controlled body of kaolin, feldspar, and quartz. Probably the main cause of deterioration was the artistic fussiness that sets in towards the end of all great art cycles.

EIGHTEENTH CENTURY EUROPE

In the Western World, at the start of the eighteenth century, there was continued production of generally undistinguished earthenware. On the

 which glass was added to the earthenware body. An excellent translucency 1709 a German chemist, Graph non compare with hard porcelain. Then in mula for fine porcelain. Attempts were made to keep this valuable knowledge a secret, but soon potters were enticed away from von Tschivnhaus, and many small factories started up all over the Continent, usually supported by wealthy nobles. Most of these enterprises lasted only a few years, but some are still known as producers of hard porcelain, such as Sèrres, Copenhagen, and Meissen.

Thus vitreous pottery produced on the Continent continues to be largely a

 going on.

THE NINETEENTH CENTURY

The earthenware potteries saw few changes during this period except for greater use of coal. However, Hoffman in Germany invented the
continuous-chamber kiln. quite unaware that this principle had been used in steam engine, so this source Again, England was the original home of the century and must have been a factor in modernizing the at the end of the in 1935 when I visited a large English pottery, almost all work. However, ing, was done by hand.
Toward the end of the nineteenth century electric power pointed to exciting new possibilities of working at very much higher temperatures than had been possible before. Thus electrochemistry began in France and led rapidly to giant steps at the start of the next century.

THE TWENTIETH CENTURY TO 1930

The manufacture of ceramics in this period showed very few significant changes except for the powerful electric furnaces for making silicon alumina, and fused magnesia. Other changes were the increased use of gas and oil for kiln fuel, the start of tunnel kilns, and the use of electric motors for more powerful forming machines.
materials and their forming and firing and improvements were made in treating clays and other minerals. All these things were building a foundation for the enormous leap in the next period.
A very significant step occurred near the end of the nineteenth century: the initiation of ceramic societies where ceramists could get together and discuss their problems. This did much to break up the years when each pottery was cloaked in a tight veil of secrecy. These societies also began to publish journals to disperse specialized knowledge. In England the British Ceramic Society was started and was carried on by Mellor and later by Green. In Germany an association was started by Seger and carried on actively, and in the United States the American Ceramic Society was ton and carried on by Purdy. These organizations and many more that started later were instrumental in uniting the field of

THE PERIOD FROM 1925 TO 1974

In 1926 I was asked to start a Ceramic Department at the Massachussetts Institute of Technology by Dr. Stratten, formerly chief of the United States existing schools for cer In preparation for this project, I visited a number of existing schools for ceramic engineering. My reaction after these visits was ing plants, but the courses seemed rather narrow and inbred. The comments from these schools was general agreement that my lack of a degree in ceramic engineering doomed my project to failure.
The situation seemed to call for integration of other disciplines into the ceramic course to broaden it. This was already being done in Germany to a chiderable extent by applying physical chemistry and thermodynamics to ceramic problems. At this time Dr. Bleininger, then at the Homer Laughlin Pottery, was a great influence in steering me toward ceramic science.
The petrographic microscope was extensively used by the mineralogist but only to a limited extent by the ceramist, as it was not adapted to examining the finer particles in clay. Crystal structure determination by X ray diffraction, started by Bragg in England and carried on in this country by Warren at M.I.T., seemed to be pertinent to many ceramic problems. Also, differential thermal analysis methods seemed useful, so at this time equipment was built in our laboratory for research on clays. The electron microscope was found to be important in many problems, especially morphology of clay particles, so Warren designed and built one in the ceramic laboratory that was very useful in our research.
The precise measurement of temperature is of the greatest importance in the testing or firing of ceramic products. In early times the eye of the skilled fireman was the only judge of temperature. Excavations of old kiln sites indicate much overfired ware, so this method was far from precise. Wedgewood's shrinkage cylinders were a great step ahead and the pyrometric cones went even further. After World War I the optical pyrometer and the thermocouple began to be extensively used and provided better temperature control. Now there are excellent recording and controlling instruments available to hold temperatures to the $1^{\circ} \mathrm{C}$ tolerances needed for some of the electronic wares.
The colloidal chemist was becoming interested in clay suspensions, from which many aspects of casting slips were made clear. Hauser at M.I.T. was instrumental in sparking increased interest in clay colloids.
During this period great progress was made in the production of equilibrium diagrams applying to ceramics. The United States Bureau of Standards, United States Bureau of Mines, and various universities were instrumental in carrying out this fundamental work so essential to ceramic esearch and production. The American Society for Testing materials was making progress in setting standards and organizing definitions.
At this time great progress was made in the ceramic field through the study of crystal physics, for the atomic structure of many crystals became of interest to the ceramist.
During the World War II work was active on electrical ceramic bodies,
especially in Germany. For high-frequency use steatite porcelains were made in large quantities. At the same time research was going on in the ferroelectrics and late country developments also occurred rapidy with ferroelectrics and later with ferromagnetics, largely under the leadership of became one of the larger branches of ceramics. The miniat once and soon cuit, first developed by the United States Bureau of Standards for the proximity fuse, has found ever expanding use for printed-on sinteredalumina substrates. The spark plugs with triaxial or mica cores were not suitable for high-powered internal combustion engines, so the sintered-alumina core came into use and now is universally employed for this type of engine.

Around 1930 a new type of conference was started at M.I.T., the first of its kind there and, as far as I know, anywhere else. The idea was to set out a rather specific branch of the ceramic field and other disciplines that could reflect on it. The lecturers were given a reasonabie honorarium and those attending paid an entrance fee, hopefully to cover expenses. When first suggested, the plan met with much skepticism from the administration, but finally I got permission to go ahead because it employed unused summer facilities of the school. We included not only lectures and discussions, but also a carefully prepared laboratory course so that those registered could become acquainted with apparatus not generally available at that time, such as the long-arm centrifuge and differential thermal analysis apparatus. Also, attention was given to laboratory note keeping, precision of measurements, patent records, temperature measurements, and many other details pertaining to the ceramic research laboratory

This type of conference proved so successful that others like it were given annually until my retirement. Other departments began to develop these summer conferences until now there are hundreds every year. Looking back, it seems certain that these conferences have done much to bring up to date the plant worker who often feels rather alone in his domain. Also, the associations made in these groups lead to an excellent interchange of ideas. A further dividend is the opportunity for our graduate students to become acquainted with people in industry; a number of times this has led to excellent positions for the students.

Great progress was made in the refractories field after World War II Higher-fired and high-alumina silica-alumina brick were commonly used for severe service. Basic brick, for the steel industry of $\mathrm{MgO}-\mathrm{Cr}_{2} \mathrm{O}_{3}$ was greatly improved. Fused refractory blocks for the glass industry of alumina and zirconia became common. Perhaps one of the most interesting developments was the insulating refractory which allowed the insulating layer to be on the

2
 Technical Ceramics
 Karl Schwartzwalder

It was the best of times: it was the worst of times It was the age of wisdom: it was the age of foolishness
It was an epoch of disbelief: it was an epoch of incredulity
It was the season of hope: it was the winter of despair. These times of challenge in ceramic processing are much like those that Dickens wrote about in the Tale of Two Cities, for in many plants therein lies the cause of nonuniformity, unreliability, nonreproducibility, and size limitation of products. In these times of rising material costs and nonavailability, soaring energy costs and shortages, and drops in productivity and profits, a challenge to use creative processing faces us.
In this paper I review (1) processing controls in technical ceramics and
(2) major improvements resulting from such controls. Also, I point out the most fertile areas for future development.
 Siemens-Halske in Germany developed a method to make a sinteredalumina composition. The patent rights were purchased. The processing was to grind 20% fused alumina and 80% of a low-soda calcined alumina in steel mills to the desired fineness. This mix was then acid treated to remove the iron. The fineness and the pH were controlled by methods developed by Dr. using chrome-plated copper using chrome-plated copper core pins. The mold life was short. The insula-
tors' shapes were finished on a lathe using a ceramic processing was costly (as I recall, the company dromic cutting tool. The good depression dollars). But the experience did lead to other processes for making an insulator with alumina as the base material.

The first new processing methods developed in the thirties were the manubinders, and the application thermosetting and thermoplastic resins as industry to form the insulators. No longer was processind by the plastics plasticity of clays. No longer was wet processing required. From this on the all compositions were prepared by dry grinding, the plastics being added as part of the mill charge. In the case of thermosetting resins, the ground dry powder was used as screened as'the mill discharged. The powder was formed into preforms, the several preforms being used to simulate the shape of the formed insulators. Later the preformed system was abandoned and the granulated powder was volumetrically fed into hot 40 -cavity dies and cured under pressure to form the insulators.
In the thermoplastic system the resins were part of the dry-milled batch, and the plasticizer was admixed to this material in a hot sigma mixer. The insulators were injection molded in insulator shapes in 40 -cavity dies. The plastizer was removed in a dryer, and the insulators were then fired in continuous tunnel kilns.

During this period of development and manufacture, new methods of control and testing were devised, the former based on resin systems and the later on sections taken from insulators. Dr. Robert W. Smith, who had University of Michigan, devised methods of analysis our company at the raw materials and the insulator, except of course the alkalies. He also devised methods for determining physical characteristics such as thermal expansion, thermal diffusivity, and electrical resistance from sections cut from the insulator. Dr. Helen Barlett cut thin bands from the insulators to determine modulus of rupture. Dr. Morris Berg, while at RCA, worked to improve the method and, as I recall, had it adopted by the American

 pened, the molds were destroyed and replacement was costly, especially in time.

The mill grinding was successful, the output per mill increasing

 that point.

MICROSTRUCTURE AND PROPERTIES

During the period of 1959 to 1965, Dr. William Shulhof and Dr. Dave Hinckley undertook to relate physical properties to the interdependent elements of microstructure. Examples were composition relating to phases, size, shape, and orientation and packing of grains. Modulus of rupture was predicted by a few simple measurements on ceramics on which there was good background, such as a production body.

They were also the first, at least in our company, to use designed experiments and statistical analysis to control composition and process variables and to design a ceramic to meet our specific property requirements. Robert Vernetti was the engineer under Mr. Fenerty, and with a few studies he was able to control the kilns to give maximum properties as required for our

Dr. Shulhof and Dr. Hinckley developed preparation techniques for sections that permitted better definition of various phases in the body. They may have been the first to use electron microscopy to look at the morphological changes in various phases caused by trace elements.

They also developed X-ray diffraction techniques that measured minorphase constituents of ceramic bodies. The minor phases were often indications of process conditions; therefore, these techniques led to better process control. X-Ray measurements were found to be a method that predicted "reactivity" of alumina.
 clays could be measured accurately on production-type materials. For example, X-ray diffraction techniques gave complete analysis of the clay phases in a sample. Percent of bentonite was measured by an ethylene glycol expansion in conjunction with X-ray diffraction. He used base exchange techniques to characterize the "activity" of the clay, for instance, worked on similar base exchange techniques during the thirties. Dr. Russel!

Society for Testing Materials. Dr. Barlett also sought to determine the tensile strength by measuring internal pressure by closing the hole through the insulator and bursting it with fluid pressure. It was partially successful.
 process, required that the insulator be free from ribs on its exposed portion Functionally this was permissible, since in operation the exposed portion of the spark plug was covered by a protective boot to avoid any flashover due to dirt accumulation. Madison Avenue and national competitors tested the spark plugs for the general public without the boots to show the increased voltage necessary for flashover on ribbed plugs. To this day, American spark plugs have ribs, while Bosch in Germany does not.

The secondary operation required to put on the ribs necessitated a further change in processing. The isostatic method of molding was adopted around 1950. By the way, Dr. Ralston Russell did development work on this process in the early thirties. Mr. Joseph Coors was very helpful in not only making the decision to go in this direction, but in giving us his ideas on processing. The plant facilities were completely changed, and new continuous kilns were built.

The body continued to be dry ground. The binders were added in liquid form in the wet mixing equipment. The blanks were pressed from spraydried powder and were contoured on a resin-bonded abrasive wheel.

Mr. John Quirk, who at this time was working for Battelle, called our attention to work Battelle was doing for one of the carbon companies that had initiated a new process for making reactive alumina. This was an exciting subject, since at the same time we were also working with Monsanto on a similar matter and had failed. We discussed the potential with the alumina companies and, after several years of hard work, all were able to produce a atisfactory reactive product that has found good usage in a variety of markets. The future was reactive aluminas.

The objective then was to be able to dry grind the entire body and, after screening, feed the material directly to the presses. We also wanted to accelerate grinding. Dr. Walter Gitzen of Alcoa called our attention to the work that had been done on mineral aids, mentioning that napthenic acid had been found to be an excellent aid in ball-milling Bayer aluminas, except hat it was hydrophobic and hence was not suitable for alumina to be used in aqueous suspension. Subsequently, both companies undertook development programs. Dr. Gitzen, A. Pearson, and George MacZura worked Bayer alumina, and at our plant Michael Fenerty in manufacturing, Dr.
 on body compositions. Several patents on this manner of processing were issued to both companies.

Processing Controls in'Technical Ceramics
Dr. William Flock simplified the control aspect of this analysis by correlating the X -ray data with simple optical examination of alumina aggregates. I recall one incident when we were visiting one of the alumina companies and were asked if we had any questions. Bill said, "Yes, why did you increase your rate of precipitation of alumina hydrate?" They were stunned that Bill knew this, and so he discussed his methods of analysis with them.

At the time of my retirement, Dr. Flock's insulator composition was the
best that had been developed for our product. best that had been developed for our product.
Dr. Charles Ondrick simplified the proce

Dr. Charies Ondrick simplified the processing procedures, which has
reduced costs and improved quality.
You may wonder why so many worked on processing for relatively short periods of time. The top engineers or scientists move on to other areas for the simple reason that very capable men are always in demand whether we be in periods of depression, recession, or prosperity. Their capabilities saved the company millions of dollars and, at the same time, produced a superior product.

Process control is no longer a defensive measure. Management looks at process control as (1) cost control, (2) a means of lower processing costs
 decreasing salvage operations, and (3) a means of improving the quality and reproducibility of the product.
niques for the determination of the microstructure of the materials utilized and its relation to properties and microstructure of the final fired product. Like any method, it can and should be improved, and will be in the future. New techniques and instrumentation to cover organic and inorganic distribution are required.

FUTURE ADVANCES IN PROCESSING

To me, the most important advancement that will be made in the next few years is in new processing techniques. Some innovative changes are taking place in ceramics that could lead to new processing techniques in technical ceramics.

One innovation is a process developed by Howard Sunman of 3 M that does not require melting and high-temperature firing for making continuous ceramic fibers. These have a visible appearance much like that of fiber glass. Viscous concentrates of salts solutions, sols, or mixture of these are spun into continuous filaments by extruding and drawing through multipleholed spinnerettes at low temperatures. The drawn fibers can be collected as
POWDERS
The first requirement of a successful ceramic process is the
availability of a good powder. Not only should the powder
have the required purity, it should also have certain desirable
characteristics, such as high packing density and good sin-
terability. Many existing processes have been improved
through the use of better raw materials, and the past 20 years
have been particularly fruitful in this regard. Methods for fine
grinding have been significantly improved and active powders
from solution are now providing a greater variety of starting
materials. Available also are better powder-characterization
techniques, and the practice of characterization is becoming
more common. What to characterize is better appreciated,
particularly in terms of how it relates to actual processing
steps.
m

Active Powders

The goal in processing ceramic powders is to obtain a product with the most desirable properties commensurate with an acceptable cost. Properties
 sintering theory and practice can help the processor of ceramic powders and powder compacts get the most active powders for the least effort.
 different people. In terms of ceramic powders it generally means a sinterable powder. What makes a powder particularly active or responsive to temperature and promotes sintering is at least partially known at present. Among the voluminous literature are some excellent reviews. ${ }^{1-4}$ An oversimplified approach clearly reflecting the bias of the author is given here.
'8u! Densification almost always requires shrinkage. The shrinkage takes place -nj!
 grain boundaries or through the volume of particles. Cearly, any vapor transport or surface diffusion will not contribute to shrinkage and densifica-
$\underset{\sim}{N}$

Figure 3.1. Bayer-process alumina (Alcoa A-14) as calcined to form alpha alumina from aluminum hydroxide. The particles retain the morphology of the original hydrate.
aluminum hydroxide by calcination. The particle still shows the morphology of the original aluminum hydroxide. Like so many powders derived by decomposition, there is some preferred orientation of the alpha alumina in the agglomerate. Each agglomerate acts as a spongy particle of very large size and, consequently, it is nearly impossible to sinter below the melt-
tion. On the contrary, any vapor transport or surface diffusion will interfere with densification processes by dissipating the driving force for the densification and shrinkage processes. Although plastic deformation through dislocation motion has not been entirely eliminated as a mechanism of material transport, the number of instances where dislocation motion makes a contribution is thought to be small.

Considerable effort has been expended in attempting to delineate mechanisms of sintering. There appears to be little, if any, practical justification for much of the effort that has been expended in determining the particular equation(s) or the particular diffusion path(s) that best describes the sintering of a particular material. The theory has been of great practical importance in describing what can be done to change the sintering of many materials either to promote or inhibit densification.

PARTICLE SIZE

 theory or equations and mechanisms are employed, is inversely proportional to particle size for a simple viscous system at any temperature and inversely proportional to particle size to the 1.5 power for volume diffusion. This means that the smaller the particle size of the material, the more active the powder will be toward sintering.

To put this in perspective, sufficient data on various Bayer-process alumina powders are available to give us some information on the sintering temperature for various particle sizes. A tenfold reduction in particle size reduces the sintering temperature by approximately $200^{\circ} \mathrm{C}$. This, of course, assumes that all the other variables are held constant and that we are only altering the particle size and sintering temperature.

Most everyone agrees that particle size is an extremely important parameter. Confusion arises, however, because many small particles are held in rather tight agglomerates. The problem of agglomeration and the confusion over which is really the particle to consider in sintering are best illustrated in the case of Bayer alumina. The early work of Ryshkewitch ${ }^{8}$ emphasized the importance of grinding Bayer alumina to make it into an active powder. Actually, the crystal size was not altered during the grinding operation, but the particle size was altered as it was reduced from an agglomerate to a particle near the size of the crystals contained in the agglomerate. With the aid of scanning electron microscopy, we can visualize this much better today than when the principle was first dis-

their radii of curvature. As can be seen in Figure 3.2, the grinding of alu-

 0, גןno!j!
 utilize the angularity with the more desirable sizes.

Size distribution is important in practical systems where shrinkage is to
 the interstices will give a particle compact of highest green density. For viscous systems that cannot maintain stress during sintering, the effective particle size in a distribution is simply the average of all particle sizes in the particle compact. It is more complicated for nonviscous systems, as dis-

 It rapidly changes to the particle size of the coarse fraction for a distribution with over half coarse particles. From the point of view of minimizing shrinkage and maximizing density of the green compact, it would be nice to have particle compacts of mostly coarse particles. If this choice is made, it must be remembered that the particle compact with the distribution of
 coarse particles, and the sintering temperature must be increased accordingly.

PACKING OF PARTICLES

One of the chief arguments against using fine particle sizes $(<0.1 \mu)$ is the decrease in green density of particle compacts of very fine powders and the s! məqodd s! agglomeration. Close-packed spheres have the same density regardless of sphere size. The idea that physical forces between small particles begin to exert an influence on particle packing as particle sizes below 1μ are utilized

 with ultrafine oxide powders prepared by electron-beam evaporation. They have compared individual particles produced by electron-beam evaporation with agglomerates of a similar surface area obtained by decomposition. The individual particles of MgO were compacted to 50% theoretical density at 66.7 kpsi and 64% of theoretical density at 133 kpsi . The MgO obtained by decomposition of nesquehonite (magnesium carbonate, $\mathrm{MgCO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$) gave significantly lower pressed densities. Sintering behavior of MgO parti-

Figure 3.2 Ground alpha alumina (Alcoa A:14).: Note that the fragments of the original agglomerate are only partially reduced to their ultimate crystalline size.
ing point. Upon grinding to release the individual crystals, an active powder is obtained. As shown in Figure 3.2, grinding does not always yield individual crystals but rather smaller agglomerates, depending on the grinding efficiencies.

Even alpha alumina derived from alum and other sulfates produces agglomerates. Possibly the agglomerates from alum have lower preferred orientation of the individual crystallites than in the case of the Bayer alumina. As active as ithe aluminas derived from alum are, they can still"be increased in activity by grinding. ${ }^{\circ}$ More important is the increase of green density, resulting from the grinding of these spongy agglomerates.

The activation of alumina by grinding has, at times, been related to energy stored in alumina particles through the incorporation of defects. It is certainly possible to increase the defect content of materials through deformation, but .it is doubtful that this contributes significantly to the sintering process. Such nonequilibrium vacancies and interstitials will rapidly anneal out at the sintering temperature during the initial stages of sintering and make only a very minor contribution to the sintering process.

PARTICLE SHAPE AND. SIZE DISTRIBUTION

Because theory describes particle size in terms of spherical particles, realistic systems must incorporate a measure of the particles in terms of

27

N

solution and disturb the stoichiometry of the oxide. This is shown in Figure

 TiO_{2} may alter the sintering temperature by as much as $200^{\circ} \mathrm{C}$, which is about the same effect as reducing the particle size to one-tenth of the original size.

Not all additives that enter solid solution increase the rate of sintering, as has been discussed in the literature. ${ }^{14,18}$ Various solutes have different abilities for producing nonstoichiometry, some of which may increase while others decrease the rate of sintering. Finding additives that are grain-growth inhibitors and that promote elimination of porosity is similarly difficult and time consuming. In no field of endeavor is it more difficult to predict the effect that an additive will produce than in the area of sintering.

By exceeding the solubility limit of TiO_{2} in aluminum oxide, the kinetics
of densification are decreased. This appears to be typical of the sintering of densification are decreased. This appears to be typical of the sintering

Figure 3.4. Isothermal shrinkage data for $\mathrm{A} \cdot 14$ alumina (a) as a function of temperature ${ }^{12}$ and (b) as a function of TiO^{2}, content at $T=1520^{\circ} \mathrm{C}$. ${ }^{4}$ Additions of TiO_{2} are expressed in terms of atomic percent of Ti.

Act... Powders

Figure 3.3. Data by Ramsey and Avery for (I) MgO from decomposition of $\mathrm{MgCO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in vacuo and (II) MgO from electron-beam evaporation, both of about the same surface area
(319 and $360 \mathrm{~m}^{2} / \mathrm{g}$, respectively. cles produced individually is compared with the agglomerated MgO obtained by decomposition in Figure 3.3. The conclusion reached from these and the data of Binns et al. ${ }^{6}$ is that the most important deterrent to the use of submicron particles is the difficulty of the packing of agglomerates rather than individual particles. Thus we need to be more clever in devising methods of obtaining unagglomerated crystals of submicron size by techniques other than grinding.

There appears to be some minimum density of packing of particles or minimum number of contacts per particle necessary to produce uniform shrinkage in a particle compact. Bruch ${ }^{10}$ showed that a lower limit of density of a particle compact had to be exceeded to produce full densification of alumina during sintering. Exner et al. ${ }^{11}$ have noted that particle rearrangement can take place during the initial stages of sintering and result in pore growth, that is, when a limited number of particle-particle contacts are involved in the compact. Ordinarily, this threshold of green density is exceeded in many practical cases; however, we should be aware of the importance of low density in situations where minimum densification is desired.

The sintering of stoichiometric oxides, such as aluminum oxide and magnesium oxide, may be dramatically affected by an additive that will enter solid

Great progress has been made in understanding the sintering process of particle compacts. Particle size, agglomeration, particle shape, size distribution of particles, and packing in the compact all have a great influence on
 intering process as well. During processing most of these parameters may be changed to meet the needs of the ceramist and his sintered product.

1. F. Thummler and W. Thomma, "The Sintering Process." Metall. Rev., 12 (115), 69
A. L. Stuijts, "Synthesis of Materials from Powders by Sintering." Ann. Rev. Mater.
2. A. L. Stuits, "'Sintering Theories and Industrial Practice," Sintering and Related Phenomena (Materials Science Research, Vol. 6), G. C. Kuczynski, ed., Plenum Press,
New York, 1973, pp. 331-350.
3. I. B. Cutler, "Sintered Alumina and Magnesia," Refractory Materials, Vols. 5-111, A. M. Alper, ed., Academic, New York, 1970, pp. 129-179.
5.6. D. B. Binns, P. Exydkeramik, Springer-Verlag, Be for Increasing the Compactibility of Powder," Proc. Int. Conf. Compaction Consolidation Particulate Matter, Ist Brighton. 'England, 1972.
4. I. B. Cutler and R. E.: Henrichsen, "Effect of Particle Shape on the Kinetics of the 'Sintering of Glass," J. Amer. Ceram. Soc.. 51 (10), 604-605 (1968).
5. :R. L. Coble, "Effects of Particle-Size 'Distribution in Initial-Stage
6. R. L. Coble, "Effects of Particle-Size' Distribution in Initial-Stage Sintering, J. Amer. Ceram. Soc., 56, 461-466 (1973).
7. J. D. F. Ramsey and R. G. Avery' "Uhtrafine Oxide Powders Prepared by Electron
8. C. A. Bruch, "Sintering Kinetics for the High-Density Alumina Process," Bull. Amer.
9. H. E. Exner, G. Petzow, and P. Weilner, "Problems in the Extension of Sintering Theories to Real Systems," Sintering and Related Phenomean, Material Science 12. D. L. Johnson and I. B. Cutler, "Diffusion Sintering II: Initial Sintering Kinetics of Alumina," J. Amer. Ceram. Soc., 46 (11), 545-550 (1963). $\mathrm{Al}_{2} \mathrm{O}_{3}, "$ J. Amer. Ceram. Soc., 53, 136-141 (1970).
P. Reijner, "Non-Stoichiometry and Sintering of Ionic Solids." Proc. Int. Symp.,
Reactivity Solids, 6 th, New York, 1969, Wiley-Interscience, New York pp. 99-114. 15. D. W. Ready. "Mass Transport and Sintering of Impure Ionic Solids," J. Amer. Cer.

process. Additives that form a second phase without forming a liquid apparently inhibit the densification process. On the other hand, the liquids appear to increase densification. No example of this is more familiar to the ceramist than the case of porcelain where the feldspar contributes a liquid phase that promotes densification.

Reactive sintering in the presence of a liquid phase constitutes still may be sintered utilizing a eutectic liquid of magnesia and about 65% silica along with periclase (MgO) at temperatures on the order of 1560 to $1600^{\circ} \mathrm{C}$. By the time the liquid has reacted with the magnesium oxide the material will be well sintered and will yield a forsterite composition.

ATMOSPHERE

Although the sintering atmosphere has little to do with ceramic powder processing, it does have a great deal to do with the sintering process. For completeness, it is mentioned here that we should be cognizant of the atmosphere surrounding the particle compact as it is being sintered. Defect concentration can be altered by the atmosphere, and the atmosphere contributes to pore removal in the final stages of sintering.

∇

Characterization and
 Process Interactions
 W. M. Flock

The process engineer must decide when, where, how, and what powder
characterization parameters to measure. Furthermore, he is faced with the
fact that they must be measured within a reasonable time, at a reasonable
cost, and by average operators. Hence material characterization is often
the most frustrating tasks facing the ceramic scientist.
Probably the first question that should be posed is, why characterize?
Answers to this question are as variable as those to the question of what to
characterize. A common answer is to ensure quality or obtain information
for future references. Another more negative response is to reject defective
material; if these are the only reasons for characterization, then an inactive
process-control model results and data are collected and stored until a
problem occurs.
If characterization is carried out to predict and adjust, an active process-
control model is being employed. By predicting the material-process
response and ceramic-product character, adjustments in processing can be
made if these predictions are not in line with the desired performance or
properties. It is the material characterization required for this active model
that is discussed in this chapter. For an active process model, material
characterization can be defined as the means by which the ceramic engineer
interacts or communicates with the process on a real-time basis.

THE PROCESS-CONTROL-MODEL CONCEPT

To interact with a process on a reat-time basis, a process model is required. The model shown in Figure 4.1 is used in principle for nearly all highvolume ceramic-manufacturing processes. Its use may be intentional or unintentional, and it may not be as rigorously developed as shown in Figure 4.1, but economics dictate that variation from this model must be slight. If we assume that the process objectives are to develop consistent predictable products, then this model requires that processing conditions and raw materials be consistent and predictable. If variations occur in one, then adjustments must be made in the other, that is, raw material plus process equals predictable ceramic character. However, economic conditions require that if process adjustments are made, they must be inexpensive and rapid. In large-volume operations, process parameters such as tooling, body composition, organic composition, and firing profile must be held constant, while parameters such as mill time, forming pressure, and surfactants (grinding aids, viscosity aids, and lubricants) may be changed. In summary, for this model to be operative, two conditions are required: (1) that constant raw materials or materials that have been sufficiently characterized to predict their material-process response be used and (2) that the process is sufficiently understood to make the required adjustments.

Since high-volume ceramic processing has been successfully carried out for over 50 years, and since the material scientists are in agreement:that material characterization is, by in large, inadequate, then the scientific community is out of touch with reality and no problem exists, ceramic articles are not being made with consistent properties, or the above proposed model is incorrect and material variations have no effect on ceramic character, and some other unknown process is active. In actual practice, it is found that all the above are partially true, for in lieu of the capability to
provide complete material characterization, the process engineer has survived by holding constant as many of the material variables as possible.

MATERIAL CHARACTERIZATION CONCEPT

 parameters are required to define the material character? It has been found by a number of investigators that material character can be expressed by the following function:

$C=f(s, s h, o, p$ and $c)$

where $C=$ character
 $S=$ size

The process model dictates that these variables either be held constant or be measured, but since the capability to measure or characterize such variables as shape, packing, and orientation is sorely lacking, the problem was solved, and continues to be solved for many processes, by the practice of singlesource purchasing. The ceramic industry, and for that matter, most industries, has used, and continues to use, single-source raw materials made by a particular manufacturing process and specific manufacturing equipment. These sole source suppliers have learned from loud and quick customer response that process changes are forbidden. It is common to hear statements that only kiln A or pit B can be used for a customer and kiln B or pit

 SE4 'sidəouos s!!!uว!

 change is forbidden.

A nother less detrimental but nevertheless costly technique is to negate the need for material characterization by eliminating the previous raw material history, that is, beginning the process over within the users control. This

 approach is the destruction of the Bayer-process characteristics by hightemperature sintering (tabular alumina) followed by steel-ball milling for
size reduction and an acid wash for iron removal; however, energy costs are making this concept prohibitive.
In summary, increasing costs dictate that material characterization must
be advanced to the stage where total characterization can be made regardless of the previous process used and that it can be done sufficiently to predict the material-process response. This is an ambitious step, but the concept presented in Chapter 9 for Bayer-processed alumina is believed to be one approach that practical experience has shown to be in the right direction.
 general, colloids are particles of submicron size.
The term "aggregate" in ceramics refers to the coarse constituent in a batch material, usually in combination with a fine constituent called the bond. Some fine-particle technologists use the term "aggregate" to
 prevent confusion within the field of ceramics.

GJNG4G3Gy

[^1]particle is impervious to fluids. If the primary particle is one of several that make up larger agglomerates, it is common to refer to the size of such a particle as the "ultimate" particle size.

AGGLOMERATES

"Agglomerate" is a general term describing a small mass having a network of interconnective pores. It is comprised of primary particles bonded together by surface forces and/or solid bridges (see Chapter 27). The surface forces may be electrostatic or van der Waal attractions between particles or liquid capillary forces due to the presence of liquid within the agglomerate. Solid bridges are a result of sintering, fusion, chemical reaction, or setting of a binder.
Agglomerates with solid bridges can retain their identity under a wide forces are much more readily disrupted by small held together with surface forces are much more readily disrupted by small external forces. It is often
convenient to have a simple terminology that distinguishes between the two convenient to have a simple terminology that distinguishes between the two
general agglomerate types. Therefore, solid agglomerates are defined as agglomerates with solid bridges; weak agglomerates are agglomerates with surface forces as bonds.

PARTICLES

 such, it is a small mass that is free to move as an entity ${ }^{1}$ when the powder is dispersed by the breaking of the surface force bonds. Most particle-size measuring techniques operate on such particles.

GRANULES

The term "granules" is frequently used in ceramics to identify agglomerates that are intentionally formed by the addition of a granulating agent to promote the formation of large agglomerates. This definition is an operational one based on a deliberate forming process. An example of a granule is the product from a spray drier.

 basic concepts, assumptions involved, special attributes or deficiencies, and
 poses are outlined.

PARTICLE SIZE

 sions greater than colloids ($\sim 0.1 \mu \mathrm{~m}$) and less than those that can be discerned without magnification or other aid $(\sim 1000 \mu \mathrm{~m})$. For want of a better term, "diameter" is employed as the measure of size, although
 Diameter is thus subject to interpretation.
Mícroscopy
When measured microscopically, particle diameter is usually taken as the distanice between points on opposite sides of the particle using some convention with respect to particle orientation; only rarely is an accounting of even one right-angle dimension attempted. The result of a series of such particle measurements is a statistical number-based size distribution that most likely underestimates the contribution of the smallest particles. The tendency of particles to assume their most stable position when deposited on a substrate reveals their greatest dimensions to examination, which further biases the results.
Manual measurement of size is extremely tedious. There are several sophisticated electronic commercial systems in which the taking and analysis of size data is highly automated. Whether the system is manual or automatic, great care should be exercised in preparing representative samples. Appropriate numbers of particles should be examined so that neither too many nor too few are exposed on prepared slides or photographs. Since a magnification factor is always included in microscopic measurements, this spremot дач!! ио!̣пq! greater or smaller sizes. ${ }^{\text {P }}$
Microscopic techniques and data treatments have been described in detail in. many publications. ${ }^{2.7}$ They are not pursued further here except to note that microscopy must be regarded as very useful as a check on other methods and as a guide to method selection. Since microscopic size analysis results directly in number-based data pertaining to particle profile, a mean diameter computed on this basis can differ quite significantly from a mass mean diameter (e.g., derived from a sieve analysis).

Sieving

This is the oldest of all particle characterization methods. Sieving has often been described in the technical literature ${ }^{2-8}$ and needs little further elaboration here. With care, a sieve analysis can be obtained down to about $1 \mu \mathrm{~m}$ in diameter ${ }^{\text {8, }}$; analysis is relatively rapid, and as with microscopy, the obviousness of the method makes the results highly desirable. There are pitfalls here too, however. If analysis is carried out with a dry powder, electrostatic effects and particle agglomeration may cause problems. Particle agglomeration can still be a problem even in wet sieving, especially with the very small opening sieves. Also commercial wire-sieve openings are likely to vary several percent from the nominal size. The finer meshes, particularly, are very easily damaged by careless handing. Particles of approximately the opening size tend to be caught in the sieves, which, if it occurs over
much of the powder, causes a distortion of the data. Results are highly
 cannot yet be said to have succumbed to automation, but progress is being made. ${ }^{10,11}$ Success here should alleviate some of the problems noted.
The diameter obtained by sieving irregular particles is that of the smallest cross section that will pass an approximately square opening. Such a

 data for the same powder obtained from microscopy and from sieving often appear to be very different.

Stokes' Diameter

Measurement of the sedimentation rate of particles in a quiescent liquid affords a very important means of particle sizing. The size thus determined is known as the Stokes' or equivalent spherical diameter. It is the diameter
 velocity of the particle: As such it is a measure that readily correlates with many handling and processing parameters.
Data on: sedimentation rates may be obtained using initially uniform liquid suspensions by measuring the concentration of particles remaining in dimentation rates can also be obtained by measuring the quantity of sediment produced as a function of time. This method is less widely used and is not described here.
Hydrometers, ${ }^{12}$ divers, ${ }^{13}$ light transmission, ${ }^{14}$ and X-ray absorption ${ }^{18-18}$ can be utilized. Hydrometers disturb the orderly sedimentation process, and use of both hydrometers and divers requires long times of analysis. Light transmission, or so-called turbidimetric analysis, is sensitive to particle refractive index unless only the light in a very small forward beam is detected, ${ }^{10}$ and even then corrections must be applied for submicrometer diameters. The diameter finally detected is representative of particle cross section and must be multiplied by particle diameter to put the results on a mass basis. These difficulties have so far prevented the development of a wide-ranging, generally satisfactory light extinction size analyzer.

X-Ray Absorption

A narrow beam of low-power X-rays constitutes a very satisfactory means for measuring concentration since adsorption is directly dependent on interposed mass. A commercial version of an instrument, shown in Figure 6.1, utilizes tow-energy X-ray detection for concentration coupled with sedi-

 determined when the particles are made to flow through a small aperture

 type is the Coulter Counter, shown in Figure 6.2, which was originally

 give results in terms of particle number versus particle volume.
Particle volume is essentially linearly related to resistance change irrespective of particle shape, provided the particle diameter is roughly 20% of the aperture diameter. If the particles are larger, deviations from a
 very much smaller than the orifice are counted with decreasing sensitivity.
mentation cell scanning to speed the analysis. It gives very satisfactory results for powders with atomic numbers greater than about 12 . The concentration of particles remaining in suspension is detected as a of time and depth within the sedimentation cell. By effectively solving stokes law throughout diameter versus mass percent less than each diameter is developed.
A particle-size analysis with this equipment requires a dilute suspension, usually but not necessarily aqueous, of about 1.0% solids by volume. Particle- and liquid-density and liquid-viscosity data are required. Depending somewhat on density and viscosity values, particle diameters between about 150 and $0.1 \mu \mathrm{~m}$ can be measured.

45 particle volumes recorded in terms of particle diameter. The diameter spread measured with one aperture should not exceed one order of mag. nitude, for example, from 100 to $10 \mu \mathrm{~m}$. By using several apertures, particle diameters from several hundred to about $0.5 \mu \mathrm{~m}$ may be encompassed.

Permeametry

 pue pided К

 -马u!̣oed әр!
 blower can fabricate one of these devices in a very short while.

SURFACE AREA

The definition of surface area for a truly plane surface is clear. Mica, for example, can be obtained molecularly flat by careful cleaving. ${ }^{30}$ Most materials, unlike mica, do not have the centers of all atoms in the surface layer lying in one plane. Rather they have irregularities ranging from
 crevices, and pores. Their actual surface area can be many times the apparent geometric area.
Simple geometric considerations show that very small particles present a proportionally large fraction of the total surface area of a powder mass. in a total surface area evaluation. Also, in many instances where powdersize distribution is essentially identical, surface-area measurement reveals distinct differences, because one powder has impervious particles and the other has particles containing cracks, cervices, or pores.

BET Gas Adsorption

Standard means for surface-area evaluation utilizes low-temperature absorption, or uptake on the powder surface, of a gas. ${ }^{31}$ Most commonly nitrogen is used at the temperature of liquid nitrogen, although a number of
F

Surface Area
at the bottom of cracks there appear to exist enhanced adsorption sites, while less than normal energy sites are represented by protrusions. At these first regions it is entirely possibly for second, and even higher, layer adsorption to begin before single-layer coverage is completed elsewhere, and it is equally possible that some of the protrusions remain bare until most of the other surface is covered. This condition, of course, contributes to error, but one effect tends to counter the other. Overall, it appears that abnormal adsorption is small in the context of total surface area. Surface-area values have been reproduced within a few percent by different investigators separated widely in both space and time. BET results have been confirmed many times by a number of other tests utilizing a variety of procedures. ${ }^{3.31}$ Low-temperature gas adsorption thus must be considered the standard to

Physical Characterization Techniques for Particles

other gases and temperatures may be employed. Adsorption reveals itself as the removal of a portion of a gas when a solid is exposed to it. At relatively low pressures the gas forms an incomplete layer of molecules attached to the solid surface. As the pressure increases a layer several molecules deep is formed. The critical factor is determining the conditions under which a layer of adsorbed gas precisely one molecule thick is formed.

The volume of gas adsorbed per unit mass of solid depends on the gas pressure, the absolute temperature, and the nature of the gas and solid.
When the gas is adsorbed below its critical temperature it is convenient to express the pressure dependence in terms of the so-called relative pressure p / p_{0}, where p_{0} is the saturation vapor pressure of the adsorbing gas that is available in various handbooks. Adsorption isotherms are obtained by measuring at constant temperature the volume of gas adsorbed per unit sample weight versus relative pressure.

Tens of thousands of adsorption isotherms have been determined using a variety of gases and solids. A typical adsorption isotherm is shown in Figure 6.3; the asymptote point B is approximately where a single gas layer occurs. From the volume of gas required to attain this condition as read from the ordinate, the number of gas molecules per unit weight of solid can be calculated. Then the specific surface area of the solid can be computed by including the area occupied by each gas molecule, which is believed to be $16.2 \mathrm{~A}^{2}$ for nitrogen. Areas occupied by a number of other adsorbed gas molecules have also been determined. ${ }^{32}$

Since locating an asymptotic point such as B is subject to error, much theoretical and experimental effort has been expended over the past years in devising more satisfactory mathematical treatments for adsorption data. These are not discussed here, but they have resulted in relatively simple expressions from which the single-layer condition, hence sample surface area, can be calculated directly.

Apparatus for making gas adsorption determinations of powder surface area range from the homemade glass systems of earlier days to quite sophisticated devices (e.g., the computer-controlled system shown in Figure 6.4). The preferable technique involves measuring equilibrium gas pressures as outlined above, but by a gravimetric technique in which the weight of the adsorbed gas is determined and modified gas chromatographic systems have also been employed. The gravimetric procedure has certain advantages, but the very small weight changes involved make the procedure quite tedious and lengthy. Gas chromatographic systems must employ a carrier gas along with the gas to be adsorbed which leads to proportioning and other problems.

Gas-adsorption measurement of surface area is not above questioning.
Particle surfaces are not energetically uniform. Along grain boundaries and
49
considered, such as molecule orientation when attached to a surface. However, if there are overriding reasons that make liquid-phase sorption attractive, if relative results are sufficient, as they might be in a process control application, and if results are initially correlated with low-temperature gas adsorption, then the suggested system would be nitrophenol

 fairly reliable results with several solids. ${ }^{34,36}$ Its constant-temperature sorption with increasing concentration often yields an isotherm somewhat

 to $50 \AA^{2}$, hence the necessity for correlation with gas adsorption. Results depend greatly on the care and uniformity with which the tests are conducted.

Low-Angle, X-Ray Scattering

 change such as they do upon passage into and out of powder particles. The extent of this density change can be related theoretically ${ }^{38}$ to particle surface area. By measuring the intensity of the undeflected portion of an X-ray beam and energy scattered out to approximately 3°, it is possible to calculate a surface-area value. ${ }^{37,38}$ The calculations are somewhat tedious, however, and demand a detailed knowledge of the material not readily available. Another approach to determine directly the unknown surface area is to relate the deviated beam intensity for a material of unknown surface area to that for another sample of the same material having had its surәnb!uчวә! S! has the potential for yielding surface areas in a minute or two, including sample preparation, and could become very useful in process control. ${ }^{40}$

SHAPE

 angle of repose, and packing characteristics, and may be as important as particie size in many cases. Shape is rarely measured, not because of a
 found a completely satisfactory means for measuring shape, especially for particles with reentrant contours.

Physical Characterization Techniques for Particles

The adsorption (or sorption as the phenomenon is often termed when involving liquids) of dyes, iodine, and a few other dissolved substances onto an immersed powder is often indicated as being a simple surface-measuring means. This is usually far from true. First, there is competition between the dissolved molecules and the dissolving liquid molecules for the available powder surface. Second, the area occupied by molecules in a liquid on a surface varies widely with concentration. There are also other factors to be
There are two-dimensional shape parameters based on microscopic determinations of the maximum particle diameter (i.e., length) and two maximum perpendicular radii, one one either side of the maximum diameter." "Elongation" and "flatness" ratios are defined in terms of the length, breadth, and thickness of a particle." Other considerations of shape involve particle perimeter and surface area. "Roundness" is the ratio of the perimeter of a circle of the same area as the particle to the actual perimeter of the particle, while "sphericity" is the ratio of the surface area of a sphere of the same volume as the particle to the actual surface area of the particle. ${ }^{43}$ Such definitions are deficient for many purposes in that they do not adequately characterize the gross shape of a particle.
Other classifications categorize coarse grains as either generally spherical, intermediate in shape, or tabular, depending on the time required to slide, roll, or bounce down an inclined plane. ${ }^{4}$ The suggestion has been offered ${ }^{4 s}$ that measurement of the rate of sieve passage might be developed into a shape description, it having been found that elongated cylindrical particles pass a sieve at a slower rate than do short cylindrical ones. Finally, producing sieves with rectangular, triangular, and round instead of square openings has been suggested.
Perhaps the most fruitful approach to shape characterization is a dynamic method based on the representation of an irregular particle as an ellipisoid having equivalent radii of gyration about its principal axes. ${ }^{46}$ Both two- and three-dimensional representations might be employed. Obtaining the two-dimensional data is straightforward; how to arrive at dimensions in three planes obviously presents problems. Treating the data, however generated, would be quite tedious were it not now possible to utilize electronic digitizing equipment and computers. The summary of the method given here considers only manual analysis in two dimensions to present the rudiments of the technique. The starting point is a photograph of the particle.
The outline of the particle is traced on graph paper (Figure 6.5). Then X and Y coordinates of small areas within the particle are tabulated. From these measures are calculated radii of gyration of the plan figure about its principal axis and the axis at right angles to the principal axis, assuming the figure actually to be a thin sheet of material of uniform thickness and density. Next is calculated an equivalent ellipse having these same radii. The ratio of the longer axis of the ellipse to the shorter is taken as the "anisometry," or unequal nature, of the particle. The area of the ellipse will be greater than that of the figure representing the particle; the ratio of the ellipse area to the figure area is taken as a measure of the "bulkiness" of the particle.
use are not currently available. Much work remains to be done to reduce
particle shape to the useful parameter it should be.

PORE STRUCTURE

Quite a number of apparently solid particles have cracks, crevices, holes, and fissures within their structure, and, of course, objects formed from powders by consolidation and firing usually have internal spaces. While pores might run straight through a material, they are more likely to twist, turn, branch, and interconnect. They may start on one side and emerge on the same side, or they may never emerge. They may decrease in dimensions with depth or they may enlarge, giving so-called "ink-well" pores.

Pores are openings in rigid objects, while the term "voids" refers to the spaces abounding among the grains of an unconsolidated powder, for example. Void volume is thus easily altered; changing pore volume requires at least partial destruction of the porous object. A consolidated mass produced by compressing and sintering a powder is considered to contain only pores, even though some of the openings may be among individual grains and some in fissures within the grains themselves. Pores constitute the primary concern here. Unfortunately, measurements with loose powders may detect both pore and void volumes, so judicious examination of measurement data is necessary to distinguish the two.

Pore systems have to be described in terms of a geometric model, the right-cylinder model being most utilized. This convention is followed here. Thus pores hereafter are considered as though all were straight cylindrical openings having one of several diameters and various total lengths. There are basically two practical ways of measuring pore structure: (1) by forcing a nonwetting liquid into the pores under pressure and then analyzing the pressure-volume penetration curve and (2) by condensing a liquid within the pores, subsequently analyzing these data. Of course, particle and particleformed structures can be evaluated by sectioning and microscopic examination. Although obvious, this is such a tedious procedure it is rarely employed.

Mercury is a nonwetting liquid for most solids, and it is used exclusively in the penetration technique. Mercury under pressure but outside a cylindrical pore experiences a force tending to push it into the cylinder expressed by the product of pressure and cylinder cross section. The opposing force tending to prevent the mercury from entering is the product of mercury surface tension, the perimeter of contact, and a term known as the contact angle. Equating these forces results in a simple expression between applied pressure and pore diameter involving as other terms the mercury surface

Pore Structure
tension and its contact angle with the solid. At normal temperature the surface tension of mercury is about 474 dynes $/ \mathrm{cm}$, and mercury usually exhibits a contact angle of about 130°. The pressure-pore diameter relai Figure 6.6 a simple proportionality, some values for which are given in Figure 6.6.

Appropriate apparatus for conducting pore evaluations by mercury penetration are simple in concept but complex in practice because they are required to operate at both low and high pressures. Every sample has to be evacuated initially to free it of atmospheric gases and vapors. Sensitive volume-measuring equipment is required to indicate accurately from very small to rather sizable volume changes of mercury. Present commercial equipment requires operator attendance and involves some sample manipulation; automated instrumentation is under development, however.

Typical penetration results are shown by Figure 6.7. The data of curve 7 . for example, apply to an unconsolidated powder respond approximately to this diameter. This portion of the curve must then ing to considerably smaller pores, must represent pores within the particles.

Physical Characterization Techniqués for Particles

layer of fatty acid deposited on the metal surface will usually protect it for the duration of a test.

The other method of pore evaluation, an extension of the low-temperature adsorption technique for surface-area analysis, is applicable. only to pores between about 20 and $600 \AA$ in diameter. This makes it particularly attractive for catalysts and catalyst-support analysis but eliminates it where large pores are encountered.

If the analysis that led to the results described in conjunction with Figure 6.3 is continued to high relative pressures and is then reversed, leading again toward lower pressures, a complete curve of data such as that given in Figure 6.3 will most likely be obtained. Preceding material described the first break in such a curve as signifying approximately the completion of a single layer of adsorbed gas molecules and subsequent portions to correspond to the formation of still thicker layers. Upon continuing to add gas

 -səiod әчд јо әuпן
 will be utilized here. The model retains cylindrical pores of various diameter and lengths as in the mercury penetration analysis.

It is well known that the tendency for any liquid, including liquid nitrogen, to evaporate is greater when the exposed liquid surface is flat (as it would be in a large open container) than when the liquid is confined in a small capillary tube. This means that nitrogen condensed in large pores evaporates more readily than that in small pores. The desorption curve then represents a progressive depletion of condensed liquid beginning with large pores and proceeding to smaller ones. When any pore empties of its condensed liquid, it still has on its surface an adsorbed layer of gas that may be several molecules thick. Accounting for these remnants of remaining gas complicates the calculations so that giving details will not be attempted here even though the procedure is quite straightforward. Basically it means that the calculations have to be performed in a stepwise manner. ${ }^{48}$ Results from gas-desorption tests can be cast as a plot of volume

 walls can also be computed.

The experimental procedure is straightforward but involved, and attempting to maintain stable conditions and carry out the several manipulations by hand inevitably leads to errors. For this reason an automated instrument under computer control, as mentioned earlier, is almost essential. One or
n
6. R. D. Cadle, Particle Size: Theory and Industrial Applications. Reinhold, New York,
7. T. T. Mercer, Aerosol Technology in Hazard Evaluation, Academic, New York, 1973. 8. J. D. Zwicker, "Sieve Analysis to Below Two Microns Using Micromesh Sieves." Ceram. Bull., 45, 716-719 (1966).
9. H. B. Carroll and 1. B. Aksi, "Sieving and Particle Size Distribution in 10 through 1 Region," Rev. Sci. Instrum., 37, 620-623 (1966).
K. Schठnert. W. Schwenk, and K. Steier, "A Fully Automatic Device for Screen
Analyses," Anfbereitungs-Technik, 7, 368-372 (1974). Analyses," Anfbereitungs-Technik, 7, 368-372 (1974).
12. E. E. Bauer "., "Rec. 18. 662-664 (1937).
13. S. Berg, "Determination of Particle Size Distribution by Examining Gravitational and Centrifugal Sedimentation according to Pipet Method and With Divers," Symposium
C. C. McMahon, "Particle Size Analysis By the Method of Musgrave and Harner,"
Ceram. Bull., 49, 794-796 (1970). Anal., London, 1967, The Society for A nalytical Chemistry, pp. 197-204. J. P. Olivier, G. K. Hickin, and C. Orr, Jr., "Rapid Automatic Particle Size Analysis in the Subsieve Range," Powder Tech., 4, 257-263 (1971).
W. P. Hendrix and C. Orr, Jr., "Automatic Sedimentation Size Analysis Instrument," Proc. Conf. Particle Size Analysis 1970. The Society for Analytical Chemistry, London, 1972, pp. 133-144.
18. P. Sennett, J. P. Olivier, and G. K. Hickin, "Application of Rapid Automatic Particle Size Analysis to the Paper Industry," Tappi, 57, 92-95 (1974).
J. R. Hodkinson, "Dust Measurement by Light Scattering and Adsorption," Ph.D. Thesis, University of London, 1962.
W. H. Coulter, "High Speed Automatic Blood Cell Counter and Cell Size Analyzer," Proc. Natl. Electron. Conf., 12, 1034-1042 (1956).
21. R. H. Berg, "Electronic Size Analysis of Subsieve Particles by Flowing Through a Small Liquid Resistor," ASTM Symposium on Particle Size Measurement, Spec. Tech.
Publ. No. 234, 1959, pp. 245-255. Publ. No. 234, 1959, pp. 245-255.
22. H. E. Kubitschek, "Electronic Measurement of Particle Size," J. Res. Natl. Bur. Stand., A 13, 128-135 (1960).
T. Allen, "A Critical Evaluation of the Coulter Counter." Proc. Conf. Particle Size
Anal., London, 1967, The Society for A nalytical Chemistry, pp. 110-127.
24. S. Kinsman, "Instrumentation for Filtration Tests," Chem. Eng. Prog.. 70, 48-51令
H. Bader, H. R. Gordon, and O. B. Brown, "Theory of Coincidence Counts and Simple
Practical Methods of Coincidence Count Correction for Optical and Resistive Pulse Particle Counters," Rev. Sci. Instrum., 43, 1407-1412 (1972).
R. W. Lines, "Some Observations on Sampling for Particle Size Analysis with the Coulter Counter," Powder Tech., 7, 129-136 (1973).
27. F. M. Lea and R. W. Nurse, "The Specific Surface of Fine Powders," J. Soc. Chem.
Ind (London) 58, 277-283 (1939).

Physical Characterization Techniques for Particles
two attempts to carry out an analysis manually usually is convincing of the necessity for instrumental control.

A simple test based on powder-flow properties ${ }^{49}$ indicates total pore
accuracy for some routine control purposes, under use conditions would, of course need to be established by comparison with, say, mercury intrusion before adoption. The test is based on the fact that free-flowing powders appear dry and remain free-flowing with the addition of water up to a point, after which further additions bring about a marked
 pore spaces within the particles and later additions filling the void spaces among the particles. To carry out a test, about 25 g of dried powder is weighed and transferred to a screw-top bottle. A small quantity of water, or
 capped and shaken vigorously. The bottle is uncapped and lumps, if any, are broken with a spatula or by more vigorous shaking. The process is sәop ләрмод әчъ !! not flow freely when the bottle is upended, this condition indicating the filling of the pores and the beginning of spillover into the voids. The specific pore volume is calculated by dividing the volume of water to the end point by the weight of the sample.

Sorption from solution, for reasons given previously, must be approached with caution in attempts to apply it to pore evaluaton. Nevertheless, there

 dye, determines the dimensions of the pore it might penetrate. There is ly in the size of the various dye molecules, so careful attempted application of this technique.

REFERENCES

J. A. Davidson and H. S. Haller, "Latex Particle Size Analysis. V. A nalysis of Errors in
Electron Microscopy," J. Colloid Interface Sci., 47, 459-472 (1974).
2. J. M. DallaValle, Micromeritics: The Technology of Fine Particles, 2nd Ed., Pitman,
. C. Orr, Jr. and J. M. DallaValle, Fine Particle Measurement, Macmillan, New York.
G. Herdan, Small Particle Statistics, 2nd Ed, Academic, New York, 1960
5. R. R. Irani and C. F. Callis, Particle Size: Measurement, Interpretation, and Applica-
47. M. Svata, "Determination of Pore Size and Shape Distribution from Porosimetric 48. E. P. Barrett, L. G. Joynder, and P. P. Halenda, "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computation from Nitrogen Isotherms," J. Amer. Chem. Soc., 73, 373-380 (1951).

Structure and Properties
 of Agglomerates $\begin{aligned} & \text { D. E. Niesz } \\ & \text { R. B. Bennett }\end{aligned}$

 The structure and properties of someters, microstructure, and bulk propities, The origin, characterization, elimination, and effects of various types of solid agglomerates are discussed in this chapter. All agglomerates
referred to in this chapter are solid agglomerates, unless otherwise stated.
ORIGIN OF SOLID AGGLOMERATES
 by a diffusion bond formed during calcination. Such agglomerates are

3. Size distribution of the ultimate particles. 4. Size distribution of the agglomerates. Bulk density of the agglomerates.
7. Character of the agglomerate bond.

In evaluating the features listed above, care must be taken not to alter the

 a scanning electron microscope (SEM) is valuable, but a transmission

 observation is invaluable in determining appropriate characterization techniques and in interpreting the results of various characterizations.

The agglomerates in calcined powders normally are broken down to their

 powder is a key element in many ceramic powder processes. The granules in a spray-dried powder are held together by organic binders, plastic materials such as clay or talc, and by decomposed gels or hydrates precipitated from solution during drying.

The bulk density of agglomerates has a marked effect on the bulk density of the powder and the compaction ratio. Surface area and the bulk and true density of a powder are also important, but they are related more to the bulk powder than the agglomerates in the powder. If the bulk density of

 a nonuniform die fill and green compact. Techniques for measuring the bulk density of agglomerates are lacking, although mercury porosimetry ${ }^{2}$ has been used for this purpose (Chapter 6). For an agglomerated powder, a
 against pore volume. In the porosimetry technique, if the pores of the agglomerate are infiltrated by mercury without crushing the agglomerate, the bulk density of the agglomerate can be calculated.

Agglomerates in calcined powders can also be broken down by dry milling, as discussed in Chapter 10. The resulting powder is composed of weak agglomerates or granules bonded by the small amount of dry milling aid used to facilitate dry grinding.

A type of agglomerate that is not widely recognized is one bonded by
decomposed gels or hydrates. These agglomerates form by precipitation of
cations from solution when water slurries are dried. Some bonding may also

can be present, as discussed in Chapter 9. Here the agglomerate containing the 100 to $200 \AA$ particles is gamma alumina and represents 10 to $20 \mathrm{wt} \%$ of the powder. Because of its low bulk density, it leads to a very nonuniform green density even though it is weak enough to be broken down by a kitchen agglomerate in this powder is essential for evaluating lot-to-lot variability.

PHYSICAL CHARACTERIZATION OF POWDERS AND AGGLOMERATES

The following physical characteristics of agglomerates are important:

1. Microstructure of agglomerates.
2. Percentage of each type of agglomerate in a powder.

EFFECT OF AGGLOMERATES ON MICROSTRUCTURAL DEVELOPMENT

 cles. The wet-milled powder is composed of agglomerates bonded by aluminum monohydrate, as discussed earlier.

The differences in the microstructures developed from these three powders after isostatic pressing and sintering can best be illustrated by examining the fracture surfaces of compacts with densities between 90 and 95% of the theoretical value. The compact prepared from the as-received powder is shown in Figure 7.7. The very nonuniform microstructure consists of dense, coarse-grained regions and porous, fine-grained regions. On a polished surface the porous regions are isolated. The porous areas are remnants of the porous agglomerates in the powder that had 100 to $200 \AA$

Figure 7.4. Electron micrograph of alumina I powder in the as-received condition.

Figure 7.3. Electron micrograph of alumina I powder after water milling for 20 hours.

The curve for alumina I after milling in water for 20 hours shows a break point at approximately $3000 \mathrm{psi} .{ }^{6}$ This indicates the presence of strong agglomerates. Figure 7.3 shows an electron micrograph of this powder. A ranslucent, weblike material that can be seen around the edges of agglomerates has been identified as aluminum monohydrate by thermogravimetric analysis. This hydrate acts as a cement that bonds the agglomerate particles together. The mechanism by which this bond forms is discussed later.

Alumina III is a wet-milled and spray-dried 96% commercial alumina body. The break point at 200 psi represents the strength of the spray-dried granules. This technique is quite sensitive to variations in the strength of spray-dried granules, and considerable variation can be detected in nominally identical lots of powder.

The curve for alumina I after dry milling for 20 hours does not exhibit any breaks between 10 and 100,000 psi. ${ }^{6}$ The only granules in this powder are those held together by the small amount of dry-milling aid. These are so weak that their presence is undetectable by this technique.

There is an upper limit of agglomerate strength that can be evaluated by this technique, and the presence of such agglomerates must be determined microscopically. The coarse-particle agglomerate in alumina I is an example of a agglomerate whose strength cannot be determined by this technique at pressures below $100,000 \mathrm{psi}$.
옹

[^2]
Electron micrograph of alumina I powder after water milling for 20 hours with
Figure 7.6
citric acid.

Figure 7.10. Fracture surface of 92% dense compact prepared from water-milled alumina I
powder.
MECHANISM OF AGGLOMERATE FORMATION
DURING WET MILLING
The mechanism by which the agglomerates form during wet milling is shown in Figure 7.11.* The left view depicts a water-solvated alumina particle, with hydrogen ions preferentially absorbed on the surface in a double-layer effect. The probable surface reaction is modeled in the right

Exchange of hydrogen ions for aluminum ions permits the reaction to penetrate below the outer surface of the particle. The ion exchange nor-

 quite limited, since the monohydrate acts as a reaction barrier, but transition aluminas can be hydrated by aging in water. ${ }^{7}$ Thus the gamma alumina
 reaction. For alumina I the extent of this reaction in 20 hours is normally slow. However, attrition during milling continuously removes the
 hours of milling is quite significant for this powder. During drying, the alu-minum-ion concentration in the liquid phase increases, and an aluminum

Figure 7.8. Fracture surface of 96% dense compact prepared from dry-milled alumina 1
powder.
Microstructure of theoretically dense compact prepared from dry-milled alumina

> References area data are inadequate to unambiguously characterize the effects of wet milling a reactive alumina powder, since a small amount of aluminum monohydrate can override the surface area of the bulk of the powder. REFERENCES 1. J. Lebiedzik, K. G. Burke, S. Troutman, G. G. Johnson, Jr., and E. W. White, "New Methods for Quantitative Characterization of Multiphase Particulate Materials Including Thickness Measurement," Scanning Electron Microscopy, Illinois Institute of Technology. Chicago, Illinois, 1973, pp. 121-128. 2. M. J. Orr, et al., "Applications of Mercury Penetration to Materials Analysis," Micrometrics Instrument Corporation, Norcross, Georgia, undated. 3. D. E. Niesz, R. B. Bennett, and M. J. Snyder, "Strength Characterization of Powder Aggregates," Bull. Amer. Ceram. Soc., 51 (9), $677-680$ (1972). 4. W. Duckworth. "Discussion of Ryshkewitch paper," J. Amer. Ceram. Soc., 36 (2), 68 (1953). 5. E. Ryshkewitch, "Compression Strength of Porous Sintered Alumina and Zirconia-9th Communication to Ceramography," J. Amer. Ceram. Soc., 36 (2), $65-68$ (1953). 6. R. B. Bennett and D. E. Niesz, "Elfect of Surface-Chemical Reactions During Wet Milling of Alumina," paper presented at the 74th Annual Meeting of the American Ceramic Society, Washington, D.C., May 9, I972. 7. J. W. Newsome, H. W. Heiser, A.J. Russell, and H. C. Stumpl, "Alumina Properties," Alcoa Research Laboratories Technical Paper No. I0, 2nd revision (1960). 8. R. B. Bennett and D. E. Niesz, "Relation of Calcination to Character of Reactive Alumina," paper presented at the 76th Annual Meeting of the American Ceramic Society, Chicago, Illinois, April 29,. I974.

N
hydroxide gel precipitates. With continued drying, the gel partially dehydrates, the extent depending on the drying conditions for the powder. Normally the gel ends up as a monohydrate with a surface of approximately $500 \mathrm{~m}^{2} / \mathrm{g}$ and a capillary pore structure. It serves as a bond for the agglomerates in the dried powder.

During heating to the sintering temperature, the remainder of the structural water is evolved, after which the bond goes through several intermediate phases. More importantly, however, it begins to shrink because of elimination of the capillary porosity by sintering at temperatures well below that at which the body begins to shrink. The sintering shrinkage and the volume changes associated with the phase changes lead to disruption of the particle contacts and a weakening or rupture of the compact. The mechanism described is believed to be the cause for poor sinterability of high-surface-area powders milled in water.
For alumina powders composed of 100% alpha alumina, the aluminawater reaction is of little significance, since they normally have surface areas below $20 \mathrm{~m}^{2} / \mathrm{g}$. ${ }^{6}$ If the alumina is to be milled in water, particular emphasis should be placed on eliminating all transition phases, such as gamma, since they normally have surface areas above $100 \mathrm{~m}^{2} / \mathrm{g}$. The high surface area of the hydrated reaction products also suggests that surface-

∞

77

TEM Analysis of $\mathrm{Al}_{3} \mathrm{O}_{1}$ Powder
voltage. The agglomerate was one of several obtained by dry dusting Linde A onto a Cu EM grid. The 0° tilt angle in Figure 8.1 suggests that the agglomerate consists of
three particles $(A, C$, and E. The size of the agglomerate from this view can be characterized by maximum and minimum axes lengths of 0.9 and 0.5 $\mu \mathrm{m}$. Changing the tilt angle to 45° reveals that the agglomerate is very much different than expected from the 0° tilt view alone. At least five particles are visible. Particles B and D were obscured by the other particles in the 0° view. Maximum and minimum axes of 1.3 and $0.3 \mu \mathrm{~m}$, respectively, are observed from the 45° view.

Additional information, such as whether the particles are attached by weak or solid bonds, cannot be easily judged from one view direction alone. A weak agglomerate bond has a point contact character that can be seen

 clearly seen to be sintered together. As a larger number of particles per agglomerate are considered, it becomes even more difficult to distinguish the intraagglomerate features required for total characterization.

Tilting larger agglomerates in the TEM often provides less information because of particle overlap in the path of the EM beam, as shown by Figure 8.2. A major change in the agglomerate structure is apparent after tilting,

 all the particle-particle interfaces in this agglomerate.
Since the particles in Figure 8.2 are sintered together, the only correct

 technique will yield only a distribution of solid agglomerate sizes, not a distribution of particle sizes. Also, considering the wide range of axial ratios of agglomerates observed in a powder, the meaning of agglomerate-size distribution achieved by a sedimentation-type technique is unclear.

TEM ANALYSIS OF $\mathrm{Al}_{2} \mathrm{O}$, POWDER

Figures 8.1 and 8.2 show two small agglomerates representative of Linde A $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ taken as a random sample from a commercial bag of powder. The agglomerates were shown to be solid agglomerates by use of the tilting stage. A larger agglomerate of Linde A is shown in Figure 8.3. This is also a solid agglomerate and is representative of the Linde A agglomerate struc-
applied. Dry dusting of powders onto TEM grids preserves some of the structural relations. However, hecuse the time and expense involved in the pmall method necesstates a sully insufficient to obtain representative data because of agglomerates are three-dimensional structural entities.

As an example of the limitation of single-plane imaging, consider Figure 8.1. Both pictures are the same agglomerate of Linde $\mathrm{A}\left(\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, but at two different angles of tilt (0 and 45°) in a Phillips Model 301 Scanning Transmission Electron Microscope (STEM) at 80 kV electron accelerating

Flgure 8.1. Transmission electron micrograph (TEM) of a Linde $\mathrm{A}_{2} \mathrm{Al}_{2} \mathrm{O}_{2}$ solid agglomerate
at (a) 0° tilt and (b) 45° tilt to the EM beam.

79

 large agglomerate. The agglomerates have a large external and internal surface area because of the low-density packing of the particles in the э!иешедр К!|e!
 of the Linde A agglomerates.

The agglomerates also show attachment, probably by weak bonds, of ultrasmall $(0.1 \mu \mathrm{~m})$ debris particles. Quantitative characterization of features of this type of multiagglomerate system is a formidable challenge.

Altering $\mathrm{Al}_{2} \mathrm{O}_{3}$ production to change the size of primary particles has a strong influence on agglomerate features as well. Larger-particle-size aluminas such as A-17 have fewer particles per agglomerate, as shown in Figure 8.4. The particles also tend to be weak bonded as shown through TEM tilting (Figure 8.5). Primary particles contain substructural features, probably as remnants of their processing history.

Tabular alumina T-61 exhibits very little agglomeration tendency and remains mainly as large isolated particles (Figure 8.6).

EFFECT OF A BINDER ON POWDER STRUCTURE

 Haas) to A-17 alumina results in binder-bonded granules, as seen by comparing Figure 8.7 (A-17 with binder) with Figure 8.4 (A-17 withoüt binder). However, complete dispersion of the binder in the powder is not achieved. In a TEM tilting stage analysis of a granule from the A. 17 binder sample

Figure 8.3. TEM of a large Linde $\mathrm{A} \mathrm{Al}_{3} \mathrm{O}_{\mathbf{a}}$ agglomerate.

Bayer-Processed Aluminas W. M. Flock A wide variety of alumina powders are available for ceramic processing. applications. The endless generation of new-product code numbers can be overwhelming to process and material engineers. It is hoped, at least for Bayer aluminas, that the characterization data presented in this chapter will impart some insight into the various differences among aluminas. To define the material parameters to be measured for as-received aluminas, a brief review of the Bayer process is necessary and thus is presented first. THE BAYER PROCESS The Bayer process begins with bauxite ore, a naturally occurring weathered residue consisting of hydrated aluminum oxide, kaolin clays, hydrated iron oxides, and titanium dioxide. The bauxite is digested with caustic soda to dissolve aluminum into solution. Other undissolved matter is filtered off, and the filtrant solution is precipitated to yield aluminum trihydrate. The trihydrate is calcined to produce alumina. PURITY OF ALUMINA TRIHYDRATES The potential chemical contaminants in the final alpha alumina are restricted to silica from the kaolin clay, iron, titanium, and sodium that is	

plexities, physical characterization of the powder structures leaves much room for improvement at this time.
The authors gratefully acknowledge the partial financial support of NIH grant NIGMS 1 POI GM 21056-01.
added as caustic soda during the digestion process. The amount of chemical contamination is largely determined in the precipitation step by the rate and manner of the trihydrate precipitation, that is, the amount of adsorbed or included contamination. Since these impurities are largely adsorbed, chemical purity dependence on this process step can be reduced by subsequent trihydrate washing. Another technique, which can be used to increase the chemical purity, is to precipitate the trihydrate from specially refined solutions, that is, those very low in silica, iron, and titanium.

The precipitation rate can also indirectly affect later calcining conditions and the resultant phase purity. Since trihydrate agglomerates are converted to alpha alumina by rotary calcining, the uniformity of phase conversion is directly affected by the agglomerate shape. Rapid precipitation produced by the addition of many nucleating sites (i.e., excessive seed crystals) can result in trihydrate agglomerate growth by accretion. This coalescence of rapidly growing agglomerates produces grapelike irregular clusters that are dificult to mix during rotary calcining. Slow precipitation, from a few nucleating sites, produces nearly spherical agglomerates, which mix more rapidly.

Trihydrate Calcination

During calcining, the alumina trihydrate, which consists of approximately 40% water, is converted to the final ceramic-grade alumina by the addition of heat and mineralizers. The latter additions are patented constituents (boric acid, chlorine and/or fluorine, and silica). These additions are required to reduce the sodium content (the major chemical impurity in Bayer-process aluminas) and to control the grain size. It should be noted that the various mineralizers produce differences in particle shape. Under controlled conditions, these slight variations in shape are not sufficient to exclude a mutual substitution of one supplier's alumina for another. It is, however, a factor that adds complexity to material characterization.
 occur during calcining that have a profound effect on later characterization and final ceramic character. These structural changes are the mode of trihydrate decomposition and the decomposition path. The decomposition path is through one or more of five well-defined intermediate crystalline phases (gamma, chi, delta, theta and kappa ${ }^{1}$). Trihydrate decomposition occurs by way of a topotactic transformation.

Topotactic phase transformations have been described by Taylor ${ }^{2}$ and Nicol. ${ }^{5}$ A topotactic transformation is one in which an earlier structure, in this case the close-packed oxygen ions of the OH radical, is maintained during dehydration. The hydrogen ions are lost and the aluminum ions rearrange without destroying the close-packed oxygen array. The crystallo-

Characterization of Bayer-Processed Alumina

graphic orientation of the trihydrate structure is therefore maintained through these intermediate phases to the final alpha-phase agglomerates. These agglomerates are therefore defined as pseudomorphic structures.

It is this pseudomorphic trihydrate structure that forms the basis for the classification of Bayer aluminas presented in this chapter. The pseudomorphic structure preserves the Bayer-process history and therefore
 studying the pseudomorphic agglomerates, estimates can be made concerning chemical and phase purity, particle shape, and size. Such information is
 on Surface Area and Its Significance.

The trihydrate decomposition path is of significant importance to ceramic processing since it encompasses a series of lower-moleculardensity, high-surface-area phases. These phases are a potential source of contamination in as-received aluminas. The presence of such phases can result in misleading characterization data, and in some cases, adversely affect ceramic processing.

Commercial Aluminas

Considerable progress has been made in the characterization of Bayer
 development of tests for the routine characterization of aluminas. Table 9.1 is a tabulation of data supplied by Alcan, Alcoa, and Reynolds Aluminum

 ио!јеz! information is available and that these data are routinely generated by the alumina suppliers. However, these data are not sufficient to make decisions regarding possible material substitutions. Further classification required for this purpose is presented in the remainder of this chapter.

甘NIWתTV GヨSSIJO\&d-\&
The commercially available Bayer aluminas (Table 9.1) are characterized with respect to the expanded process model depicted in Figure 9.1. The major characterization tool is the petrographic microscope, and additional
∞

[^3]characterization data are obtained by particle-size analysis, surface-area measurements, and compactional and functional tests such as shrinkage and fired density. A summary of these data is given in Table 9.1. A recent Alcan publication ${ }^{4}$ presents an excellent summary of the test methods used by both the suppliers and many ceramic users. Similar information can be obtained from Alcoa and Reynold's brochures.
The characterization objectives are to provide information from which ceramic character The be predicted and/or adjusted to meet the desired ceramic character. The concept used is that the material character is a
lated with high sintering reactivity. With alumina agglomerates, however, nonalpha phases (transition aluminas) may be present that have very high

 se pau!jap aлe suo!̣nq!! "nonuseful."
The surface areas given in Table 9.1 are for as-received powders. Milled powders (deagglomerated) in general have approximately $21 / 2$ times the surace area of the powder before milling, provided no contamination has occurred. Since this increase is consistent and predictable, the surface areas stated in this chapter are for as-received aluminas.
Since the transition aluminas have surface areas equal to several hundred times those of the nonreactive alpha phase, the presence of 1 or 2% of these phases has a significant effect on the measured surface area. The A-2 and RC-20 alumina types typically have 1 or 2% nonalpha phase and yield surface areas of 0.7 to $0.9 \mathrm{~m}^{2} / \mathrm{g}$. A-12 and RC-24 types are typically free of nonalpha phase and have surface areas of 0.4 to $0.7 \mathrm{~m}^{2} / \mathrm{g}$. However, the $\mathrm{RC}-24$ type is thermally more reactive than the A-2 or RC-20 types. Because of the nonalpha phases the surface area of the A-2 or RC-20 aluminas does not provide a meaningful index for describing thermal reactivity. Thus, in nonreactive aluminas, surface-area contributions from transition-phase agglomerates are a characterization nuisance and have ittle effect on final ceramic character. They are a serious nuisance, since the true physical surface area is used to predicate such processing parameters as binder concentration, drying time, and mill packing. The tape-casting process is very sensitive to surface area, since it affects such properties as drying time, belt release, and tape fixability.
Surface-area contributions from nonalpha-phase agglomerates in reactive aluminas such as A-16 or RC-172 are much more serious because they have a direct influence on ceramic processability. Since these materials have surface areas 10 to 15 times as high as nonreactives, a greater percentage of nonalpha-phase material is required to change the surface area. However, since reactive aluminas are calcined at a lower temperature, the possible occurrence of nonalpha phases is much higher. In addition to destroying the correlation between surface area and thermal reactivity, nonalpha material seriously effects processability. The reactive surfaces readily "cake" or reagglomerate during milling and cause incomplete size reduction. Furthermore, they adsorb large quantities of binder and affect, for example, vis-
 casting of super-smooth alumina substrates. Finally, transition phases are

Nonalpha phase. Any transition metastable aluminum oxide phase,
such as gamma, kappa, chi, theta, or delta. Alpha phase. The high-temperature, Alpha phase. The high-temperature, stable phase of aluminum oxide
(Corundum mineralogical designation). (Corundum mineralogical designation).

Reactive agglomerate. Alpha-phase agglomerates with high surface
area and sufficient free energy to sinter to essentially theoretical density without the addition of glass-flux modifiers.

Beta alumina. The $12: 1$ sodium aluminate phase

RELATION BETWEEN ALPHA CRYSTALLITES AND AGGLOMERATE STRUCTURE

The pseudomorphic trihydrate structure, which is described earlier, permits the characterization of alpha crystallites to be carried out as if they were orders of magnitude larger than their actual size of 0.2 to $10 \mu \mathrm{~m}$. The occurrence of crystallites in 200 mm diameter agglomerates produces an effective magnification of $20,000 \times$. This inherent magnification places the material into the ideal working range of the petrographic microscope. The additional magnifications of 50 to $200 \times$ obtained with the microscope produce a total useful magnification of one million to four million times.

The ability to use the petrographic microscope is a major asset, since it provides a link among the atomistic (angstrom), microstructural (micrometer), and phenomenological levels. It enables the simultaneous integration of texture parameters (size, shape, orientation, and packing) and chemical and mineralogical phase analysis. Such analyses for fine-grained material are normally possible only through the combined use of the electron probe and scanning microscopes. The petrographic microscope has, however, for the last 100 years provided the same information for coarse-grained material (i.e., 50μ grains or larger) that these instruments provide today for fine-grained materials.

Throughout the remainder of this chapter, when agglomerate properties such as surface area, chemical purity and phase are discussed, it is implied that these are the properties of the individual primary particles.

Surface Area and Its Significance

The reactivity of an alumina is not simply related to its BET surface area. At one time it was generally believed that high surface area should be corre-

 boundaries in reactive agglomerates. Whichever mechanism is active, a distinct color difference between reactive and nonreactive agglomerates exists and the author has found this to be the only definite method for clearly differentiating reactive materials.

Of the two mechanisms the lower-refractive-index mechanism is favored, since it also accounts for the high surface area of these agglomerates. A relation between refractive index and surface area can be formed on the basis that refractive index is a direct measure of electron density, and if cation or anion defects exist, the electron density would decrease, which in turn would slightly reduce the refractive index.

Birefringence. In addition to refractive indices, birefringence and optic axes orientation are other optical techniques used to characterize these aluminas. Because of the small differences in refractive index between the crystallographic axes (1.760 versus 1.768) of alpha alumina, its birefringence is increased to a workable range by inserting a gypsum plate into the optical path of the polarizing microscope with crossed Nicols. The firstorder red of the gypsum plate provides a background color in the micro-
 petrographic microscope, the reader is referred to any text on optical mineralogy ${ }^{5}$ or to a paper by Allen. ${ }^{9}$

It is the interaction of light with variations in the crystal electron density that produces birefringent colors that aid phase identification. Alpha-phase material exhibits low first-order grays and whites, while the other more anisotropic transition phases exhibit high first-order colors. Agglomerate Structure and Shape. These are parameters that estimate chemical purity and, indirectly, phase purity. Agglomerate structure is a direct estimate of precipitation rate. In the Bayer process, as previously described, precipitation rate is a function of pH , temperature, and the number of nucleation sites, that is, seed crystals. If the rate is low because of any of the above conditions, agglomerate growth is slow and radiant growth occurs from the central nuclei. If precipitation is rapid, the radiant growth is replaced by coalescing agglomerates, which result in irregular, grapelike agglomerates with internal structures lacking areas of optical con tinuity.
 distinct internal crystal orientation) is that they directly affect the chemical
phase content，as shown in Figure 9．3．Surface areas，soda contents，and the range of average particle sizes are also stated．The variation in reactivity among types is indicated by an arrow．The direction of the arrow indicates increasing reactivity and the arrow length reflects the spread in reactivity． Several typical alumina types are placed on the reactivity arrow at their appropriate positions．A tight cluster of types indicates little or no dif－ ference in reactivity．
For discussion purposes，the eight alumina types are grouped into the following four larger classes：
1．Nonreactive；high purity．
3．Reactive；high purity．
4．Reactive；low purity
The nonreactive alumina are discussed first．
Oriented－High－Purity Types．One of the first commercial Bayer aluminas marketed in the early forties was Alcoa A－10．Prior to A－10， tabular alumina was the only source of high－purity aluminum oxide．
 reduced to a fine grain size by steel－ball milling．With respect to thermal

 tabular，A－10 is a very nonreactive material，having surface areas of 0.15 to $0.25 \mathrm{~m}^{2} / \mathrm{g}$ and an average particle size greater than $5 \mu \mathrm{~m}$ ．There is no direct
 and Kaiser KC－8 is a product with some similar properties．
Based on historical usage，A－10 has been produced in a greater volume for high－alumina bodies（refractory applications not included）than any other material．It has an excellent record of uniformity but is being replaced with lower－cost，more thermally reactive materials，such as A－12，C－73，and RC－24．
A－10 is characterized petrographically by a uniform deep blue alpha con－ glomerate．The majority of these agglomerates have oriented structures indicating slow precipitation．The chemical and phase purity confirm that A－10 is a highly controlled product．Nonalpha－phase agglomerates are never observed．The grain size is coarse，but the uniform size distribution results in excellent green densities and low－fired shrinkages but，conversely， produces a low surface area and low thermal reactivity，that is，a high firing aluminate solution containing finely suspensed iron，silica，and titinia parti－ cles，inclusion due to physical adsorption in the nonoriented agglomerates is the contamination source．
An indirect effect of agglomerate shape is phase uniformity．Since the trihydrate conversion is accomplished in a rotary kiln，uniform agglomerate mixing is critical．Nonspherical，irregularly shaped particles are more dif－ ficult to mix and can result in incomplete or excessive phase conversion， that is，grain growth．The author has never observed a uniformly calcined product that did not have controlled trihydrate as its source material．

CLASSIFICATION OF BAYER ALUMINAS

The aluminas given in Table 9.1 are genetically classified in this section． The classification purpose is to relate raw－material process history to ceramic processability and final character．Secondly，the aluminas are classified to reduce the spread in properties so that quantitative characteri－ zation can be carried out．The final purpose is to aid in the selection of alu－ mina types，that is，material substitution．
The classification criteria are shown in Figure 9．2．The interaction among these criteria，the previous raw material processing，and their ceramic behavior are discussed in a previous section．In this section eight alumina types are classified according to reactivity，agglomerate structure，and
ค ใ

（20ㅜㅇ

ORIENTED \longrightarrow STRUCTURE \longrightarrow RANDOM

temperature. Although A-10 stands in a class alone, it has been combined with the alumina family of C-75, A-14, RC-122, and B-4. Like A-10 these aluminas are characterized by very uniform, nonreactive alpha agglomerates and high chemical purity. The agglomerates of B-4, RC-122, and A-14 are primarily the oriented type, while C-75 is closer to the random agglomerate. Because of similar calcining conditions, particle size, and distribution, A-14 and C-75 are very similar and result in materials capable of mutual substitution in most ceramic processes. RC-122 has an improved size distribution and yields higher compactions and lower-fired shrinkages than either A-14 or C-75. RC-122 and B-4 are both closer to A-10 but are more reactive. The surface areas of the four materials are a true reflection of the physical surface, since these aluminas are free of surface-active nonalpha-phase agglomerates. The surface area varies from 0.35 to 0.55 $\mathrm{m}^{2} / \mathrm{g}$ and the average particle size is 2.6 to $2.8 \mu \mathrm{~m}$.

Like A-10 these materials have been the standard for high-quality eiectrical grade ceramics and, like A-10, they are being replaced with either a lower-cost nonreactive alumina or a higher-cost transition reactive alumina.

The second family in the nonreactive, high-purity group is transitional between the high-purity and low-purity aluminas. These aluminas have intermediate soda levels but a highly uniform phase and particle size. The three members of this class are A-12, RC-24, and C-73.
This class is unique in many respects. All three aluminas can be substituted for one another. Their higher soda contents make them lower in cost than the previous materials, but their closely controlled agglomerate and phase composition make them well suited for close-tolerance technical ceramics. The increase in soda does lower the TE value several hundred degrees but has no effect on the dielectric strength of electrical ceramics made from these aluminas.

Their excellent particle size distribution yields compactions much higher than A-14 and C-75 but lower than A-10, hence shrinkage is moderate to low.

The surface area is real (physical only) and varies from 0.4 to $0.7 \mathrm{~m}^{2} / \mathrm{g}$. Compared to the A-14 types, the thermal reactivity of this group is higher. The agglomerates are both random and oriented, reflecting lower chemical purity. RC-24 is predominantly an agglomerated material.

Commercially these materials are increasing in usage owing to their lower cost, higher compactions, thermal activity, and uniformity. They are used in practically all types of high-alumina ceramics.

Random-Low-Purity Types. The final nonreactive family is the A-2, RC-20, and C-70 type. Other members of this group are RC-25, A-5, and C-71. All these aluminas have random agglomerates (rapid precipitation)

Classification of Bayer Aluminas
and high soda contents and contain nonalpha-phase agglomerates. The surface areas are therefore high, 0.6 to $1.2 \mathrm{~m}^{2} / \mathrm{g}$, with 0.9 to $1.0 \mathrm{~m}^{2} / \mathrm{g}$ being typical. Based on particle size, the true physical surface area should be 0.5 $\mathrm{m}^{2} / \mathrm{g}$ or less. The powder compaction of these aluminas is fair to moderate. electrical grade ceramics. These aluminas, however, are widely used in lower-cost ceramics where the size control and electrical properties are not critical. Typical uses are for abrasion-resistant material, grinding media, and low-temperature refractories. A significant recent use has been as highmodulus fillers in whiteware products. The substitution of one material for

Reactive Aluminas

 There is no question that future ceramic bodies will be formulated with thermally reactive aluminas. Reactive aluminas are the newest Bayer products, having been introduced in 1966. Several product types are still in experimental pilot production (XA-139 and Reynolds ERC-HP). The production experience in the manufacture of these aluminas is much less than that in the case of nonreactive types, and the controls required for their production are much more extensive. Based on these two conditions, variations in as-received materials can be expected. Reactive alumina agglomerates are readily identified by their refractive index and light blue color in singularly polarized light (plain light).Four families of reactive aluminas are recognized and distinguished based on phase purity, chemical purity, and the number of reactive agglomerates. using proprietary mineralizers to control grain growth. Because of these conditions and lower volume usage, reactive aluminas cost 3 to 10 times as much as the nonreactive aluminas. The benefits to the ceramic users are increased thermal reactivity and greatly improved ceramic character. Because of lower product maturity, process complexities, and the failure of the user to adequately characterize reactive materials, the expected ceramic benefits are not always achieved.

In fairness to the alumina suppliers, it should be noted that the alumina material improvements have not been matched by ceramic-process improvements and hence the problem of large-volume ceramic fabrication with reactive materials still faces the industry.

Transition Reactive. Because of the ceramic users inability to handle the high-surface-area reactive aluminas, the original product had to be scaled down to the users capability level. The high surface area and fine particle

วл! aluminas are A-3 and RC-23. These materials are truly reactive, having surface areas greater than $7.5 \mathrm{~m}^{2} / \mathrm{g}$, but are not produced with precise controls
 much lower costs and have excellent potential use in less-critical ceramic applications.

The problems in working with these materials are numerous. The abun-

 shrinkages greater than 25%. Standard material preparation procedures and forming by tablet pressing are impossible. However, additions of these materials to improve reactivity of other aluminas are possible.

As an interesting aside, the high reactivity of these materials points out that chemical purity itself is not a prerequisite for reactivity. Reactivity is a function of the degree of phase conversion, that is, defect structure.

Reactive Ultrahigh Purity. The finest example of controlled Bayer aluminas is found in the last family, which consists of two experimental production materials, XA-139 and ERC-HP. These aluminas have the highest purity ($<0.01 \% \mathrm{Na}_{2} \mathrm{O}$) and finest grain size $(0.5 \mu \mathrm{~m})$ and are the most reactive Bayer materials produced. XA-139 is particularly interesting in that the precipitation rate is so slow that single or twinned trihydrate crystals are developed instead of the typical trihydrate agglomerate.

This controlled precipitation is reflected in the materials high chemical and phase purity. The high surface area (6.5 to $7.5 \mathrm{~m}^{2} / \mathrm{g}$) is a true reflection observed.

These aluminas are excellent base material for sintering studies. Their commercial usage is not known but they could be used to provide additional surface-finish improvement (super-smooth type) or
materials. Their typical properties are given in Table 9.1.

Classification Summary
The Bayer aluminas given in Table 9.1 have been classified into eight families based on agglomerate structure and refractive index. These criteria, their relations to other material characteristics, and ceramic reactivity are
size resulted in poor milling, and inadequate knowledge of binder-powder interactions resulted in poor green densities, laminations in parts, and low green strengths. These process defects produced high shrinkage (greater than 22%) and cracked and warped parts. RC-152 and A-15 were adjusted to provide a compromise between high-surface-area reactive aluminas and the low-surface-area nonreactives.

Light-microscopy analyses clearly show that these materials are mixtures of reactive and nonreactive agglomerates that have been precipitated under similar conditions but that have been subjected to different calcining temperatures. Such materials can be produced by the physical mixing of reactive and nonreactive agglomerates or by calcining at the critical conversion point and producing both reactive and nonreactive materials. From light-microscopy analyses, it is not possible to determine which procedure was used, nor is it critical to know. The important fact is that these materials are mixtures of two distinct agglomerate populations-reactive and nonreactive.

Both agglomerates have oriented structures and very good chemical purity. They are free of nonalpha-phase materials and the surface areas of 1.5 to $2.5 \mathrm{~m}^{2} / \mathrm{g}$ represent the true physical surface. The average particle size is $1.5 \mu \mathrm{~m}$ which is significantly finer than the previous nonreactives but much coarser than full reactive aluminas.

Commercially these aluminas are very important in that they are used for practically all 99.5% alumina bodies. The dual-agglomerate population produces a wide particle-size distribution, which in turn produces excellent compactions and low-fired shrinkage. However, since they are mixtures of reactive and nonreactive materials, wide variations in reactivity are possible, making surface area an important characterization tool.

Reactive-High Purity. With improved ceramic process experience and capability, the fully reactive aluminas were again placed on the market. These materials are A-16 and RC-172. They contain essentially all reactive agglomerates and, like the transition types, contain oriented agglomerates. Since they are calcined at a reduced temperature, some lots contain a percentage of nonalpha-phase material. Typical material surface areas are 4.0 to $6.5 \mathrm{~m}^{2} / \mathrm{g}$. Higher values due to the nonalpha phase have also been measured. The average particle size is extremely fine, being less than 0.6 $\mu \mathrm{m}$, and the soda level is very low (around 0.05%).
The major commercial use for these materials has been for super-smooth substrates (as-fired surface finishes of less than $5.0 \mu \mathrm{in}$.). The need for super-smooth substrates produced to very close specifications has greatly improved the state of the art of reactive materials. Another important application has been for high-density, 99.5% grinding media. The $99+$
$\underset{\substack{\text { Girdings of Auminas } \\ \text { neas }}}{10}$
Bayer-processed alumina, as is discussed in Chapter 9, consists of solid
 agglomerates by grinding results in many advantages, including denser compacts, lower firing shrinkage, lower firing temperatures, lower tendency for lamination and warpage, and, most important of all, better-fired microstructures. Grinding does not break down the individual primary particles but instead fractures the agglomerates to form a combination of individual or several individual primary particles.

> HISTORY OF ALUMINA-GRINDING TECHNOLOGY
Alumina grinding started in the early 1930s with two inventions. One invention was used at RCA for making a ceramic coating for vacuum tube filaments. The other related to work by Schwartzwalder on alumina at AC
 work by Seamen in Germany. These studies involved ball milling a combination of fused and calcined aluminas in steel mills, acid bleaching the iron that was trapped on the alumina during grinding, and then decanting and washing repeatedly. This work led to the first alumina spark-plug insulators in the United States. At RCA, because the process was too costly, mullite was eventually used for filaments.
100
shown in Figure 9.3. The relations of the eight classes to one another and with respect to their properties are also illustrated.

1. H. P. Rooksby, "Oxides and Hydroxides of Aluminum and Iron," The X-Ray identification and Crystal Structures of Clay Minerals, G. Brown, Ed., Mineralogical Society,
London, 1961, pp. 354-392.
2. H. F. W. Taylor, "Crystallographic Aspects of High Temperature Transformations of Clay Minerals," Proc. Natl. Conf., Clay and Clay ivinerals, 12th. 1964, Pergamon,
London, pp. $9-10$.
3. A. W. Nicol, "Topotactic Transformation of Muscovite under Mild Hydrothermal Con-11-19.
"Characterizing Aluminas," Alcan Company, 1973.
E. H. Kraus, W. F. Hunt, and L. S. Ramsdell, Mineralogy, McGraw-Hill, New York,
4.
5. A. W. Allen, "Optical Microscopy in Ceramic Engineering," Ceramic Microstructures, . M. Fulrath and J. A. Pask, eds., Wiley, 1966, pp. 71-158.
how the material will flow in your mill and will give insight on the particle
 that is a spinoff of Sommer's so-called super grinding. This involves a very high loading (10 to 1) in a small gallon mill, and milling for 4 hr . The milled powder is tested for compaction behavior, surface area, and size distribution. With this knowledge large mills can be tailored by predicting to some degree how the powder will compact and how much grinding time is required. The surface area of the material yields information not only on the particle, but also on whether other materials are present (such as a gamma alumina in an alpha). Chemical composition is important to determine the sintering behavior of the final product. Recognizing the important characteristics of the incoming alumina, it is possible to work asn of pue ionpord s! material from three or four alumina suppliers.
Grinding aids are used to promote flowability in the ball mill and to prevent caking. In theory the grinding aid tends to be a polar molecule that attaches itself to the active bond site that has been broken and prevents that grain from rebonding. Grinding aids include esters, organic salts such as sodium liquisulfonates, stearic acid, oleic acid, and monostearates. Even ethylene glycol, added as a binder, functions as a grinding aid as well. Also in grinding, lubricants are added so that we actually have a combination of binders, lubricants, and grinding aids.

A spark-plug insulator fits in a steel shell and serves as both a structural member and an insulator at high temperatures. In the early 1930s, sparkplug insulators were high alumina mullite compositions. Alumina insulators became important in the early 1940s. With the addition of organic resins to the aluminas, the finest aircraft spark plugs became available for bombers in World War II. The insulators were typically 94 to 96% alumina.

Two schools developed in the approach for grinding aluminas, wet grinding and dry grinding. Wet grinding was done in a ball mill, which was followed by filter pressing and drying, or spray drying. In our case we used insulator.

The dry-grinding approach was carried out by Schwartzwalder in the early 1940s. This approach was adapted at AC Spark Plug and continues to be the method utilized. Suitable liners and balls for mills had to be developed that would not contaminate the alumina. They were usually matched very closely to the composition of the final batch. Special grinding aids were developed to prevent the rebonding of alumina in the mill.
Injection molding was the forming process for spark plugs at AC Injection molding was the forming process for spark plugs at AC during
the 1940 s. This process was eventually phased out in favor of isostatic pressing because it was more costly to make the ribs of the insulator than to form the whole insulator.

In the 1950s isostatic pressing of insulators began. After the grinding operation, organic materials (binders) were added to a water-alumina slip and the slip was spray dried. The spray-dried granules were fed to the pressing operation.

During the 1960s Sommer received four patents in the area of dry grinding. In one contribution he changed the ball-mill loading ratio of alumina to balls. The normal ratio at that time was $3: 1$ or $4: 1$. Sommer showed how the ratio could be increased to between $10: 1$ and $20: 1$. With suitable grind-
ing aids, he enhanced the milling and obtained more compactable powder.

PRESENT STATUS

Most grinding of aluminas today takes place dry in ball mills. Where wet grinding is being used, the vibratory mill is common. The fluid energy mill is being examined to grind various materials, such as gamma alumina for use in catalysts.

In milling an alumina, probably some of the most important items to consider are the alumina characteristics obtained from the incoming material. The bulk density will provides information concerning powder handling in the plant and on loading a mill. The flowability will indicates

11
 Theories of Grinding

P. Somasundaran The previous chapters have dealt with agglomerates and the breakdown of hard agglomerates by grinding. The grinding of coarse-grain material to grind in ceracs in many areas science of fine grinding in ceramics appears to have lagged considerably behind the technological advances. Considering the large energy consumpand size distribution of the ground powder, it would be helpful to understand more about the mechanisms of grinding and the kinetics involved.
 ing. This chapter reviews concepts in grinding and discusses the theoretical progress in fine grinding and effects of grinding aids.
STRENGTH OF INDIVIDUAL PARTICLES

The fracture of a particle involves the propagation of cracks that are present or initiated in the particle. The stress σ required for fracture is given by the Griffith relationship ${ }^{1}$

For brittle materials, γ is between 10^{3} and $10^{4} \mathrm{erg} / \mathrm{cm}^{2}$. With plastic deformation, γ is much greater than $10^{4} \mathrm{erg} / \mathrm{cm}^{2}$.

When a particle is repeatedly fractured, each new particle (fragment) tends to be stronger. The larger cracks existing in the original particle propagate first, leaving the finer cracks in the new particles. The probability of finding a flaw of a given minimum fracture stress decreases. As fragentinues, eventually the fracture stress required may increase to he extent that some plastic deformation is possible. With plastic deformaon occurring, the particle cannot be ground further; consequently, a limit . This limit is reported to be $1 \mu \mathrm{~m}$ for quartz and 3 to $5 \mu \mathrm{~m}$ for limestone.

The possibility that new flaws are created during the fragmentation procested has not been considered by past investigators. However, it can produce additional flaws and merger of dislocations and other defects can strength with decreasing particle size. Another overcy of increasing fracture amount of elastic energy that must be stored to proplooked factor is that the to the volume of the particle, and very small particles may not have suffi cient stored energy.

The effect of rate of stress application is reported to be a gradual increase in the fracture stress initially when the rate is increased from that compression tests to that of fast compression tests. Fracture stress further increases with low-velocity impact but then decreases when the velocity of the impact is further increased. ${ }^{2}$ The initial increase is attributed to larger plastic deformation before failure when a higher rate of compression is used.

Increase in temperature of the fracture environment can be expected to cause an increase in plastic deformation. In this regard it is interesting to note that even under low-temperature conditions, the temperature near a propagating crack-tip can be very high owing to release of large quantities of energy in the form of heat. The magnitude of this energy is 10 to 10^{5} times that of the surface energy requirement for fracture. ${ }^{3}$ The temperature at the crack tip under such conditions can even be above the melting point. ${ }^{3}$ After the propagation of the fracture, such a region, probably of the order energy structures cools down rapidly, freezing amorphous or other highenergy structures at the fracture surface.

Newly forming, high-energy surfaces can react with the surrounding environment if the possible rate of penetration of the environment is equal to or larger than the speed of crack propagation. Figure 11.1 shows the effect of water vapor on the specific crack-extension energy of glass to be significant, but only when the crack velocity is less than about 0.1 to $10^{-4} \mathrm{~cm} /$ second. Below such crack velocity, cracking is assisted by water penetration

GRINDING MECHANISMS
 10 stress application in the grinding zone. With each stress application, several fractures may occur in each particle. Theories of crack initiation and propagation discussed above are therefore compounded by the interaction of flaws in a particle, secondary breakage, interaction of particles with each other and with the surface of the container, secondary interactions between particles and the grinding media, and physical and chemical interactions between particles and the grinding environment. In addition, the type of transport of the material through the grinding zone and size classification of it, if any, in the mill will also affect the nature of the product obtained. The present understanding of the above interactions is limited and in several cases is intuitive or speculative.
 gation will essentially determine the size distribution of the particles obtained during fracture of a single particie. Interaction of a propagating crack with a dormant crack can accelerate, decelerate, or terminate the

NOILAgIELSIG 3ZIS

The size distribution of powders is most conveniently represented by comparing y versus x, where x is the size of the particle and y is the cumulative weight percent of all particles finer than size x.
A plot of $\log y$ verus $\log x$ often yields a straight line for the range $10<y<40$. However, for y values below 10 and above around 40, the inearity in the plot no longer applies. To describe the distribution over a broader range mathematically, several equations have been proposed. ${ }^{11-21}$ Some are largely empirical fits to data, while others are based on models involving distribution of Griffith flaws, probability of survival under constant stress, ${ }^{14}$ and statistical consideration of random division of particles. ${ }^{18-20}$ Most equations are of the form
where $f(x / a)$ is a function that involves exponents or power relationships and constants that determine the average size and breadth of the distribution. The various equations fit specific situations and no universal equation has yet been widely accepted.

The size reduction as a function of time has been considered mainly in terms of the energy consumption. If the rate of energy consumption is К proportional to each other. Major relationships between particle size and time or energy have been recently discussed by Agar and Somasundaran. ${ }^{22}$ Attempts have been made to relate energy consumption to surface area, ${ }^{38,24}$ volume, or weight of the particles, ${ }^{25}$ size and size distribution parameters, ${ }^{3,26}$ and fracture stresses. ${ }^{27}$ The more recent treatments satisfy specific experimental observations that were considered by the investigator, but none appear widely acceptable for all conditions.

Other approaches have involved the monitoring of the rate of disappearance of material coarser than a certain size ${ }^{28,29}$ or the rate of production of fine material from a narrowly sized feed. ${ }^{30,31}$ In some cases the forms of the equations can be shown to be equivalent to certain size versus time relationships mentioned previously.
propagation and can possibly activate the dormant one during the process, depending possibly on the relative orientation between them. Shock waves generated in the specimen as a result of stress application or crack propagation can also activate dormant cracks. Shock waves that diverge from a peripheric point of contact in a sphere or disc can be focused at a point a distance of one-third the diameter from that point on the symmetrical axis to cause tensile fracture. ${ }^{\text {b }}$

Fracture fragments possessing sufficient kinetic energy can undergo further fragmentation by impacting on the walls of the container. Slow compression tests on single spheres have shown that the particles, when allowed to undergo secondary breakage, produced 3.6 times as much surface area for a given specific energy input than those subjected to single fracture when they were embedded in gelatin. ${ }^{6}$ Primary fragments rich with flaws have been found to degrade much more readily than a new sphere comparatively free of surface flaws. ${ }^{7,8}$ During grinding a significant amount of secondary breaking can occur as a result of the impact of primary frag. ments with the grinding media and container wall, as well as with other particles.

Interaction among particles can be significant, depending on the grinding mechanism, relative hardness and size of particles, and the extent of size classification during grinding. A number of interaction phenomena can take place. Particles can nip each other and thereby remove chips, releasing a certain amount of elastic stress. They can also reduce their rugosity and even change their shape by abrasion, which in turn will alter the effects of subsequent comminution events. Most importantly, the presence of fines in the mill can reduce the grinding efficiency considerably because of the cushioning effect produced by a bed of fine particles. ${ }^{8}$ Energy is wasted in deformation and flow of the bed of fines. The above effect is more prominent under dry-grinding conditions than under wet-grinding conditions and all the more so for ball milling. In a rod mill coarse particles are considered to be preferentially ground, and the fines are protected by the wedging of the rods by the coarse particles. ${ }^{\text {b }}$

In addition to these physical interactions, chemical reactions have also been shown to occur, as in the case of prolonged grinding of a mixture of massicott and sulfur. ${ }^{\text {. }}$

While impact-type comminution will produce fragments with a more normal size distribution, nipping by the grinding media or the other particles will produce a distribution with more coarse particles. Also, abrasion will produce a distribution with more ultrafine particles. Intense point loading produces fine fragments of the intensely stressed region and much larger fragments of the remaining material. ${ }^{2}$ The combination of the above types of fragmentation yields a product characteristic of the ground material and
Changes in the entire size distribution of ground material with time have been studied ${ }^{32-68}$ extensively. One of the simpler equations presented is one obtained by curve fitting a three-parameter equation ${ }^{40}$:

$y(x, t)=1-\left[1-\left(\frac{x}{x_{0}}\right)^{s}\right] \frac{(t) p}{t_{0}}$

where t is time and s, p, and t_{0} are constants. This equation fits several sets
of data in the literature, particularly those for ball milling.

ULTRAFINE GRINDING

 difficult to obtain further reduction in size because a grind limit is approached. A practical grind limit exists for most systems. This is most importantly determined by the tendency of the product particles to reaggregate and establish a physical equlibrium between aggregation and fragmentation. In addition, the probability of a particle becoming involved in a comminution event, as well as that of its fracture when it is involved in an event, decreases with decreasing particle size. Depletion of flaws during the grinding as well as a decrease in volumetric capacity to store elastic stress energy, increases the required stress for initiating fracture. Difficulty in obtaining particles below a limiting size has also been attributed to "excessive clearance between impacting surfaces," diminished utilization of energy due to transmission of forces "through a long chain of particles few of which suffer sufficient strain to shatter," semifluid nature of the final product, and protection of smaller particles by the larger ones. ${ }^{50}$
Additional flaws can probably be generated in the fine particles by applying thermal shocks. It is of interest to note that laser techniques, even hough still uneconomical, have been studied for reducing the drilling strength of rocks. ${ }^{\text {a1 }}$
Aggregation can be retarded using a number of techniques. It can be minimized by removing the finest particles continuously using closed-circuit grinding. It is also considered advisable to successively reduce the size of the grinding medium (balls, pebbles, etc.) as the grinding proceeds into fine and ultrafine regions, since the ratio of the size of the grinding medium to the size of the particles should be kept within certain limits for maximum grinding efficiency. Cooling the machines by improving the ventilation or nal or internal watersprays minimizes agglomeration due to rising temperature. ${ }^{52}$ Addition of dispersive chemical agents is found to be bene-
ficial for ultrafine grinding. ${ }^{53}$ Both grinding aids and grinding liquids have

 repulsion between them is possibly the major reason for their influence. Formation of brittle or corrosive surface films has also been considered as a reason for their effect.
An "attritor ball mill" in which balls are rotated with a stirring arm was found to be significantly more efficient than use of a standard ball mill for fine grinding. ${ }^{54}$ Milling time was 5 to 10 times less with the attritor ball mill for the same output. This grinding method is stated to be good also for alloy powders and refractory compounds. Vibration grinding, ${ }^{58-87}$ centrifugal grinding, ${ }^{58}$ and fluid energy milling ${ }^{69}$ have been considered recently for efficient fine grinding. Grinding time with a two-chamber (1.5 in . wide diameter) experimental vibratory ball mill was found to be less than 3 hours for producing graphite fines with a specific surface area of $400 \mathrm{~m}^{2} / \mathrm{g}{ }^{35}$ This is to be compared with 26 hours of grinding with a 15 in . ball mill for the same surface-area development. Theories of rate of vibrational milling have
been presented along with experimental analysis of the theories ${ }^{80}$
Relations described earlier become usually inapplicable in the fine-size region. The following equation, which takes into account the possible existence of a grind limit, was proposed ${ }^{63}$:
$[(\exists X-) \mathrm{dxa}-1]^{w} S=S$
(oz)

 ч
 tion model for fine grinding:

h are two constants. Φ is a measure of finespecific surface area or to the inverse of size modulus. None of these relations, however, represent cases where the Φ_{m} exists at $0<t<\infty$.

It is important to note that surface area and related surface activity are the parameters of importance in a system using very fine particles. It is therefore most meaningful to represent the fine-grinding system by surface area versus time or even cumulative surface area versus size models instead of weight versus time or cumulative weight versus size models.

In addition to the above physical and structural changes, even solid-state reactions have been reported to occur during grinding. Figure 11.2 shows the changes in the massicot-sulfur system when it is ground 20 hours; a chemical reaction then follows in which the oxide in both forms and sulfur are converted to galena. Such solid-state reactions have been reported to be most prominent during the grinding of carbonates. For example, zinc car-
 temperatures give carbon dioxide by mere grinding at room temperature: In the case of carbonates such as magnesium with higher decomposition temperatures, prolonged dry grinding lowered their decomposition temperatures significantly. Another important example of chemical decomposition during grinding is that of $\mathrm{Na}_{8} \mathrm{P}_{3} \mathrm{O}_{10} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form ortho- and pyrophosphates. ${ }^{78}$ Several hydrated salts, such as $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, have been found to decompose during grinding. ${ }^{76}$ These reactions are most

 lead sulfate and yellow cadmium sulfide, the progress of the reaction being indicated by the gradual change in color.

A point to note is that contamination of the samples with the grinding
medium can also occur during prolonged grinding. Mullite contamination

Figure 11.2. Amount of litharge and galena formed during grinding in a massicot-sulfur system.

Both physical and chemical characteristics have been found to undergo significant changes during powder preparation by prolonged grinding. ${ }^{9}$ There is sufficient evidence in the literature ${ }^{53,05}$ that, in addition to desired and expected changes in physical properties such as specific surface area, changes occur also in shape, sintering activity, chemical reactivity, and so forth. The exact nature of alterations is dependent on, among other things, the conditions of grinding and the method of grinding used. Using gravimetric, thermogravimetric X-ray diffraction and electron microprobe analyses, the change in various properties of samples of quartz, calcite, and massicot ground in a pebble mill for several hundred hours was studied. ${ }^{9}$ It was found that the density of the particles decreased in the case of quartz as a function of grinding time (or particle size) apparently owing to the creation of deep amorphous layers on the particles. This effect however, was, dissolution of amorphous material in water. More than half of continuous particles with diameters of 200μ was converted to amorphous quartz during prolonged ball milling. Such effects have been also reported in several other cases. ${ }^{6-66}$ During grinding of hematite, a distinct change in color was observed owing to the production of ferrous oxide at the surface. ${ }^{65}$ Work with clay minerals has provided additional evidence for the effects of prolonged grinding. Bloch, ${ }^{07}$ for example, found that prolonged grinding of montmorilionite caused disruption of its crystalline structure and release of some alumina and magnesia. Reactivity of materials is in general found to be enhanced by comminution, as in the case of kaolinite and molybdenum sulfide, the latter becoming particularly reactive towards oxygen when ball milled in air. Researchers on catalytic activity of metallic oxides, ionic crystals, metal sheets, and wires have observed a favorable increase in such activity due to grinding. Ceramic powders activated by prolonged grinding are reported to sinter more readily. Snow and Luckie ${ }^{63}$ and Naeser and Fieider ${ }^{03}$ have recently reviewed these effects. Increase in catalytic and sintering activities has been proposed to occur as a result of an increase in the dislocation density of the materials. Even though no simultaneous work on both reactivity and dislocation density has been carried out by any of the above workers, it is not unreasonable to expect a change in sample reactivity owing to an increase in dislocation density that naturally occurs during most mechanical treatments.

Polymorphic transitions have been reported to occur during grinding ${ }^{9,80-78}$ possibly owing to temperature and pressure changes that take place locally as a result of the grinding process. Thus, during grinding or massicot and
was lower in the two organic liquids than in water but became the same when small amounts of water were present in the: organic liquids in dissolved form.
Surfactants have been widely reported as effective grinding aids. The effect of adding a flotation agent called Flotigam P on wet-ball milling of quartzite and limestone ${ }^{98}$ is shown in Figure 11.3 as an example. It can be seen that as much as 100% increase in specific surface area was obtained by additions of up to 0.3%. Additions in amounts higher than 0.03% caused a decrease in specific surface area. Sodium oleate in large concentrations has also been reported to produce a net decrease in specific surface area. The effect of Armac T on the grinding of quartz in a ball mill ${ }^{92}$ is shown in Figure 11.4. The effect is detrimental under all concentrations studied. It is not yet known whether these detrimental effects are due to experimental artifacts introduced by the aggregation of fines or are the result of change -! !ued uo uo!ndiospe quejoejıns to uondiospe of anp so! inadoad [e! cles. Flocs in the mill during grinding could consume some of the impact energy for deflocculation. In addition, hydrophobization of particles by the adsorbed surfactants can result in the attachment of air bubbles to them and consequent levitation. The grinding efficiency can be expected to be
 aids has been considered to be due to the reduction in surface energy upon

 materials is found to be more efficient when multivalent electrolytes are used as additives. ${ }^{100 \cdot 100} \mathrm{Effect}$ of AlCl_{3} and CuSO , on wet grinding is shown in Figure 11.5. Both reagents aid the grinding, the extent of the effect

 reported to cause poor grinding. ${ }^{96,98}$ In addition to any effect that these elec-
 flocculation or dispersion of particles is also possibly a major reason for their overall observed effect. ${ }^{\text {ss }}$ This reasoning is supported by work that showed that the addition of dispersing agents always improved the comminution of solids. ${ }^{\text {os }}$

Physical Nature of the Environment

Properties such as viscosity and density of the grinding environment can be expected to have an effect on the hydrodynamic behavior of particles, as well as of the grinding medium, and therefore on the grinding performance. Grinding is normally dependent on the viscosity of the medium up to about
 found for the viscosity of the environment. ${ }^{\text {80 }}$ The effect of density of the suspending fluid by grinding quartz and pyrite in air, water, and tetrabro-
 air. The results obtained in tetrabromoethane however, were, inferior,

Figure 11.5. New surface area produced per unit energy applied during mill grinding in
aqueous solutions as a function of CuSO_{4} and AlCl_{3} concentrations.

Figure 11.4. Effect of Armac T on the comminution of quartz in a ball mill at different pH
values.
their adsorption, making it easier to produce new surfaces under such conditions. This reasoning is in line with the explanation offered by Rehbinder and coworkers for the observed increase in drilling rate on the addition of these agents. On the other hand, it is also possible that it is an indirect result of several other phenomena that could occur in the system, such as the interaction of the surfactant molecules adsorbed on the surface and the reant effects on various interfacial properties. In some cases it could also be the result of the ability of the reagents to enhance the dispersion of Exarticles and thus indirectly to facilitate fragmentation.

Exinding of ultrinding aids used in the past include polysiloxane in the limestone and quartz; glycols, talc; silicones in the drop-weight crushing of carbon blacks, and wool grease in the organosilicones, organic acetates, ball milling of quartz; acetones in nitromethane benzene; silicones in the chloride and hexane in vibratory milling of ground glass, marble and quartz; and wool grease in the milling of gypsum, limestone, and quartz. not aggregase reagents are reported to act by preventing ball coating but since it is known that ball coating impairs the grinding efficiency.

Inorganic Electrolytes

Use of inorganic electrolytes during drilling was noted in the forties by Rehbinder et al. ${ }^{94}$ to increase the efficiency significantly. A number of ing. ${ }^{98-100}$ Even thempted to establish corresponding effects during grindis in general found to be more efficient in the presence of inorganic elec-
 Und Bruchphanomente in Kreisscheiben Bei Prallbeanspruchung," 3rd European Symposiurn on Comminution, paper 1-8, Canner, October 1971; Dechema Monogr., 69
(1972).
6. B. H.' Bergstrom, C. L. Sollenberger, and W. Jr. Mitchell, "Energy Aspects of Single Particle Crushing," Trans. AIME. 220, 367-372 (1961).
G. L. Fairs, "A Method of Predicting the Performance of Commercial Mills in the Fine
Grinding of Brittle Materials," Trans. Inst. Mining Metall. (London) 63,211 (1953).

bling Mils," Trans. AlME. 22, "Alter (
I. J. Lin and P. Somasundaran, "Alterations in Properties of Samples During Their
Preparation by Grinding," Powder Tech., 6, 171-179 (1972).
10. D. D. Crabtree, R. S. Kinasevich, A. L. Mular, T. P. Meloy, and D. W. Fuerstenau, "Mechanisms of Size Reduction in Comminution Systems 1. Impact, Abrasion, and Chipping Grinding," Trans. AIME. 229, 201-206 (1964).
11. H. Heywood, "Principles of Crushing and Grinding," Chemical Engineering Practice,
H. W. Cremer, and T. Davies, eds., Butterworths, London, Vol. 3, (1956), pp. 1-23.
2. J. J. Gilvarry and B. H. Bergstrom, "Fracture of Brittle Solids: Pt. 2-Distribution 391-399 (1961).
13. J. J. Gilvarry and B. H. Bergstrom, "Fracture of Brittle Solids: Pt. 3-Experimental Results of the
$3211-3213$ (1962).
14. J. J. Gilvarry, "Fracture of Britle Solids Two Dimensional Distribution Function for Fragment Size in Single Fracture: Pt. 4 (Theoretical), Pt. 5 (Experimental)" J. Appl.
Phys. 33, 3214-3217 and 3218-3224 (1962).
15. J. J. Gilvarry and B. H. Bergstrom, "Fracture and Comminution of Brittle Solids (Theory and Experiment)," Trans, AIME, 220, 380-390 (1961).
16. J. J. Gilvarry, and B. H. Bergstrom; "Fracture and Comminution of Brittle Solids: Further Experimental Results, J. Appl. Phys., 223, 419 (1962).

A. M. Gaudin and T. P. Meloy, "Model and a Comminution Distribution Equation for Repeated Fracture," Trans. AlME, 223, 43-50 (1962).
T. P. Meloy, "A Three Dimensional Derivation of the Gaudin Size Distribution Equa-
R. R. Klimpel and L. G. Austin, "The Statistical Theory of Primary Breakage Distribu-
tions for Brittle Materials," Trans. AIME, 232, 88-94 (1965).
C. C. Harris, "The Application of Size Distribution Equations to Multi-Event Com-
minution Process," Trans, AIME, 241, 343-358 (1968).
22. G. E. Agar and P. Somasundaran, "Rationalization of Energy-Particle Size Relationships in Comminution," XthInt. Miner. Proc. Cong. IOth. London, 1973, Institute
P. R. Von Rittinger, Lehrbuch der Aufbereitungskunde, Ernstand Korn, Berlin, 1867.

Theories of Grinding

possibly because quartz particles, which are lighter than tetrabromoethane, remained partially afloat and thus out of the path of the impacting grinding media.

The main two mechanisms proposed to explain the effects of comminution aids are Rehbinder's ${ }^{114}$ mechanism based on adsorption-induced surface energy changes and Westwood's ${ }^{112.113}$ mechanisms based on adsorptioninduced mobility of near-surface dislocations. Rehbinder's mechanism is based on the concept that a fruitful comminution event involves the production of new surfaces and that to accomplish this an amount of energy proportional to the free energy of the surface should be spent. Addition of chemical agents to reduce the effective surface energy of the solid particles should, on the basis of the above concept, enhance the grinding process. According to Westwood, the Rehbinder effect is more likely due to changes
 the adsorption of the additives on the solid. Such changes are known to influence the specific interactions between dislocations and point defects
 materials has been recently proposed by Westwood et al. to be controlled by the zeta potential of the material in solutions. ${ }^{113}$ Since addition of surface active agents does affect the zeta potential significantly, it can be then expected to affect the grinding performance.

On the basis of the results obtained during abrasion and grinding tests on cement clinker in the presence of organic liquid vapor, it was found that the effectiveness of the vapor grinding aids in industrial ball milling is due to reduction of adhesive forces leading to prevention of aggregation of powder and of coating of balls and liners. ${ }^{78}$ Influence of adsorption of vapors on plastic deformation itself is considered to be significant only for cases where stresses are applied for long intervals and for grinding where stresses are applied rapidly.

REFERENCES

A. A. Griffith, "The Phenomena of Rupture and Flow in Solids," Philos. Trans. Roy. Soc. London, Ser, A 221, 163-198 (1920-1921).
C. C. Harris, "On the Role of Energy in Com (London), 75, C37-C56 (1966).

[^4]
 48. G. D. Gumtz and D. W. Fuerstenau, "Simulation of Locked-Cycle Grinding," Trans. C. C. Harris, "Relationships for the x y Comminution Surface," Trans. Inst. Mining A. L. Mular, "Comminution in Tumbling Mills-A Review." Can. Metall. Q., $\overline{4}$ (1). W N Lucke, "Novel Methods of Rock Fracture," Mining Congr. J., 64-69 (Aug. 1973).
52. B. Becke, Principles of Comminution, Akademiai Kiado, Budapest, 1964.
53. P. Somasundaran and I. J. Lin, "Effect of the Nature of Environment of Comminution Processes," Industrial and Engineering Chemistry and Proc. Des. and Dev., 11, 321-331
M. Quatinetz, R. J. Schafer, and C. R. Smeal, "The Production of Submicron Metal Powders by Ball Milling with Grinding Aids," Ulirafine Particles. Ed. W. E. Kuhn, Wiley, New York, 1963, pp. 271-296.
E. A. Smith, "Some Special Functions of the Vibrational Ball Mill," Chem Ind. (London), 1967 (34), 1436-1442.
H. L., Podmore and E. S. G. Beasley, "Vibration Grinding in Close Packed Media
Systems," Chdm, Ind. (London) 1967 (34), 1443-1450.
A. Kirk, "Practical Review of Vibration Milling," Chem. Ind. (London) 1967 (3), 1378-
R. Planiol, "Vacuum-Operated Centrifugal Grinder is Proposed for Powder Savings."

Eng. Min. J.. 140-142 (Sept. .P68). B. Dobson and E. Rothwell,
H. E. Rose, "Some Observations on the Application of Vibration Mills," Chem. Ind. (London) 1967 (33), 1383-1389.

Cited by A. L. Mular, "Comminution in Tumbling Mills-A review," Can. Metall. Q.. 4,
(1), 31-73 (1965).
. . Harr, Tech, 10, 129-142 (1974); Snow, R. H., "Annual Review of Size Reduction-1972," Powder Tech., 7, 69-83 (1973); R. H. Snow, "Annual Review of Size Reduction, $\stackrel{\text { in }}{\frac{1}{3}}$
R. C. Ray, "The Effect of Long Grinding on Quartz," Proc. Roy Soc. London, Ser. A.
A102, 640-642 (1923).
Y. J. Burton, "Change in the State of Solids Due to Milling Processes," Trans. Inst. Chem. Eng., 44, 37-41 (1966).

Theories of Grinding
24. F. C. Bond, "The Third Theory of Comminution," Trans. AIME, 193, 484-494 (1952).
25. F. Kick, Date Felix, Leipiag. 1885.
R. J. Charles, "Energy-Size Reduction Relationships in Comminution," Trans AIME 208, $80-88$ (1957).
J. A. Holmes, "A Contribution to the Study of Comminution-A Modified Form of
Kick's Law," Trans. Inst. Chem. Eng., 35, 125-141 (1957).
N. Arbiter and C. C. Harris, "Particle Size Distribution/Time Relationships in ComF. W. Bowdish, "Theoretical and Experimental Studies of the Kinetics of Crindin in Ball Mill," Trans. AIME, 217, 194-202 (1960). N. Arbiter and U. N. Bhrany, "Correlation of Product Size, Capacity and Power in Tumbing Mills," Trans. AlME. 217, 245-252 (1960).

Process. Congr. Cuerstenau and Somasundaran, "Comminution Kinetics," Proc. Int. Miner. G. F. Hutting, "Zur Kinetik Der Zermahlungsvorgange," Z. Elektrochem. 57, 534-539
O. Theimer, "Uber Die Kinetic Von Zermahlungsvorg-Ange," Kolloid Z., 132, 134-141
34. L. Bass, "Zur Theorie Der Mahlvorgange," Z. Angew, Math. Phys., 5, 283-292 (1956). B. Epstein, "Logarithmico-Normal Distribution in Breakage of Solids," Ind. Eng.
Chem., 40, 2289-2291 (1948).
 (1962).
R. P. Gardner, and L. G. Austin, "A Chemical Engineering Treatment of Batch Grind-
ing," Symposium Zerkleinern, H. Rumpf and D. Behrens, eds., Veriag Chemie, Duseldorf, W. Germany., 1962, pp. 217-248.
38. C. C. Harris, "Batch Grinding Kinetics," Trans. AIME, 241, 359-364 (1968).

241, 449-454, "Size Reduction-Time Relationships of Batch Grinding," Trans. AIME. 241, 449-454 (1968).
P. C. Kapur, "A Sim

Batch Grinding," Chemarity Solution to an Integro-Differential Equation Describing
D. F. Kelsall and K. J. Reid, "The Derivation of a Mathematical Model for Breakage in Chemical Engincering Ret, Ball Mill." Application of Mathematical Models in Ehemical Engineering Research, Design, and Production, Institute of Chemical T. S. Mika, L. M. Berlioz, and D. W.

Batch Ball Milling." Zerkleinern, 2nd Symposium on Comminch to the Kinetics of Dry Pietsch, eds., Verlag Chemic, Weind Symposium on Comminution, H. Rumpf, and W. J. A. Herbst, G. A. Grandy, and T. S. Mika, "On the Devel

Parameter Models for Continuous Open and Closed Circuit and Grinding Systems," Trans. Inst. Mining Metall. 80, C193-C198 (1971).
 Conference, London, Institution of Mining and Metallurgy, 1973, paper 19.
P. C. Kapur, A. L. Mular, and D. W. Fuerstenau, "The Role of Fluids in Comminu-
tion." Can. J. Chem. Eng.. 43, 119-124 (1965).
89. W. A W. A. Hockings, M. E. Volin, and A. L. Mular, Effect of Suspending Fluid Viscosity on
Batch Mill Grinding," Trans. AIME, 232, 59-62 (1965).
E. Von Szantho, "Der Einflux Von Oberflachenaktiven Stoffen Beider Feinzerkleinerung," Erzbergbau Melallhuellenwes. 2, 353-360 (1949)
L. A. Gilbert, and T. H. Hughes, "Some Experiments in Additive Grinding," Symposium Zerkleinern I, Verlag Chem., Duseldorf, Germany 1962, pp. 170-193.
P. A. Rehbinder, L. A. Schreiner, and K. F. Zhigach, "Hardness Reducers in Drilling," Moscow Academy of Science, 1944; Trans Counc. Scl. Ind. Res., Melbourne, Australia, 1948, p. 163.
J. H. Brown, "The Effects of Chemical Agents in Comminution,"M.I.T. Progress Report N.Y.O. 7172, 1955.
V. I. Byalkovskii and I. A. Kudinov, Keram. Sb., 8-13 (1940); Khim. Ref. Z., 4 (5), 114
(1941); Ceram. Abstr., 22, 121 (1943).
A. Z. Frangiskos, and H. G. Smith, "The Effect of Some Surface Active Reagents on
the Comminution of Limestone and Quartz," Progress in Mineral Dressing, Trans. Int. the Comminution of Limestone and Quartz," Progress in Mineral Dressing. Trans. Int.
99. R. Mallikarjunan, and K. M. Pai, and P. Halasyamani, "The Effect of Some Surface Active Agents on the Comminution of Quartz and Calcíte," Trans. Indian Inst. Metals,
18, 79-82 (1965). 18, 79-82 (1965).
M. H. Stanzyk, I.
M. H. Stanzyk, I. L. Feld, U.S. Bureau of Mines Report 7168, 1968, p. 28.
E. R. Dawley, Pit Quarry, 36, 57 (1943).
. R. Dis (May 13, 1969). 103. R. A. Knight, and C. A. Calow, AWRE Report 039-068, United Kingdom, April 1968.

R. J. Schater, and M. Quatinetz, U.S. Patent 3,090,567 (May 21, 1963).
M. J. Sinnott,. The Influence of Surfaces on the Properties of Materials,
of Crystallizing Solids, ASTM Technical Publication, No. 283, Philadelphia, 1961, pp.
of Crystallizing Solids, ASTM Technical Publication, No. 283, Philadelphia, 1961, pp
28-39.
F. G. Serafin, U.S. Patient 3,443,975 (May 13, 1969).
F. G. Seralin, U.S. Patient 3,459,570 (August 5, 1969).
F. G. Serafin, U.S. Patient 3,459,570 (August 5, 1969).
H. E. Schweyer, Ind. Eng. Chem., 34, 1060-1064 (1942).

 lems," in Environment-Sensitive Mechanical Behaviors. A. R. C. Westwood and N. S. Stoloff, eds., Gordon and Breach, New York, 1966, pp. 1-65.
N. H. MacMillan and A. R. C. Westwood, "Surface Charge-Dependent Mechanical
Behavior of Non-Metals," Office of Naval Research Project NR-032-524, RIAS, Martin Marietta Corp., Baltimore, September 1973.
C. Legrand and J. Nicolas, "Contribution of X-ray Diffraction and the Electron Microcope to the Study or Ground Kaolins," Bull. Soc. Fr. Ceram., 44, 61-69 (1959). J. M. Bloch, "Effect of Grinding on the Crystal Structures and Properties of Mont G. Naesear and A. Fielder, "Mechanical Activation of Solids and Its Technical Significance," Verfahrenstechnik. 6 (9), 299-305 (1972).
J. H. Burns and M. A. Bredig, "Transformation of Calcite to Aragonite by Grinding,"
J. Chem. Phys., 25, 1281 (1956), D. O. Northwood and D. Lewis, Can. Miner., 10, 216224 (1970).

侖
G. L. Clark and R. Rowan, "Polymorphic Transitions by Grinding, Distortion and
F. Dachille and R Roy, Proc Int Congr on Reacily of Solids, 4 th. Elsevier

Amsterdam, 1960; M. Senna and H. Kuno, J. Amer. Ceram. Soc., 54, 259-262 (1971).
G. Naeser and W. Scholz, Ber. Deut. Keram. Ges., 39, 106 (1962).
D. Ocepek, "Mechanical and Mechano-Chemical Reactions in Crushing Processes," Rudarsko-Met. Zbornik, (1), 5-16 (1969); E. A. Prodan, et al., "Decomposition of
Sodium Triphosphate Hyxahydrate During Dry Grinding," Dokl. Akad. Nauk Belorussk., 14, (6) 526-529 (1970) [Chem. Absir., 73, 726642 (1971)].
I. J. Lin and A. Metzer, "Changes in the State of Solids Due to Comminution,"
J. C. Jamieson and J. R. Goldsmith, "Some Reaction Produced in Carbonates by

F W Locher and H. M. V. Sech "Influence of Adsorption on'Industrial Grinding," Industrial and Engineering Chemistry Process Des. Dev., 11, 190-197 (1972). V. Korac, "Use of Grinding Auxiliary Agents in Cement Production," Tehnika
K. Popovic, "Effects of Grinding Aids on Portland Cement Clinker," Cement (Zagreb),
(1971); Chem. Absir. 76, 144429p. T. Furukawa, A. Anan, K. Yamasaki, "Usem Ginding System for Cement Clinker," Semento Gijutsu Nempo, 25, 69-75 (1971); Chem Absir. 77, 14340g.
82. T. Furukawa, A. Anan, and K. Yamasaki, "Use of Grinding Agents in Closed Circuit Grinding System for Cement Clinker," Semento Gijutsu Nempo, 25, 69-75 (1971); Chem. Abstr. 77, 14341 g .
W. H. Goghill, and F. D. Devaney, "Ball Mill Grinding," U.S. Bureau of Mines, Tech.
H. E. Rose, R. M. E. Sullivan, Ball, Tube and Rod Mills, Chemical Publishing Co., New York, 1958, p. 30.
I. J. Lin, and A. Mitzmager, "The Influence of the Environment on the Communition
on Quartz," Trans. AIME. 241, 412-418 (1968).
F. W. Locher, W. Eichartz, and H. M. von Seebach, S. Sprung, "Environmental Effects

12
Reactive Powders from
Solution
D. W. Johnson, Jr.
P. K. Gallagher
A variety of techniques for preparing ceramic powders involve a liquid solution as an initial step. The aqueous or organic-based solutions contain dissolved salts with appropriate cations or anions. The solvent is removed, leaving a residue that is the final powder or that is thermally converted to the desired form.

The most critical step in solution techniques is the removal of the solvent. degree of homogeniety of the residue, however, depends an the scale. The of the solvent-removal technique.
Although generally straightf
consideration of the solubility of the critical cations and anions. Problems

 sulfate phase would precipitate out.

This chapter describes a number of solution techniques for preparing powders. The techniques involve solvent vaporization, solution combustion, or precipitation-filtration.

This technique is similar to spray roasting except that the solution is
 injects solution droplets into a heated fluid bed of the solid product. By

 product being removed from the bed periodically. It has been used to prepare and calcine uranyl nitrate and aluminum nitrate.'
Advantages of fluid bed drying include: (1) the absence of moving parts, (2) large capacity per unit volume of equipment, and (3) the formation of granulated powders of relatively high bulk density and large particle size. It
 tion are known, but it may not be convenient to change compositions on a
 solid particles that have reached a specific size. ${ }^{b}$
In this technique a solution (typically nitrates) is atomized and blown
 decompose the salt in a single step. ${ }^{9}$ It appears to be most suitable for the preparation of laboratory batches.

Emulsion Drying

 sion of solid salt particles in kerosene. The particles are deflocculated, precipitated, filtered, washed, and decomposed. The behavior of the
 allows efficient transfer of heat to the emuls of emulsification that can be stabilized.

Gelation-Evaporation

 precipitated phases or diffusion of components in an amorphous phase is
 glassy matrix. Many processes termed "sol-gel techniques" are included
by spraying it through a hydraulic nozzle at a pressure of a few psi. At this point the technique differs from the other volatilization methods in that segregation is prevented by a rapid freezing step. Solution droplets are sprayed into a bath of immisible liquid, such as hexane chilled by Dry Iceacetone, or by spraying directly into liquid nitrogen. ${ }^{21}$ The rapid freezing step is very important because the degree of ice-salt segregation is minimized. The hexane is not as cold as the liquid nitrogen but has better thermal contact with the droplets, since a gaseous layer of nitrogen around
 of freezing involves introducing droplets of solution into the bottom of a chilled bath of refrigerant with a density higher than that of the frozen solution. ${ }^{22}$ The frozen product is skimmed from the top of the refrigerant. These freezing methods generally produce spherical frozen beads of solution with diameters in the 0.01 to 5 mm range.

The drying step ${ }^{20}$ involves the sublimation of water from the frozen solution without melting. The frozen sample is introduced into a vacuum chamber that is evacuated to a pressure of about 1 torr or less, at which the water sublines rather than melts. Heat can be applied to aid sublimation. To keep the partial pressure of water in the system as low as possible, a refrigerated condensing coil is usually introduced to collect the sublimed water. The drying can be done in a commercial freeze-drier or in a small glass apparatus for laboratory use consisting of a chamber with a sample and a liquid nitrogen trap all evacuated by a mechanical pump.

The freeze-drying technique gives spheres of aggregated crystallites that若 dәлs ио!̣вu! or the concentration of the solutions. ${ }^{20,23}$

Reactive powders of $\mathrm{Al}_{2} \mathrm{O}_{3}$, prepared by freeze-drying, were easily ing, and precipitation for the preparation of $\mathrm{LiFe}_{5} \mathrm{O}_{\mathrm{s}}$. ${ }^{25}$ Dre compared and it was found that freeze drying allowed the most flexibility in terms of sintering temperature and grain size. ${ }^{20}$ The sintering temperatures needed were much lower than those needed for conventionally prepared powders, and a large degree of control over grain size was available.

Lithiated NiO for catalytic studies has been prepared using freeze drying. ${ }^{27}$ The very uniform mixing allowed the $\mathrm{Li}_{2} \mathrm{O}$ to diffuse into the NiO lattice at about $400^{\circ} \mathrm{C}$ as compared to 950 to $1000^{\circ} \mathrm{C}$ for conventionally prepared mixtures. With such low-temperature preparation, surface areas up to $60 \mathrm{~m}^{2} / \mathrm{g}$ were preserved compared with less than $1 \mathrm{~m}^{2} / \mathrm{g}$ for conventionally prepared NiO.

Some low-freezing-point solutions have a tendency to form glasses when
cooled rather than to freeze into ice and salt. When these are heated in a
carrier gas, and fed into a decomposition chamber where it is contacted

 \AA and a purity greater than 99.95%.
The vapor-phase decomposition or hydrolysis of metal chlorides in a flame is a fairly common technique. It is used commercially to make high-surface-area SiO_{2} powders. ${ }^{36}$ Silicon tetrachloride is reacted at high
 give silica and hydrochloric acid. The silica can be collected by a cyclone produces a very fine silica and alumina made from chlorides have been reported. ${ }^{36}$
A burner designed to prevent clogging of the orifice by the oxide has been described. ${ }^{37}$ The burner has four concentric tubes admitting from the center out chloride vapor in oxygen, nitrogen, hydrogen, and oxygen. The nitrogen

 using mixtures of chlorides.

PRECIPITATION-FILTRATION

 the most widely used techniques for the preparation of ceramic powders from solutions. Usually the equipment needed is very simple and can be found in most chemical laboratories. However, the precipitation step involves a large number of variables that can affect the process. Some of the more important ones are discussed briefly here.
The pH of an aqueous solution is important for several reasons. The influence of pH on the precipitation of hydroxides is obvious in that the OH^{-}-concentration appears in the solubility product. For example, in the precipitation of $\mathrm{Al}\left(\mathrm{OH}_{3}\right)$ the equilibria is:
$\mathrm{Al}^{3+}+3 \mathrm{OH}^{-} \leftrightarrows \mathrm{Al}(\mathrm{OH})_{3}$
If the pH is too low, there are insufficient hydroxide ions in solution. At
 not accomplished. The precipitation of $\mathrm{Al}(\mathrm{OH})_{3}$ is best done at a solution pH in the range of 4 to 9 .
freeze-drier they tend to flow and in some cases the homogeneity of the solution is lost. The addition of ammonium hydroxide to concentrated solutions of ferric sulfate has been shown to result in a raising of the freezing point and the promotion of salt-ice phase separation. ${ }^{28}$ A variation of freeze-drying has been introduced for preparing actinide metal oxides from nitrate solutions, avoiding the problem of glass formation during freezing. contacted with $\mathrm{NH}_{4} \mathrm{OH}$ to convert the nitrates to insoluble hydroxide at low temperatures. This is freeze-dried and decomposed to the oxides.

SOLUTION COMBUSTION

Solution combustion encompasses those preparation techniques in which solutions are actually burned to form solid particulates. It also includes to some degree those techniques that volatilize liquids for hydrolysis, decomposition, or oxidation from the gaseous state.

Alcohol Solutions

Ferrites have been produced by dissolving nitrates in alcohol and burning the solution in an atomizing burner. ${ }^{30}$ The stoichiometric ratios of nitrates are dissolved in alcohol, the solution is atomized in oxygen, the dispersion is burned, and the powder is collected using a cyclone chamber. This technique is reproducible and more convenient and controllable than conventional mixing or coprecipitation. ${ }^{30}$ The same technique has been used for ferrites except for the substitution of a water-spray tower for powder collec tion. ${ }^{31}$ The phases present in the ferrite were dependent on the oxygen pressure in the burner; the higher oxygen pressures produced single-phase ferrites. burned in air or oxygen to give $\mathrm{BaTiO}_{3} .^{32}$

Organometallics

Barium and titanium alcoholates mixed in an organic solvent have been While some organometallics, such as metal alkyls, can burn in air or oxygen to give oxide particulates, it is an expensive process and is not widely used. Some organometallics are not readily combustable but are mixed with alcohols for burning, ${ }^{35}$ as is duscussed in the previous sections. However, some organometallics can be decomposed in a hot gas stream to give the oxides, as in the case of some transition metal alkoxides. ${ }^{24}$ For zirconium tetratertiary butoxide, the material is vaporized, mixed with an inert

Precipitates can be conveniently broken into three categories: (1) singlecompound precipitates, which decompose directly into the desired stoichiometry; (2) solid-solution precipitates, for which the desited stoichiometry can be incorporated into a single-

Single Compounds

 There is no need for accurate assays, since the stoichiometry is assured and the homogeneity of the precipitate is on the atomic scale. Some
 $\mathrm{BaSn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}^{; 4}$ and LaFeO_{3} from $\mathrm{LaFe}(\mathrm{CN})_{0} \cdot 5 \mathrm{H}_{2} \mathrm{O} .^{42}$

One advantage of the homogeneity is the low-temperature reactivity. reaction temperature is near $1000^{\circ} \mathrm{C}$ and $\mathrm{Ba}_{2} \mathrm{SnO}_{4}$ as a reaction inter-
 can be formed at about $700^{\circ} \mathrm{C}$ without any detectable intermediates. ${ }^{4,44}$ Also, the low reaction temperature widens the range of particle sizes that can be made.

With barium titanate, the precipitation process has been extended to
 The availability of the rare earth, transition metal cyanides has proven useful in the preparation of highly reactive catalysts, such as $\mathrm{LaCoO}_{3}, \mathrm{PrCoO}_{3}$, and LaMnO_{3}. ${ }^{46,47}$

The principal disadvantage of the technique is the rarity of its applicability. Most practical compositions have no precursor of the same composition and other types of precipitation must be used.

Solid Solutions

A single-phase solid-solution precipitate assures homogeneity on an atomic scale but does not assure the proper cation ratio. The ratio must be set by very careful control of the precipitation process.

During the precipitation of a solid solution, the cation ratio in the solution is not necessarily found in the precipitate. For instance a barium titanate with partial substitution of strontium and lead for barium can be

 chemical analyses the divalent metal ion ratio necessary in the solution to give the desired product. Again, the pH of the solution is important and hydroxide. For instance, ammonium oxalate and oxalic acid are commonly used precipitating agents and the relative concentrations of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, dation state of the ions of interest. At high pH , iron(II) will react rapidly with atmospheric oxygen because the iron(III) that is formed is removed from solution as the hydroxide.

Solution concentrations, temperature, and atmosphere also affect the equilibrium of a precipitation. However, equilibrium is seldom achieved during precipitation, and a number of nonequilibrium factors can also affect the precipitation process.

The order of mixing of the solution and the precipitating agent is important. Generally the solution of cations is added slowly with stirring to a solution containing the precipitating agent. This allows an excess of precipitating agent, and the solubility products of to be exceeded simultaneously. Adding the precipitating agent to the cation on will ofause the cations to be precipitated stepwise with the resulting inhomogeneities.

The rate of mixing is a variable that can affect the particle size of the precipitate by way of the degree of supersaturation and thus the number of nuclei formed. Finely divided precipitates are formed by rapidly mixing cold concentrated solutions.

Stirring rate can also affect the degree of supersaturation and the particle size. Stirring also prevents the formation of large agglomerates, which can hinder later steps of powder processing. The application of ultrasonic fields during precipitation can also reduce the agglomerate sizes. ${ }^{28}$

The effect of other ions on the surface chemistry of precipitates can be important and is treated more completely elsewhere. ${ }^{39}$ An important example involves the electrical double layer that surrounds many fine precipitates in suspension. The heavy concentration of electrolyte surrounding the particles after the precipitation often destroys this layer and allows the particles to flocculate and settle. When the precipitate is then washed free of this excess electrolyte the particles may deflocculate and form a stable colloid that is difficult to filter. This can be avoided by the addition of a small amount of an ammonium salt which can subsequently be removed by calcination.

Impurities in a precipitate can be incorporated though a precipitation from the solution either as a separate phase or in solid solution. Impurities can be adsorbed on the surface of a precipitate and subsequently incorporated by further growth or whole pockets of solvent can become occluded. In general, conditions that favor large particle size, slow growth, and equilibrium will produce the purest precipitates.
The hydrolysis of organometallics is a versatile technique for the prepara-
 alkoxide, is prepared and mixed with highly purified water for hydrolysis. Examples of oxides made from alkoxides are yttria-zirconia, ${ }^{\text {s6 -barium }}$ titanate, ${ }^{87}$ and alumina. ${ }^{88}$
Hydrothermal conditions at higher temperatures yield precipitates with relatively large and well-formed crystals. This has been demonstrated for various ferrite compositions ${ }^{50,00}$ and for $\mathrm{ZrO}_{2} .^{61}$ In some cases the hydrothermal treatment ${ }^{00}$ gives an oxide product rather than a hydroxide or a hydrated oxide.
For some hydroxide precipitations, prolonged digestion at high pH and at temperatures near boiling will form an oxide phase directly that can be filtered and used without needing a separate decomposition step. This technique is particularly useful for ferrites, ${ }^{62,63}$ but other materials, such as $\mathrm{BaTiO}_{3}{ }^{64}$ and even complex chalcogenides, ${ }^{68}$ have been prepared by similar techniques.
While most precipitations are affected by the addition of a precipitating ion, the addition of an aqueous solution to a large excess of a second solvent in which the original solute is insoluble will also cause precipitation to occur. This principle forms the basis for a powder preparation technique termed "liquid drying." ${ }^{66}$ For the preparation of some spinels the appro-

 precipitation and minimized the amount of segregation that took place. Other investigators have also reported the preparation of ferrite ${ }^{1}$ and transition metal sulfides ${ }^{67}$ using similar methods.
In cases where a single salt is being precipitated, a well-crystallized precipitate can be made by homogeneous precipitation. ${ }^{68}$ This technique slowly raises the concentration of the precipitating ion, such as hydroxide or oxalate, which is formed by the slow hydrolysis of urea or ethyl oxalate. This provides a precipitation scheme where there is minimal supersaturation and relatively few nuclei form.

ADVANTAGES

The greater degree of homogeniety possible with solution-prepared powders compared with conventional ground, mixed, and calcined powders provides
14. D. M. Roy and R. Roy, "Experimental Study of Formation and Properties of Synthetic Serpentines and Related Layer Silicate Minerals," Amer. Miner., 39 (11,12), 957-975 (1954).
15. P. W. D. Mitchell, "Chemical Method For Preparing $\mathrm{MgAl}_{2} \mathrm{O}$, Spinel," J. Am. Ceram.
Soc. $55(9), 484(1972)$.
16. D. R. Messier and G. E. Gazza, "Synthesis of $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ and $\mathrm{Y}_{2} \mathrm{Al}_{1} \mathrm{O}_{12}$ by Thermal
6971 (1972). 17. C. Marcilly, P. Courty, and B. Delmon, "Preparation of Highly Dispersersors J Amer. Ceram. Soc., 53 (1), 56-57 (1970).
18. L. J. Koppens, "Improved Ferrite Memory Cores Obtained by a New Preparation Technique." IEEE Trans. Mag.. 8 (9), 303-305 (1972).
Th. J. A. Popma and A. M. Van Diepen, "Magnetization and M8ssbauer Spectra of
F. J. Schnettler, F. R. Monforte, and W. W. Rhodes, Sclence of Ceramics, Vol. 4, G. H. Stewart, ed., The British Ceramic Soc., 1968, pp. 79-90, Stoke-on-Trent.
V. V. Merkovich and T. A. Wheat, "Use of Liquid Nitrogen in Spray Freezing," Amer. Ceram. Soc. Bull, 49 (8), 724-725 (1970).
H. A. Sauer and J. A. Lewis, "Freczing Droplets of Aqueous Solutions for the Cryo-
chemical Process," Amer. Insl. Chem. Eng. J., 18 (2), 435-437 (1972).
D. W. Johnson and F. J. Schnetler, "Characterization of Freeze-Dried $\mathrm{Al}_{3} \mathrm{O}$, and
Y. S. Kim and F. R. Monforte, "Theoretically Dense (99.9\%) Polycrystalline Alumina Prepared from Cryochemically Processed Powders," Amer. Ceram. Soc. Bull., 50 (6). 532-535 (1971).
F. J. Schnettler and D. W. Johnson, Proc. Int. Conf. Ferrites: Jap. 1970 Y. Hoshino, S.
lida, and M. Sugamoto, eds., University Park Press, Baltimore, 1971, pp. 121-124. D. W. Johnson, Jr., P. K. Gallagher, D. J. Nitti, and F. Schrey, "Effect of Preparation
Technique and Calcination Temperature on the Densification of Lithium Ferrites," Amer. Ceram. Soc. Bull., 53 (2), 163-167 (1974).
A. C. C. Tseung and H. L. Bevan, "Preparation and Characterization of High Surface A rea Semiconducting Oxides," J. Mater. Sci, 5, 604-610 (1970).
R. E. Jaeger. T. J. Miller and J. C. Williams, "Elfects of Ammonium Hydroxide on Phase Separation in the Cryochemical Processing of Salt Solutions," Amer. Ceram. Soc. Bull., 53 (12), 850-852 (1974).
M. C. Tinkle, "Cryochemical Method for Forming Spherical Metal Oxide Particles
from Metal Salt Solutions," U.S. Patent $3,776,988$ (Dec. 4, 1973). from Metal Salt Solutions," U.S. Patent $3,776,988$ (Dec. 4, , 1)
J. T. Wenckus and W. Z. Leavitt, "Preparation of Ferrites by the Atomizing Burner
Technique, Conf. Mag. Mag. Mater., Boston, 1956, T-91, American Institute of Technique, Conf. Mag. Mag. Mater.
Electrical Engineers, New York, 1957.
W. W. Malinofsky and R. W. Babbit, "Fine-Grained Ferrites I. Nickel Ferrite." J.
S. DiVita and R. J. Fischer, "Barium Titanates." U.S. Patent 2;985,506 (May 23. $\stackrel{\stackrel{-}{\circ}}{\stackrel{\circ}{-}}$
54. S. A. Prokudina, Y. S. Rubinchik, and M. M. Pavlyuchenko, "Kinetics of Low Temperature Synthesis of LaMnO.," Isv. Akad. Nauk SSSR. Neorg. Mater. 10 (3), 55. A. L. Micheli, "Preparation of Lithium Ferrites by Co-precipitation," IEEE Trans.
56. K. S. Mazdiyasni, C. T. Lynch, and J. S. Smith, II, "Cubic Phase Stabilization of Translucent Yttria-Zirconia at Very Low Temperatures," J. Amer. Ceram. Soc., 50 (10), 532-537 (1967).
57. K. S. Mazdiyasni, R. T. Dolloff, and J. S. Smith, II, "Preparation of High-Purity 58. Dubmicron Barium Titanate Powders," J. Amer. Ceram. Soc., 52 (10), 523-526 (1969). D. F. Saunders and A. Packter, "Effects of Rate and Temperature of Mixing on the 59. Arlace Area of Precipitated Alumina Hydrates," Chem. Ind. (London) 18, 594 (1970).
 Keram., 20 (2), 30-38 (1970); Chem. Abstr. 72 114604s (1970).
60. F. Schrey, "Hydrothermal Preparation of a Manganese-Zinc Ferrite," paper 17-EI-

67F, 1967 Annual Meeting of the American Ceramic Soc.; Bull. Amer. Ceram. Soc. 46 (4), 788 (1967).
61. N. T. Okopnaya, V. I. Zelentsov, V. M. Chertov, and B. N. Lyashkevich, "Regulation of the Particle Size of Zirconium Dioxide by a Hydrothermal Method," Adsorbtsiya
Adsorbentry. 2, 108-109 (1974); Chem. Abstr., 111783z (1974) Adsorbentry. 2, 108-109 (1974); Chem. Absir., 111783z (1974).
P. E. D. Morgan, "Direct Aqueous Precipitation of Lithium Ferrite and Titanate," J. Amer. Ceram. Soc., 57 (11), 499-500 (1974).
63. M. Kiyama, "Conditions for the Formation of $\mathrm{Fe}_{3} \mathrm{O}$, by the Air Oxidation of $\mathrm{Fe}(\mathrm{OH})_{2}$ Suspensions," Bull. Chem. Soc. Jap., 47 (7), 1646-1650 (1974). 64. S. S. Flaschen, "Aqueous Synthesis of Barium Titanate," J. Amer. Chem. Soc., 77 (12), 6194 (1955).
65. P. W. D. Mitchell and P. E. D. Morgan, "Direct Precipitation Methods for Complex Crystalline Chalcogenides," J. Amer. Ceram. Soc., 57 (6), 278 (1974). R. E. Jaeger and T. J. Miller, "Preparation of Ceramic Oxide Powders by Liquid Drying," Amer. Ceram. Soc. Bull., 53 (12), 855-859 (1974).
R. J. Bouchard, "The Preparation of Pyrite Solid Solutions of the Type $\mathrm{Fe}_{x} \mathrm{Co}_{1-x} \mathrm{~S}_{\mathbf{2}}$,
$\mathrm{Co}_{x} \mathrm{Ni}_{1-k} \mathrm{~S}_{\mathbf{2}}$, and $\mathrm{Cu}_{3} \mathrm{Ni}_{1_{1-k}} \mathrm{~S}_{\mathbf{2}}$." Mater. Res. Bull., 3, S63-570 (1968). L. Gordon, M. L. Salutsky, and H. H. Willard, Precipitation from Homogeneous Solu-
tion, Wiley, New York, 1959 .

G. J. Duffy, "Vapor-Phase Production of Colloidal Silica," Ind. Eng. Chem., 51 (3), 232-238 (1959).
K. A. Loftman,
M. Formenti, F. Juillet, P. Meriaudeau, S. J. Teichner and P. Vergnon, "Preparation in a Hydrogen Oxygen Flame of Ultrafine Metal Oxide Particles," J. Colliod Interface Sci., 39 (1), 79-89 (1972).
F. I. Kukoz and E. M. Feigina, "Effect of Ultrasound and other Precipitation Conditions on the Particle Size Composition of Nickeleous Hydroxide Precipitates," Zh.
Prikl. Khim. (Leningad), 42 (9), 1978-1983 (1969); Chem. Abstr. 72, 4736d (1970). Prikl. Khim. (Leningad), 42 (9), 1978-1983 (1969); Chem. Abstr. 72, 4736d (1970).
A. W. Adamson, Physical Chemistry of Surfaces, Wiley, New York, 1967.
W. S. Clabaugh, E. M. Swiggard, and R. Gilchrist, "Preparation of Barium Titanyl Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity," J. Res. Natl.
P. K. Gallagher and F. Schrey, Proc. ICTA. 3rd, 2, H. G. Wiedemann, ed., 623-634,
P. K. Gallagher, "A Simple Technique for the Preparation of R. E. FeO, and R, E $\mathrm{CoO}_{3}, "$ Mater. Res. Bull., 3, 225-232 (1968).
G. Wagner and H. Binder, "The Binary Systems $\mathrm{BaO}-\mathrm{SnO}_{2}$ and $\mathrm{BaO}-\mathrm{PbO}_{2}$. I. Phase

A K Gallagher and D W. Johnson ."Kinetics of the Formation of BaSnO_{4} from Barium Carbonate and Tin (IV) Oxide or Oxalate Precursors," Thermochim. Acta, 4,
P. K. Gallagher, F. Schrey, and F. V. DiMarcello, "Preparation of Semiconducting Titanates by Chemical Methods," J. Amer. Ceram. Soc., 46 (8), 359-365 (1963). D. W. Johnson, Jr. and P. K. Gallagher, "Studies of Some Perovskite Oxidation Catalysts Using DTA Techniques," Thermochim. Acia, 7, 303-309 (1973). skite Oxidation Catalysts,": Mater. Res. Bull., 9 1345-1352 (1974). F. Schrey, "Effect of pH on the Chemical Preparation of Barium-Strontium Titanate," J. Amer. Cer. Soc., 48 (8), 401-405 (1965).
P. K. Gallagher and F. Schrey, "Preparation and Thermal Analysis of Mixed Magne-434-437 (1964).
W. J. Schuele, "Preparation of Fine Particles from Bimetal Oxalates,".J. Phys. Chem.,
P. K. Gallagher, H. M. O'Bryan, Jr., F. Schrey, and F. R. Monforte, "Preparation of Pickel Ferrite from Coprecipitated $\mathrm{Ni}_{3} \mathrm{Fe}_{3} \mathrm{C}_{3} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{3} \mathrm{O}$, " Amer. Ceram. Soc. Bull., 48 (11), 1053-1059 (1969).
H. M. O'Bryan, Jr., P. K. Gallagher, F. R. Monforte, and F. Schrey, "Microstructure Control in Nickel Ferrous Ferrite," Amer. Ceram. Soc. Bull. 48 (2), 203-208 (1969). R. J. Bratton, "Coprecipitates Yielding $\mathrm{MgAl}_{3} \mathrm{O} 4$ Spinel Powders," Amer. Ceram. Soc.
Bull., 48 (8), $759-762$ (1969).

The fundamental factors underlying the densification kinetics of powder materials during sintering appear to be well understood. The effect of surface energy, particle size, and temperature, as well as the various mechanisms of material transport, such as viscous and plastic flow,

 expressed as:

$$
\text { (I) } \quad{ }_{w t}\left[\frac{L X_{a} 甘}{0_{8} D \sigma^{\lambda}}\right] N=\frac{{ }^{0} 7}{7 \nabla}
$$

where L is the linear shrinkage of the powder compact after time t, L_{0}^{z} is the original length of the compact, N is a constant, γ is the surface energy, D is 'sn!pes әрэ! K is the Boltzman constant, T is the temperature, and p, n, m are exponents
tice defects and internal strain have an effect on the sintering behavior of alumina powders, a correlation between sinterability and X -ray line broadening should be found.

The magnitude of average internal strain and coherently diffracting domain size can be measured by X-ray analysis using the Warren-Averbach method. ${ }^{15}$ Using nickel-filtered copper radiation, the (012) and the (113) peaks and their second-order reflections were step-scanned at intervals of
 measurements. The as-recorded X-ray data were corrected for polarization and geometric factors, atomic scattering factors, and the K_{α} doublet with
 profiles were then further corrected for instrument broadening by the
 and domain size by the Warren-Averbach method. The average ($($) of the
 was calculated.

Lattice-strain measurements were carried out on five alumina powders. These powders, prepared by the Bayer process and dry ball milled for a pue sasinos [e! were designated A, B, C, D, and E. These powders were selected on the basis of previously established differences in sintering behavior. The powder
 as-received condition.

Powder purity was measured by optical emission and spark ion-mass

 internal strain were determined qualitatively by scanning electron microscopy and transmission electron microscopy.

SINTERABILITY OF POWDERS

The five powders were cold-pressed into compacts approximately $7 / \mathrm{in}$. in

 powders was expressed by the Hirschhorn densification parameter (D.P.) ${ }^{18}$ defined by:

determined by sedimentation
 $\stackrel{\square}{\square}$

 SISATVNV NOISSaygay GTdilinw ing constant.

 long were isostatically pressed at 7500 psi , followed by sintering at $1475^{\circ} \mathrm{C}$ in

$1 t$	$t 9$	$\forall \mathrm{N}$	901	£6	unjus
601	69	$\forall N$	201	19	2unionis
\square	21	$\forall N$	21	\llcorner	u010g
OS>	06	OS>	OS>	OL	un!ueg
6ε	St	8ε	0t	89	un! ${ }^{\text {a }}$!
OS>	OS>	OS>	OS>	OS>	unissejod
2L	02	81	£	st	wnilied
OES	OSs	OSt	00\%	02s	un!pos
09¢	0s\%	001>	$001>$	0sz	un!ope
$0 \mathrm{~S} \times$	OS>	OS>	0S>	OS>	шก!uel! 1
20b	LOt	OOS	915	66ε	uovil!
0sz>	OSt	S9E	OSE	szs	
¢01	28	19	$0<$	06	U01I
a pldues	a गdues	J गdues	g गdures	\forall गdures	Kılındu

Table 13.2. Alumina powder characteristics, X-Ray data and sintering behavior

	Median Particle size	Band width (μ)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Mean strain $\times 10^{s}$	Domain size (\AA)	Green Density $(\mathrm{g} / \mathrm{cc})$	Fired Density $(\mathrm{g} / \mathrm{cc})$	Dcnsification Parameter	Sintering Constant $(\boldsymbol{m}$ in Eq. $)$
Sample	0.45	1.08	14.20	3.143	393	2.265	3.931	0.96	-
A	0.39	0.92	10.24	2.369	376	2.126	3.793	0.89	-
B	0.54	1.15	10.75	3.175	428	2.127	3.843	0.92	-
D	0.38	1.06	11.28	1.917	393	2.090	3.691	0.84	-
E	0.61	1.35	9.59	2.630	352	2.148	3.851	0.90	0.34

rate of densification. In the absence of externally applied loads, any permanent internal strains in the individual particles can only result from the presence of lattice imperfections. In monocrystalline powder particles, lattice imperfections can exist in the form of dislocations, stacking faults, subgrain boundaries, and perhaps nonuniform vacancy concentrations. These lattice imperfections can affect material transport during sintering in two ways. First, the strain field associated with these imperfections can provide an additional driving force for mass transport as they are being
 effective primarily only during the initial stage of the densification process and is not thought to be sufficient to explain the observed results. More
 dislocations serve as diffusion pipes, thereby accelerating material transport by lattice diffusion. This mechanism is expected to be effective over the total period of sintering and, in the opinion of the authors, presents the most likely explanation for the observed results. Further confirmation of this conclusion can be found by comparing the sintering curves shown in Figure 13.1 , in which the slope of the relative density versus time curve corresponds to the value m in Equation 1. The numerical values for m are

The analysis showed that the variation in fired density could be accounted
 surface area, respectively, with a multiple correlation coefficient of .994 .
 particle size range, or domain size.
Similarly, the densification parameter (D.P.) could be expressed by:

The variations in densification parameter could be accounted for by 81.7 , 11.8, and 2.6% of the variations in green density, strain, and surface area, respectively, with a multiple correlation coefficient of .993 . As for the fired density, the present results for the densification parameter were not affected by the variation in median particle size, particle-size range, and domain size.
As expected, of all the characteristics determined in the present study, green density has the major effect on final density values to be obtained. However, in agreement with the original hypothesis and as indicated by the percentage contributions, the internal strain also plays a vital role in the densification process. The positive coefficients of the internal strain terms in equations 2 and 3 indicate that high internal strain is desirable in achieving high fired densities.
The negative coefficients in Equations 2 and 3 suggest that the high final density requires low surface area, which in turn implies the requirement of large particle size. This appears contradictory, since high densification rates require small particle size, as indicated by Equation I. In addition, the statistical analysis of the present data showed that particle size had no effect. A regression analysis of green density in terms of surface area, particle size, and particle-size range showed that green density can be expressed by:

$$
\rho_{g}=1.650+0.0387 A_{g}+0.816 a-0.287 \Delta a
$$

in which the relative contribution by A_{s}, a, and Δa to ρ_{g} are 63,22 , and 4%, respectively. These results suggest that, in spite of the negative coefficients for the effect of surface area on fired density by way of the green density compared to its direct effect on fired density.

LATTICE STRAIN AND SINTERABILITY

Lattice Strain in Alumina Powders
given in Table 13.2. Sample D with the lower value of strain energy has a value for the sintering constant near $1 / 3$, which suggests that for this powder, grain-boundary diffusion was the primary mechanism for material transport. For powder E, however, the value of m approaches 0.5 , which is representative of material transport by volume diffusion. ${ }^{10}$

The detection of the presence of dislocation within the particles by transmission electron microscopy presented difficulties. The majority of particles were too large for transmission of the electron beam so that only less representative platelike particles could be examined. Although the presence of dislocations could not be determined unambiguously, numerous particles showed evidence of the presence of internal strains in the form of extinction patterns, as shown in Figure 13.2 for powder sample E.

The dislocation densities within the particles can be estimated from the X-ray data. From the known value of domain size (D), the dislocation density $\left(\rho_{D}\right)$ can be calculated from ${ }^{20}$:

$\frac{3 n}{D^{2}}$

(4)
where n is the number of dislocations per domain face. The dislocation

where $F=$ dislocation interaction factor
$b=$ Burger's vector
$K=20.6$, calculated

$\frac{K(\epsilon)^{2}}{F b^{2}}$

(5)

$K=20.6$, calculated by the procedure of Williamson and Smallman. ${ }^{20}$
Values for ρ_{D} and ρ_{S} calculated by means of Equation 4 and 5 are given in
Table 13.3. The values listed may be in error by as much as a factor of 5 in
Table 13.3. Dislocation densities in alumina powders

	Dislocation Calculated from Strain	Densities Calculated
Powder Sample	1.36×10^{11}	Size

Lattice Strain in Alumau Powders

150

tions can act as Frank-Read sources for the multiplication of additional dislocations during mechanical impact. During the ball-milling process, the multiplication of dislocations could result in the dislocation densities given in Table 13.3, with any differences between the powder samples related to initial differences in lattice imperfections prior to the ball-milling stage. It is suggested here that relating the particular growth conditions of the crystallites to the final densities of internal stress generated during ball milling may constitute a fruitful area for future research.

As is pointed out above, the accelerated sintering could also be due to excess vacancy concentrations as the result of certain types of impurities. In density, and densification parameter could be found. As a result, it, is felt that the present observation cannot be attributed to excess vacancy concentrations.

Regardless of the validity of the above explanations, the present results show that a high degree of internal strain is beneficial in achieving high final densities in a sintering operation. The results also-suggest that a general internal strain be considered an important parameter for the characteriza-
tion of powder samples.

[^5]REFERENCES
14
Agglomeration Effects on
the Sintering of
Alumina Powders
Prepared by Autoclaving
Aluminum Metal
R.T. Tremper
R.S. Gordon

Aluminum oxide can be sintered to translucency with a density near theoretical by the addition of a small amount of magnesia and by firing in an appropriate atmosphere. This technique, first described by Coble, ${ }^{1}$ has been studied intensively and the properties of high-density, sintered allumina allow it to be used as an are chamber in high-pressure, sodium vapor lamps. For this application the sintered body must be as dense as possible. To

 10^{-8} volume fraction for pore sizes in the range of 0.5 to $5 \mu \mathrm{~m}$. It is well established ${ }^{2}$ that voids and second-phase particles are primarily responsible
for the diffuse light transmission characteristics of polycrystalline $\mathrm{Al}_{2} \mathrm{O}_{3}$ and not grain boundaries. The optical anisotropy in $\mathrm{Al}_{2} \mathrm{O}_{3}$ is too small for grain boundaries to influence, to any significant degree, the total transmission through a dense polycrystalline body.

Most of the previous studies on the sintering kinetics of polycrystalline alumina focused on alum or Bayer-process powders that are frequently used in the production of commercial products. These powders are normally obtained by means of the high-temperature (1100 to $1200^{\circ} \mathrm{C}$) thermal decomposition of an aluminum hydroxide (e.g., gibbsite and boehmite) or an alum salt. A new low-temperature process has recently been developed in this laboratory for the production of high-purity aluminum oxide. It consists of converting in an autoclave high-purity (99.99%) aluminum metal directly to the oxide at low temperatures (300 to $500^{\circ} \mathrm{C}$) and moderate steam pressures (500 to 5000 psi).

By autoclaving, alumina powders can be prepared with a wide range of characteristics (e.g., surface areas, agglomerate sizes and distributions, and phase compositions). The purpose of the present study was to determine quantitatively the effects of these characteristics on "powder sinterability," with the ultimate goal of specifying the properties of an alumina powder that are necessary and sufficient for it to be sintered to densities up to and higher than 99.99% of theoretical, a level that is attractive for application in a sodium vapor lamp.

EXPERIMENTAL PROCEDURE

Synthesis of Autoclave Alumina
 an extensive study was undertaken of the conversion of aluminum metal to an aluminum oxide powder by reaction with high-pressure steam. Since this work will be reported extensively elsewhere, ${ }^{4}$ only a brief description of the process is given here. In essence, by placing aluminum metal in any form (splatter, ingot, chopped rods) in a high-pressure steam chamber (autoclave) and subjecting it to the proper combination of temperature (350 to $450^{\circ} \mathrm{C}$), steam pressure (1000 to 4500 psi), and time (up to 100 hours), alumina powders can be synthesized that contain up to 100% of the alpha phase and possess surface areas between 1 and $20 \mathrm{~m}^{2} / \mathrm{g}$.

Two basic types of autoclave processes were used in synthesizing the alumina powders for this study. The first technique used was direct steam ransfer. In this procedure the aluminum metal, which had been preheated in the reaction autoclave, was subjected directly to the final operating
pressure by the transfer of steam from the reservoir autoclave. Pressures employed in this type of experiment were usually between 1500 and 4500 psi. By use of a double-chamber autoclave in this manner, the temperature in the reaction autoclave could be maintained at a point equal to or above the saturation temperature. The specific experiment that produced 100% alpha alumina involved the direct transfer of steam at the saturation temperature and pressure. This variation is referred to as the "transfersaturation" method.
The second general type of process used in the production of alumina powders was the two-stage process. In this method the aluminum is subjected initially to steam at a relatively low pressure (1000 to 1500 psi) and temperatures above saturation (approximately $400^{\circ} \mathrm{C}$); this is followed by a second steam transfer to pressures between 2200 and 3200 psi and temperatures of no more than $30^{\circ} \mathrm{C}$ over saturation. During the first stage, the reaction product is essentially all gamma alumina, which is converted to 100% alpha alumina during the second steam transfer. This technique allows for the production of an alumina powder with an agglomerate-size distribution different from that encountered in the single-stage, steam-transfer procedure.
Both the steam-transfer and two-stage processes are indicated schematically in Figure 14.1. Another possible reaction path is to heat the metal and steam together along the saturation curve and then into the
superheated region. This method is undesirable because of the formation of boehmited as a precursor.

Powder Characterization

 loss, thermal gravimetric analysis, surface area measurement by BET, absolute density determination, X-ray diffraction, and transmission electron microscopy. In addition to these methods, the powders were further characterized by scanning electron microscopy* and for agglomerate-size distribution was determined by use of a Coulter Counter.

In addition to routine agglomerate-size studies at 1000 to $4000+$, highresolution micrographs of the agglomerate structure at $60,000+$ were obtained.

Median agglomerate sizes and distributions were determined by Coulter Counter particle-size analysis. \dagger Prior to analysis, each sample was dispersed in an electrolyte of $4 \% \mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ by subjecting the suspension to a 5 minute ultrasonic treatment. In all measurements a $50 \mu \mathrm{~m}$ aperature with a $0.8 \mu \mathrm{~m}$ were undetected in this analysis.

Sample Protection
Upon removal from the autoclave, the powders were screened through a 90 mesh nylon screen, and the fines of this process were called the as. prepared powder. Portions of the powders were doped with the appropriate amount of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to give $0.1 \mathrm{wt} \% \mathrm{MgO}$ in the sintered ceramic. An aqueous slurry technique was used, followed by drying at $600^{\circ} \mathrm{C}$ and screening through a 100 mesh nylon screen. The sample to be milled (10 g lots) were placed in 500 ml polypropylene centrifuge bottles along with 125 g of alumina grinding media and a few drops of isopropanol as a milling aid. These were placed on an adapted laboratory vibratory mill and milled for 2 hours. The powders were then rescreened through 100 mesh. One gram portions of the processed powders were pressed into pellets (0.667 in diameter) in a tungsten carbide die in a hydraulic laboratory press with no binders or lubricants. A pressure of $15,000 \mathrm{psi}$ was used yielding pellets of 40 to 55% theoretical density.

* JEOL'50 A Electron Probe Microanalyzer.
† Coulter Counter, Model B and Model T.

The Sintering of Alumina Powders Prepared by Autoclavińg Aluminum Metal
along with the equilibrium compositions (long autoclaving times) and the range of surface areas. For short autoclaving times the surface areas of the powders were high ($>25 \mathrm{~m}^{2} \mathrm{~g}$) and $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ was the predominant phase. The approach to an equilibrium phase composition was rapid at the highest pressure (~ 5 hours) and fairly slow at the lower pressures (>50 hours). From these four conditions, powders were available for sintering with a range of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ contents and surface areas. In general, as the $\alpha-\mathrm{Al}_{2} \mathrm{O}_{2}$ content increased with autoclaving time, the surface area of the powder decreased, presumably because of the conversion of the fine $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$.

From these four conditions several powders were selected at different autoclaving times for each pressure. These powders (as prepared) were pressed into pellets and sintered at $1625^{\circ} \mathrm{C}$, a temperature suitably high for testing the powder's sintering characteristics and yet not too high to encounter problems with excessive and discontinuous grain growth. The results of these sintering studies are presented in Figure 14.2, in which bulk densities are plotted versus autoclaving time at each of the four pressures. The variations in $\alpha-\mathrm{Al}_{2} \mathrm{O}_{8}$ content and surface area of these powders with autoclaving time are also shown in Figure 14.2. (Of course, complete conversion to $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ occurs during sintering.)

This series of experiments indicates conclusively that the sinterability of autoclave alumina powders increases with increasing $\alpha-\mathrm{Al}_{2} \mathrm{O}_{8}$ content. In all cases in which the powder, contained significant amounts of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, poor sintering characteristics were observed. The surface area becomes an important variable after conversion to $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ (or an $\alpha-\mathrm{KI}$ mixture) is complete. In some cases at 3100 and 4500 psi , converted powders with low surface areas ($\sim 2 \mathrm{~m}^{2} / \mathrm{g}$ at long autoclaving times) either sintered to low densities or did not sinter at all. The presence of the KI phase ($\sim 40 \%$ in the 2400 and 3100 psi powders) appeared not to be deleterious to sintering in these initial experiments. Subsequent experiments, however, with powders containing essentially $100 \% \mathrm{KI}-\mathrm{Al}_{2} \mathrm{O}_{3}$ revealed rather poor sintering characteristics.

Table 14.1. Typical autoclaving conditions

Pressure (psi)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Equilibrium Phase Composition	Range of Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$
1500	400	$70 \% \alpha, 30 \% \gamma$	$27-14$
2400	420	$60 \% \alpha, 40 \% \mathrm{KI}$	$26-2$
3100	440	$60 \% \alpha, 40 \% \mathrm{KI}$	$31-2$
4500	420	$90 \% \alpha, 10 \% \mathrm{KI}$	$25-2$

agglomerated structures. Furthermore, milling, by broadening the distribution of particle sizes, can lead to a larger driving force for discontinuous grain growth. ${ }^{8}$
The sintering data for the doped-only powders and the doped commercial powders (CA and CAF) used as a reference are shown in Figure i4.3C.
Again, as in the as-prepared series, the trend of a gradual increase in sintered density with temperature was observed. Two autoclave powders (D and F) could be sintered to densities over 99% at $1900^{\circ} \mathrm{C}$, while the remaining powders exhibited rather poor sintering characteristics. The commercial powders, especially the agglomerate-free powder, exhibited excellent sintering properties with the production of translucent pieces
 a greater improvement in sintered densities than did doping (Figure $14.3 C$), although doping alone did permit powders D and F to be sintered to a high density. These particular powders possessed the smallest agglomerates. These results indicate the effect of agglomerates and associated large pores in inhibiting the densification process.
A typical microstructure of a specimen sintered in the doped-only condition is shown in Figure 14.4C. As expected from the data in Figure 14.3C, a large number of pores remain both on the grain boundaries and within the grains. These large pores probably originate from large voids between the agglomerates in the powder compacts. Again the grains were fairly small, ranging from 15 to $35 \mu \mathrm{~m}$ depending on the temperature. The inability of most of the doped-only powders to sinter to high densities is related to the agglomeration characteristics of the powders and possibly to a nonuniform dispersal of the dopant
The sintering data from the doped and milled autoclave powders are presented in Figure 14.3D along with the results for the commercial powders (note that the density scale is greatly expanded). By doping and milling, virtually all the powders sintered to $>99 \%$ of theoretical density. In fact, at 1740 and $1800^{\circ} \mathrm{C}$, the sinterability of powder B approached that of the commercial agglomerate-free powder, while powder D did the same at $1900^{\circ} \mathrm{C}$. Virtually all the autoclave powders sintered to higher densities than the

 commercial powder.
A typical microstructure of a 99.8% dense specimen from this series is given in Figure 14.4D. It is a classic equiaxed, nearly pore-free microstructure, with the few remaining pores trapped within grains (sometimes in

Table 14.2. Autoclave conditions and properties of final stage powders

	Source of Al Raw Material	Pressure (psi)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (hours)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Approximate Phase Composition
A	Ingot	1500	400	94	35	$50 \% \alpha, 50 \% \gamma$
B	Chopped rod	1500	400	113	14	$60 \% \alpha, 40 \% \gamma$
C	Chopped rod	3100	445	32	11	$60 \% \alpha, 40 \% \mathrm{KI}$
D	Ingot	3100	440	69	11	$60 \% \alpha, 40 \% \mathrm{KI}$
E	Chopped rod	4500	420	5.5	6	$80 \% \alpha, 20 \% \mathrm{KI}$
Fe	Ingot	4500	425	19.5	8	$70 \% \alpha, 30 \% \mathrm{KI}$

[^6]In Figure 14.3 A the sintered densities (percent of theoretical) at different sintering temperatures are given for the powders in Table 14.2 in the as-prepared condition. All powders exhibited rather poor sintering characteristics, as might be expected for undoped and agglomerated powders. Powder F, which had been screened to break up large agglomerates, sintered to the highest density ($\sim 97.5 \%$). The relative ranking of the powders in terms of their densities was essentially independent of temperature. A typical microstructure of a specimen sintered in the "as-prepared" condition is shown in Figure 14.4 A . In all these specimens the grains were quite small (10 to 24 $\mu \mathrm{m})$ and large pores were present, both on the grain boundaries and within the grains.

Sintering data for the milled-only series of powders are presented in Figure 14.3B. Two important features are to be noted. First, the relative differences in sinterability of the powders was significantly reduced by the milling procedure. However, even these small differences in reactivity appear to be significant, since the "ranking" of the powders remains roughly the same across the entire temperature range. The second important feature is that there is no increase in density with temperature, indicating that these specimens had reached their ultimate density at temperatures below $1700^{\circ} \mathrm{C}$, and that sintering at higher temperatures resulted in essentially no further pore annihilation or removal. In support of this conclusion, a typical microstructure of a specimen sintered in the milled-only condition is shown in Figure 14.4B. In the entire series of samples, extremely large grains (100 to $300 \mu \mathrm{~m}$), each entrapping a large number of small pores, were encountered. Milling leads to the breakdown of large agglomerates and hence to the removal of large pores from the reen powder compact. Small, well-dispersed pores are less effective in inhibiting discontinuous grain growth than the larger pores present in the

In Figure 14.5 Coulter Counter cumulative plots of agglomerate sizes are given for powders synthesized from an ingot reactant at four different pressures ($1500,2400,3100$, and 4500 psi) in steam-transfer experiments.

 conditions the reaction times at 425 to $440^{\circ} \mathrm{C}$ were over 30 hours to insure 60 to 70% conversion to $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$, with 30 to $40 \% \mathrm{KI}-\mathrm{Al}_{2} \mathrm{O}_{3}$ making up the balance. At 4500 psi the reactions times at $425^{\circ} \mathrm{C}$ were 7.5 hours to achieve at least a 90% conversion to $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$. Included also in Figure 14.5 for comparison is the distribution curve for the deagglomerated commercial powder (CAF). The powder synthesized at 1500 psi was the "best" as-prepared autoclave powder in that its cumulative Coulter plot was closest to that of the commercial deagglomerated powder and nearly log-normal.

All the plots in Figure 14.5 are similar at small agglomerate sizes <5 $\mu \mathrm{m})$. However, powders synthesized in the intermediate pressure regime (2400 to 3100 psi) under supersaturated conditions where $\mathrm{KI}-\mathrm{Al}_{3} \mathrm{O}_{3}$ is a sig. nificant secondary phase (30 to 40%) to $\alpha-\mathrm{Al}_{2} \mathrm{O}$, possess sigmoidal distribuion curves, and significant fractions (20 to 60%) of the agglomerates exceed $0 \mu \mathrm{~m}$ in size. This tendency for coarse-agglomerate formation is most pronounced in the powders synthesized at 2400 psi. Powders prepared at temperatures show only a sles under steam-transfer conditions at saturation agglomerate distribution. These powdens a towards a duplex or sigmoidal the powders prepared under supersaturated conditions pure $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$, while amounts of the KI phase. Powders prepared at 4500 psi possess a neably log-normal agglomerate distribution curve (similar to powders prepared at 1500 psi), except that the agglomerates are much larger than those formed at the lower pressure.
To investigate the effect of Al raw material, three powders, each prepared from a different reactant (splatter, chopped rod, and ingot), were investigated. These powders were prepared by autoclaving at 1500 psi and $400 \pm$ $10^{\circ} \mathrm{C}$ for reaction times in excess of 90 hours to insure 70 to 80% conversion to $\alpha-\mathrm{Al}_{2} \mathrm{O}_{2}$. Examination of these powders by low-magnification (4000x) scanning electron micrographs revealed the presence of agglomerates of various sizes up to 10 to $20 \mu \mathrm{~m}$. Ultimate particle sizes, which can be estimated from the surface areas of the powders (12 to $35 \mathrm{~m}^{2} / \mathrm{g}$), are on the order of 0.05 to $0.1 \mu \mathrm{~m}$. Thus the agglomerates are considerably larger than powders prepared from the splatter and chopped-rod reactants, while the smallest agglomerates form from the bulk ingot reactants.
In Figure 14.6 cumulative agglomerates measurements are given for these three powders. All frem the Coulter same general shape. Consistent with the scanning microscope observations powders prepared from the chopped rod possess agglomerates considerably larger (about two times as large) than those prepared from the ingot
In Figure 14.7 high-resolution photomicrographs (40,000 to $60,000 \times$) are presented to illustrate the fine structure of the agglomerates. Two distinct types of crystallites are present within the agglomerates: (1) relatively large (0.5 to $1.5 \mu \mathrm{~m}$) rhombohedral (hexagonal) crystals (Figure 14.7d) and (2) smaller (0.02 to $0.1 \mu \mathrm{~m}$), equiaxed crystals, where hexagonal facets or forms are readily apparent (Figure 14.7c). It appears that the micron-size crystals form from agglomerates of the smaller crystallites at an intermediate stage of the process.
Investigation of these powders by transmission electron microscopy and
diffraction also revealed two forms of $\alpha-\mathrm{Al}_{8} \mathrm{O}_{8}$: (I) large rhombohodral
tion. The results of the milling study are summarized in Figure 14.8, in
 indicated schematically. Powders on the low end of the indicated range
 commercial deagglomerated powder is included in Figure 14.8 for comparison.

Several facts become clear from the figure. (1) Vibratory milling reduces the median agglomerate size by about two to four times, depending on the
 agglomerate sizes and cumulative distribution curves. The agglomerate distributions are slightly sigmoidal and indicate a pronounced coarse fraction over $5 \mu \mathrm{~m}$. (3) The lowest median agglomerate sizes ($\sim 2.3 \mu \mathrm{~m}$) obtained by the laboratory milling procedure are still almost a factor of 2 higher than those in milled or deagglomerated commercial powder.

Correlation of Sintering Data with Powder Agglomeration Characteristics
 was noticed at the time that milling was introduced as a process variable. Consequently, a method was sought to relate quantitatively the stage of agglomeration in an autoclave powder to its sintering characteristics. To this end, the agglomeration characteristics of the autoclave powders have been described by the use of an "agglomeration factor" described by

Figure 14.7. Agglomerate morphology by scanning electron microscopy: (A) as-prepared powder, (B) milled powder,
before the autoclave powders could be sintered to theoretical density. As a result an exploratory study on the effects of milling on agglomerate size and distribution was initiated. In Figures $14.7 a$ and. $14.7 b$, scanning electron photomicrographs $(1000 \times$) show the effect of vibratory milling on a typical putoclave powder. While the effect of milling is clearly apparent, some large agglomerates (5 to $15 \mu \mathrm{~m}$) still persist in the powders even after comminu-

Results					171
Table	relation	sinterability wit	lomeration fac		
Rank	Sample No.	. Agglomeration Factor (50)	Agglomeration Factor (10)	\% Alpha	Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$
Unmilled					
1	F	29	64	60	8
2	D	25	132	60	11
3	E	22	62	80	6
4.	C	46	124	60	11
5	A	120	202	50	35
6	B	91	164	60	14
Milled					
1	D	17	56	60	11
2	C	16	55	60	11
3	B	23	64	60	14
4	A	62	200	50	35
Commercial					
CAF (agglomerate free) ~ 12			~ 25	100	12-30
CA (agglomerated) ~50			~ 110	100	~ 25

ingots. The top three powders in the unmilled category were ingot-derived powders.
In the milled category, the same general trends can be seen, with the most sinterable powders having the lowest agglomeration factors.
In Table 14.3 the agglomeration factors are given for the two commerical high-purity aluminas used in this study as standards. All through this study the best autoclave powders sintered better than the commercial agglomerate-free powder. Examination of the relative agglomeration factors shows this result to be reasonable.
Since a method of synthesis was developed in which both the surface area and the agglomerate-size distribution of an alumina powder could be obtained by specifying a particular autoclaving condition, a series of four powders, each with different agglomeration factors, AF(10), were synthesized and prepared for sintering studies. Pressures of 2400 and 3100 psi were chosen. At each pressure powders were synthesized by two techniques: (1) steam transfer at saturation and (2) two-stage steam transfer. The autoclaving times were chosen so that the surface areas of the powders would be similar. Under these autoclaving conditions the synthesized powders were pure $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$. The powders were doped and milled for sinter-

173

Results$\text { Table 14.4. Effect of agglomeration factor on final density }$				
	Sample	$\begin{aligned} & \text { Surface Area } \\ & \left(\mathrm{m}^{2} / \mathrm{g}\right) \end{aligned}$	AF(10)	Percent Theoretical Density
	3100 (one-stage)	13	53	99.60
	3100 (two-stage)	11	30	99.85
	2400 (one-stage)	12	27	99.90
	2400 (two-stage)	10	17	99.95
.	CAF	14	22	99.98

Results

The use of alumina powders synthesized hydrothermally in an autoclave has proven extremely valuable in determining which powder characteristics are important in sintering aluminum oxide to theoretical density. By choosing the appropriate autoclaving conditions, powders with varying $\alpha-\mathrm{Al}_{2} \mathrm{O}_{\mathbf{3}}$ contents, surface areas, and agglomerate-size distributions were formed. A study of the sintering properties of these alumina powders has led to the conclusion that $100 \% \alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ in the powder is necessary for doping with magnesium oxide and milling it to break up agglomerates has been reaffirmed. The sinterability of an alumina powder was also related to the relative number of ultimate particles in the agglomerates by an agglomeration factor. It was shown that the agglomeration factor required for sintering a powder to translucency varied with the surface area of the powder.

 the two-stage process. These powders were completely converted to $\alpha-\mathrm{Al}_{2} \mathrm{O}_{8}$
 agglomerate sizes after milling of under $2 \mu \mathrm{~m}$ and essentially a log-normal distribution of agglomerate sizes.

ACKNOWLEDGMENTS

The authors express their gratitude to I. Cisan, T. King, and W. L. Taylor of this laboratory for valuable help in sample preparation. E. S. Palik of the Quartz and Chemical Products Department and W. H. Thresh of this laboratory performed the many BET and Coulter analyses required for this

 D. C. Fries in performing the quantitative X-ray analyses is acknowledged.

REFERENCES

1. R. L. Coble, "Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models," J. Appl. Phys., 32, (5), 787-792 (1961); R. L. Coble, "II. Experimental Test of
Diffusion Models in Powder CCopacts," Diffusion Models in Powder Compacts," J. Appl. Phys., 32, (5), 793-799.
2. J. G. J. Peelen and R. Metselaar, "Light Scattering by Pores in Materials: Transmission Properties of Alumina," J. Appl. Phys., 45, (1), 216-220
(1974).

The Sintering of Alumina Powders Prepared by Autoclaving Aluminum Metal

3. Milling to reduce the median agglomerate size below 1 to $2 \mu \mathrm{~m}$ and the AF (10) agglomeration factor below 10 to 20.
4. A powder surface area that is reasonably high ($>8 \mathrm{~m}^{2} / \mathrm{g}$).

To achieve all these conditions, autoclave powders were prepared by the two-stage process at 2400 and 3100 psi (refer to Table 14.4). Typical in-line, optical transmission data for translucent polycrystalline $\mathrm{Al}_{2} \mathrm{O}_{3}$ (99.85 to 99.95% theoretical density) prepared from these two-stage powders are given in Figure 14.11. These data, particularly in the visible spectrum for the highest density (99.95%) specimen, are a significant improvement (two to five times) over the optical transmission data of conventionally prepared To achieve further improvements, poresity 14 for comparison.
by approximately one order of magnitude (i.e., sintered densities over 99.99%). This result will probably require more efficient powder preparation procedures so that median agglomerate sizes are under $1 \mu \mathrm{~m}$ and no agglomerates over 2 to $3 \mu \mathrm{~m}$ exist in the powder.

—
 —

H. Heystek
Through the centuries the potter has always known that different clays and shales have different plastic, dry, and fired properties, but he did not know why. The dramatic advances in the development of research tools and tech-
 basic understariding of the structure and composition of ceramic raw
 ing processes as a result of increased automation, production,and firing rates, and demands for improved products and quality control. This in turn
 raw material that can only be done when these materials are well characterized.
Clay mineralogists have evolved the modern concept of layer silicates (phyllosilicates) as small crystalline hydrous aluminum silicate particles, wih magnesium and iron substituting wholly or in part for aluminum in some minerals, and with lithium, calcium, sodium or potassium in others. Ample evidence exists that the unique characteristics that predetermine the ceramic use and application of the layer silicates are as follows:

I. Composition and structure of the layer silicates.

2. Particle shape and size distribution. Microcrystalline Active Corondum." Vol. 1, G. H. Stewart, ed., Science of Ceramics. 1962, pp. 63-76, Academic Press, London.

R.S. Gordon and R. T. Tremper, unpublished work

G. R. Chol, "Influence of Milled Powder Particle Size Distribution on the Microstruc-34-39 (1971).
6. (a) L. Berrin, D. W. Johnson, and D. J. Nitti, "High Purity Reactive Alumina Powders: Berrin, D. W. Johnson, and D. J. Nitti, "II. Particle Size and Agglomeration Study," Bull. Amer. Ceram. Soc., 51, (12), 896 (1972).
7. V. Balek, "Temperature Dependence of Characteristic Properties of $\alpha-\mathrm{Fe}, \mathrm{O}$, Powders," J. Mater. Sci., 5, (8), 714 (1970).
8. R. L. Coble, U. S. Patent $3,026,21$

Characterization of a raw materials system requires a qualitative and constituents, includiog and chemical analysis of all Therefore, knowing the gangue minerals, organics, and soluble saits. cates in general is particularly valuable. The behavior and properties siliraw material should also be characterized. This includes particle-size the tribution, particle shape, exchangeable ions, rheological properties, workability, drying behavior, shrinkage, and strength.

In this chapter the classification scheme for layer silicates and methods for characterizing these materials are described. In 1969 the Clay Minerals Society Nomenclature Committee submitted to the Association International Pour L'Etude Des Argilles (AIPEA) the latest version of a classification scheme ${ }^{1}$ for the layer silicates. This classification (Table 15.1) represents a general agreement among clay scientists of 32 countries and is the result of many discussions at International and national clay mineral of the IMA (International Mineralogical Association) and Mineral Names of the IMA (International Mineralogical Association).

LAYER-SILICATE CLASSIFICATION

 tetrahedral sheets and $\mathrm{Mg}-\mathrm{OH}$ or $\mathrm{Al}-\mathrm{OH}$ octahedral sheets combined to form the so-called $1: 1,2: 1$, and $2: 1: 1$ layer types.

The 1:1 Types

As shown in Table 15.1, the combination of one silica tetrahedral and one octahedral sheet results in the kaolinite-serpentine group. The difference between kaolinite and serpentine is that in the former only two-thirds of the octahedral cation positions are filled by aluminum ions (dioctahedral), whereas in the latter, all the positions are filled by magnesium ions (trioctahedral).

The kaolinite group, with the general composition $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}(\mathrm{OH})_{4}$ includes the minerals kaolinite, dickite, nacrite, and metahalloysite. This classification proposes that the term "halloysite" be used for the fully hydrated $\left(4 \mathrm{H}_{2} \mathrm{O}\right)$ variety and that is a layer-stacking notation be used for the structural varieties kaolinite, dickite, and nacrite analogous to the mica polymorphs. As yet no decision has been made on the appropriate symmetry symbols to be used. ${ }^{2}$

In the dioctahedral $1: 1$ layer silicates, there is no charge per formula unit, and very little if any substitution occurs within the structural unit.
$\mathrm{Al}_{2} \mathrm{Si}_{4-y} \mathrm{Al}_{y} \mathrm{O}_{10}(\mathrm{OH})_{2}$, with all the substitution in the tetrahedral sheet; and

 minerals hectorite, $\mathrm{Mg}_{8-x} \mathrm{Li}_{x} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}$; saponite, $\mathrm{Mg}_{3-x} \mathrm{Al}_{x} \mathrm{Si}_{4-y}$ $\mathrm{Al}_{y} \mathrm{O}_{10}(\mathrm{OH})_{2}$, and sauconite, $\mathrm{Zn}_{3-x} \mathrm{Al}_{x} \mathrm{Si}_{4-y} \mathrm{Al}_{y} \mathrm{O}_{10}(\mathrm{OH})_{2}$.

The vermiculites have a higher charge per formula unit (0.6 to 0.9) than the smectites, and this charge deficiency is balanced by interlayer exchangeable magnesium ions. The magnesium ions are hydrated, resulting in an interlayer double sheet of water molecules and a c-axis dimension of $14 \AA$ that collapses to $10 \AA$ on heating. Most vermiculites are trioctahedral, $\mathrm{Mg}_{3-x} \mathrm{Fe}_{x} \mathrm{Si}_{4-y} \mathrm{Al}_{y} \mathrm{O}_{10}(\mathrm{OH})_{2}$, although the dioctahedral analogue has been reported to be common in soils. ${ }^{10}$ The industrially known macrocrystalline vermiculite, which has exfoliation properties when heated, is actually a hydrobiotite, which is an interstratified biotite and vermiculite.

The mica minerals have a $2: 1$ layer structure similar to the smectites except that the charge deficiency (the substitutions) is typically concentrated in the tetrahedral shect. As counterions, potassium is tenaciously held in the interlayer space, resulting in a characteristic 10 A basal spacing.
 each other. Some typical dioctahedral micas are muscovite,

The micaceous minerals common in soils, clays, shales, and slates have been called illite as originally defined by Grim et al. ${ }^{11}$ It has become clear, however, that the terms illite or hydromica have been used to cover a fairly wide range of minerals. These terms are considered useful field terms and presently are not included in the classification table.

The brittle micas represented by the dioctahedral variety margarite, $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{Al}_{2} \mathrm{O}_{10}(\mathrm{OH})_{2}$, and the trioctahedral mineral clintonite, $\mathrm{CaMg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{10}(\mathrm{OH})_{2}$, have not been reported as occurring in clays. Although not of interest to ceramists, they are layer silicates and are included in the classification scheme.

The 2:1:1 Types

 and donbassite, has been described by Lazarenko ${ }^{12}$ (dioctahedral in both the 2:1 layer and the interlayer hydroxide sheet). Cookeite and sudoite ${ }^{18}$ are

The 2:1 Types

The $2: 1$ type of layer silicate refers to the fact that there is one octahedral sheet sandwiched between two tetrahedral sheets in the unit structure groups are a result of varying relative surface-charge densities ranging from an essentially zero electron change per formula unit for pyrophyllite and talc to a charge of about 2 for the brittle micas.

Pyrophyllite is a dioctahedral hydrous aluminum silicate, and talc is a trioctahedral hydrous magnesium silicate with limited substitution by aluminum possible. ${ }^{\text {S }}$ Commercial "talcs" may or may not be predominantly talc, as associated minerals such as calcite, dolomite, quartz, magnesite, and chlorite are common. However, it is the commercial label of "talc" for material containing appreciable quantities of the chain silicates tremolite and anthophyllite that concerns the Health Division of the Mining Enforcement and Safety Administration (MESA) in the establishment of safety standards. ${ }^{\circ}$ Ceramists are aware of the presence of talc or tremolite $\mathrm{Ca}_{2} \mathrm{Mg}_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{12}\right)_{2}(\mathrm{OH})_{2}$ because of the different body-pressing characteristics and fired mineralogy ${ }^{7}$ imparted by the particle shape or chemistry of these minerals.

For the $2: 1$ minerals with a layer charge of 0.25 to 0.6 , there is still general national and international disagreement between smectite and montmorillonite-saponite as a group name. The present approach is to leave the question open and await the evolvement of the most acceptable term through usage.

In the so-called expanded 2:1 minerals, substitution for silicon may occur in the tetrahedral sheet, while the ions commonly substituting for one another in the octahedral sheet are aluminum, magnesium, lithium, and ferrous and ferric iron. Frequently these substitutions are by ions of similar ionic radius rather than by those of the same charge. The subsequent deficit or excess charge on the layer structure is compensated by loosely held interlayer potassium, sodium, calcium, and magnesium ions and organic molecules. ${ }^{\bullet}$ This explains the relatively high cation-exchange capacity of the smectites and their expansion in the c-direction when water enters between the unit layers. The interlamellar distances are variable, depending on wate content and the exchangeable ion present. The nature of the initially absorbed water layers is considered to have a partially ordered structure that is affected specifically by the surface forces and structure of the smectites and the different exchangeable ions that may be present.
size distribution, and cation-exchange capacity is therefore absolutely necessary to the ceramist in designing bodies and controlling processing

The most valuable instrumental characterization techiques are \mathbf{X}-ray diffraction, thermal methods, electron optical methods, and infrared
 be used in combination with another and with total chemical analysis, cation-exchange capacity determinations, and surface-area measurements.

X-Ray Diffraction

 composition of these minerals, it is not surprising that X-ray diffraction has become indispensable in the identification of clay minerals. Much has been written ${ }^{18-18}$ on sample preparation and treatment techniques (orientation, glycolation, heating), so only brief mention is made here of the basic diagnostic parameters used to identify the different layer silicates.

The interplanar spacings normal to the (001) cleavage as shown in Table 15.3 are the most significant criteria used in X-ray differentiation between the layer silicates. The $7 \AA$ minerals, kaolinites and serpentines, are further distinguished on the basis of their 060 reflections, which are 1.48 to 1.49
 pyrophyllite talc. X-Ray diffraction patterns of the smectites (expanded 2:1 minerals) yield typical 12 to $15 \AA$ basal spacings that change to $17 \AA$ spacings after treatment with ethylene glycol. To separate the $14 \AA$ chlorites and vermiculites, heat treatment followed by X-ray diffraction is used. The $14 \AA$ spacing of chlorites persists up to $550^{\circ} \mathrm{C}$, whereas at $350^{\circ} \mathrm{C}$, dioctahedral and trioctahedral vermiculites show a shift of the spacing to $12 \AA$ and $9 \AA$, respectively.

Frequently, samples for X-ray investigation are given extensive prepara-
 material is ground, fractionated to obtain the minus $2 \mu \mathrm{~m}$ fraction, and sometimes chemically treated to remove iron or organic phases. This should be kept in mind when the bulk characterization of the material is considered, because the amount and type of the nonlayer silicate admixtures, such as free quartz, feldspar, carbonates, sulfates, oxides and hyroxides of iron, anatase, and amorphour material, could play a dominan role in its ceramic properties.

The problems of analyzing clay mineral mixtures quantitatively by X-ray diffraction are principally due to preferential orientation effects, variations mate layer interstratification. Most methods attempt to relate the diffrac-
examples of di,trioctahedral chlorites that are dioctahedral in the 2:1 layer but trioctahedral in the interlayer hydroxide sheet. It is known that the various chlorites $(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Al})_{6}(\mathrm{Si}, \mathrm{Al})_{4} \mathrm{O}_{10}(\mathrm{OH})_{8}$ differ from each other in the kind or amount of substitution within the hydroxide sheet or the tetrahedral or octahedral sheets in the 2:1 layer. In addition, variations not only occur in the orientation of the sheets within a $2: 1$ layer, but also in the stacking sequence of chlorite units.

Interstratified-Layer Silicates

Considering the similarities in crystalline structure and chemical composition of the various layer silicates, it is not surprising that random and egular intimately interstratified units of two distinct species are quite common. In addition, the layer silicates usually originate as the weathered products of primary minerals, and alternation sequences such as biotite, vermiculite, chlorite, kaolinite; and mica, illite, vermiculite, montmorillonite in soils have been reported frequently ${ }^{14}$ and are supported by ynthetization in laboratory experiments. ${ }^{18}$ It is to be expected, there with respect to others.
No general agreement has yet been reached on the preferred terminology for interstratified minerals, but it has been suggested that with the random or irregularly interstratified-layer silicates the material should be described in terms of the component layers with the dominant component listed first, or example, "irregular chlorite-mica interstratification." Furthermore, if解 "regular" chorite/l vermiculite), should not be used but rather the Reported in the literature are occurrences of interstratifications such as illite-montmorillonite, vermiculite-biotite, vermiculite-chlorite, micachlorite, montmorillonite-chlorite, saponite-chlorite, berthierite-chlorite, montmorillonite-kaolinite, and muscovite-kaolin.

LAYER-SILICATE CHARACTERIZATION

 that particle shape, fine particle size (frequently $2 \mu \mathrm{~m}$ or less), large surface area, and ion-exchange capacity of the materials are usually the principal actors that control viscosity, plasticity or workability, pressing behavior, green and dry strength, and drying shrinkage. Characterizing layer silicates as to their structural and chemical composition, particle morphology and

Table 15.2. Simplified characterization of layer silicates

obtaining structural data.

 чs!nsu!2s!p oi pasn кןpp!м mou s! Kdoosonioads uo!̣diosqe paresjul Sdossonjoads uo!jdiosq ing system for authors so that thermal data could be critically assessed. Conference on Thermal Analysis in 1965 recommended ${ }^{26}$ a uniform reportcommittee on standardization established by the First International made thermal techniques more effective in quantitative determinations. A sensitivity, atmosphere control, and registration of evolved gases, have Improvements in commercially available equipment, such as increased poorly crystalline phases, organic material, pyrite, carbonates, and gibbsite. gravimetry are extremely useful in identifying such things as amorphous or ferential thermal analysis, ${ }^{26}$ thermogravimetry, and differential thermoIn conjunction with X-ray diffraction, thermal techniques such as dif-

spoytan Iruגay.

 cursiond minerals within prescribed limits using a simultaneous linear equations mates can be made. Hussey ${ }^{24}$ recently optimized chemical allocation to with X-ray diffraction, reasonably good quantitative mineralogical estimetric analyses, and cation-exchange capacities, are used in conjunction If or techniques, such as selective dissolution analyses, ${ }^{23}$ thermal gravitures ${ }^{20}$ or use internal standards such as $\mathrm{Zn}(\mathrm{OH})_{2},{ }^{24}$ pyrophyllite, ${ }^{22}$ and alution intensity from a given compound to its percentage in artificial mix-Mossbauer spectroscopy ${ }^{28}$ has become increasingly useful in the study of
the coordination (octahedral or tetrahedral) or valence (Fe^{3+} or Fe^{2+}) of iron in layer silicates. In addition, siderite and goethite, common gangue minerals in clays and shales, can also be detected.
et visible spectroscopy ${ }^{29}$ also shows promise as a quick method of determining the presence, location, and valance state of iron in a layersilicate structure.

Electron-Optical Methods

Electron microscopy is of value in supplying morphological data and in the case of kaolinite (plates) and halloystie (tubes) results in conclusive identification. The use of high-resolution electron microscopy on samples that were ultramicrotomed ${ }^{30}$ made possible direct photographs of the (001) atomic planes and representation of 7,10 , and $14 \AA$ structures. This technique allows for the identification of interstratified clay minerals ${ }^{31}$ and the
 oste si snooj jo पldap lejas st! Y!M adoosonolu uonjora sutuuess a uniquely suited to textural and fabric investigations of the fine-grained layer silicates.

Aicroscopy allion of selective-area electron diffraction with electron with diameters of about 1000 A diffraction diagrams of single crystals probe analysis ${ }^{4}$ can be carried out to determine electron-microscope microof individual clay-mineral particles. Finally the elemental composition measurements of dispersed clay particles provide a valuable microscope results of standard ${ }^{32}$ particle-size-distribution methods.

Surface Area
In a clay-water system the surface area of the clay particles and the ion population in the aqueous media are the major factors affecting the properties of a slip; the extrusion or pressing of a body; and the strength, porosity, and drying characteristics of the processed ware. The most widely used method to determine surface area of fine dry particles involves the adsorption of gases as described by Brunauer et al. ${ }^{\text {ss }}$ (see Chapter 6). However, this technique does not record the so-called internal surfaces of the expandable 2:1 layer silicates. Simple and rapid procedures have been devised to overcome this problem, that is, measurement of the quantity of glycerol, dodecylamine hydrochloride, ${ }^{34}$ or methylene blue ${ }^{35}$ that is adsorbed determined.
6. A. Goodwin, ed., Proc. Symp. Talc, 1974, Bureau of Mines IC 8639 . Talcs," Bull. A mer. Ceram. Soc., 43. (8), 555-561 (1964).
8. J. Moum, C. N. Rao, and T. S. R. Ayyar, "A Natural 17 A Montmorillonite-Organic P. F. Low, "Physical Chemistry of Clay-Water Interaction," Adv. Agronomy, 13, 269-327 (1961).
10. Brown, "The Dioctahedral Analogue of Vermiculite," Clay Miner. Bull., 2, 64-70
11. R. E. Grim, R. H. Bray, and W. F. Bradley, "The Mica in Argillaceous Sediments," Amer. Miner., 22, 813-829 (1937).
12. E. K. Lazarenko, "Donbassites, A New Group of Minerals from the Donetz Basin," C. R. Acad. Scl., USSR, 28, 519-521 (1940).
13. G. Muller, "The Identification of Dioctahedral Four Layer Phyllosilicates (Sudoit, in the series Sudoit-Chlorite)," Int. Clay Conf.. Ist. London. 1963, Pergamon, pp. 121-
130.
14. M. J. Wilson, "The Weathering of Biotite in Some Aberdeenshire Soils," Mineral. Mag., 35, 1080-1093 (1966).
15. R. Roy and L. B. Sand, "A Note on Some Properties of Synthetic Montmorillonites," Amer. Miner., 41, 505.509 (1956).
G. Brown, ed., The X-Ray Identification and Crystal Structure of Clay Minerals,
17. D. Carroll, Clay Minerals: A Guide to Their X-ray Identification, The Geological Society of America, Special Paper 126, 1970.
K. G. Sansom and D. White, "Aggregation and Dispersion in Clays with Particular Reference to Montmorillonites, " Trans. Br. Ceram. Soc., 70, 163-165 (1971). D. N. Hinckley, "Variability in Crystallinity Values Among the Kaolin Deposits of the Coastal Plain of Georgia and South Carolina," Clays Clay Miner., IIth. Proc. Natl.
20. A. D. Buck, "Quantitative Mineralogical Analysis by X-ray Diffraction," U.S. Army Engineer Waterways Experiment Station Miscellaneous Paper C-72-2. February 1972. M. H. Mossman, D. R. An Analysis," Proc. Natl. Conf., Clays Clay Miner., ISth. 1967 pp. 441-453.
J. M. Roberts, "X-Ray Diffraction and Chemical Techniques for Quantitative Soil Clay
Mineral Analaysis," Ph.D. Thesis, Dept. Civil Eng., Pennsylvania State University,
C. A. Alexiades and M. L. Jackson, "Quantitative Clay Mineralogical Analysis of Soils and Sediments," Proc. Natl. Conf., Clays Clay Miner., 14th, 1966, pp. 35-52.
24. G. A. Hussey, "Use of a Simultaneous Linear Equations Program for Quantitative Clay Analysis and the Study of Mineral Alteration During Weathering," Ph.D. Thesis,
R. C. Mackenzie, ed., The Differential Thermal Investigation of Clays. MIneralogical R. C. Mackenzie, ed.,
Society, London, 1957.
PART THREE

PARTICULATE-WATER
 SYSTEMS

Most ceramic processes at some stage involve a particulateliquid state. Water is the most commonly used liquid for such purposes. The interactions of the aqueous phase with ceramic | 0 |
| :---: |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 2 |
| 0 |
| 0 |
| 0.0 |
| 0 | and the phenomena associated with mixing and drying are important areas covered in the chapters that follow.

PART THREE
Most ceramic processes at some stage involve a particulate-
liquid state. Water is the most commonly used liquid for such
purposes. The interactions of the aqueous phase with ceramic
particles, the properties of slips, the rheology of solutions,
and the phenomena associated with mixing and drying are
important areas covered in the chapters that follow.

	Layer,Silicate Minerals
26.	H. G. McAdie, "Recommendations for Reporting Thermal Analysis Data," Anal. Chem., 39, 4 (1967).
27.	V. C. Farmer, ed., The Infrared Spectra of Minerals. The Mineralogical Society, London, 1974.
28.	C. E. Weaver, J. M. Wampler, and T. E. Pecuil, "Mossbauer Analysis of Iron in Clay Minerals," Science, 156, 504-508 (1967).
.	S. W. Karickhoff and G. W. Bailey, "Optical Absorption Spectra of Clay Minerals," Clay Clay Miner. 21, 59-70 (1973).
30.	J. L. Brown and M. L. Jackson, "Chlorite Examination by Ultramicrotomy and High Resolution Electron Microscopy," Clays Clay Miner. 21, 1-7 (1973).
	T. Yoshida, "Elementary Layers in the Interstratified Clay Minerals as Revealed by Electron Microscopy," Clays Clay Miner., 21, 413-420 (1973).
	O. Lauer, Grain Size Measurements on Commercial Powders," issued by Alpine Ag, Augsburg, 1966.
33.	S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of Gases in Multimolecular Layers," Amer. Chem. Soc., 60, 309-319 (1938).
	G. W. Kalb and R. B. Curry, "Determination of Surface Area by Surfactant Adsorption in Aqueous Suspension, I. Dodecylamine Hydrochloride," Clays Clay MIner., 17, 47-57 (1969).
35.	P. T. Hang and G. W. Brindley, "Methylene Blue Absorption by Clay Minerals, Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII)," Clays Clay Miner. 18, 203-212 (1970).
36.	E. Busenberg and C. V. Clemency, "Determination of the Cation Exchange Capacity of Clays and Soils Using an Ammonia Electrode," Clays Clay Miner. 21, 213-217 (1973).
3	R. E. Grim, Clay Mineralogy. McGraw-Hill Book Co., Inc., New York, 1953.
38.	H. H. Murray and S. C. Lyons, "Further Correlations of Kaolinite Crystallinity with Chemical and Physical Properties," Proc. Natl. Conf., Clays Clay Miner., 8th, 1960 pp. 11-16.
	R. T. Bailey, "Measurement of Strength of Unfired Clays and Ceramic Bodies," Trans. Br. Ceram. Soc., 71, 272-277 (1972).
	W, F. Moll, "Source Clay Minerals Project," Clays Clay Miner., 21, 71-73 (1973)

The water molecule has the configuration shown in Figure 16.1. ${ }^{1}$ The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle is $104^{\circ} 40^{\prime}$, and therefore the molecule is a dipole with a dipole moment of 1.71 to 1.97×10^{-18} esu. Because of its dipole
 binations that are not related to electron transfer or sharing even though
 \section*{\section*{The Structure of Water
 \section*{\section*{The Structure of Water

 W. G. Lawrence

 W. G. Lawrence

 Clay-Water Systems

 Clay-Water Systems

 and its Role in}

 and its Role in} the properties of clay-water systems. However, little has been written from the viewpoint of the structure of water and how it relates to the effects in
 and how ions affect this structure. This information is used to discuss pos-
 faces.
WATER STRUCTURE
Many papers have been published on the effects of adding different ions on
the properties of clay-water systems. However, little has been written from
the viewpoint of the structure of water and how it relates to the effects in
clay-water systems. In this chapter a review is presented of water structure
and how ions affect this structure. This information is used to discuss pos-
sible structural effects in the interaction of aqueous solutions with clay sur-
faces.
WaTER STRUCTURE
The water molecule has the configuration shown in Figure 16.1. ${ }^{1}$ The
b

The Structure of Water and its Role in Cláy-Water Systems

these combinations may be stoichiometric. Among the types of interactions possible, ${ }^{2}$ two that are important for our consideration are: (1) dipoledipole attractions between water molecules, resulting in some type of structure found in associated liquids and (2) ion-dipole attractions, which are the fact that ions in water solutions are not separate entities but are associated with and travel with a certain number of water molecules.

With water and other liquids having angular intensity distributions of the molecular field, the arrangement of molecules deviates from a close-packed system. The molecules arrange in a structure that best satisfies the bond angles determined by the angular charge distribution. ${ }^{3}$

The details of the structure of water have been extensively investigated and many theories have evolved. However, this subject is still controversial and no single theory is widely accepted. Two general approaches have been to view water as association complexes and as defective crystalline systems. Association complexes are disconnected clusters of water molecules. By means of X-ray diffraction studies, Morgan and Warren‘ showed that the average number of nearest neighbors around a water molecule is 4.6 . This is close to the tetrahedral coordination of ice. However, they cautioned that their results cannot be interpreted in terms of certain number of neighbors at certain distances. At any given time, any given molecule may have more or less than four neighbors, and these neighbors may be at a continuous
distance to be approximately $2.85 \AA$ and the $\mathrm{O}-\mathrm{O}$ bond angle to be tetrahedral indicate that the water molecules are hydrogen bonded, with the

 create $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions. A small number of these ions are always present in ice crystals.

EFFECTS OF NONPOLAR MOLECULES

Kı!!! of simple nonpolar gas molecules in water. From such data the entropy loss in the solution process is calculated. For nonpolar gases in nonpolar solvents the entropy loss is in the 10 to $15 \mathrm{cal} /$ degree mole range. In water,
 system is an indication of the degree of disorder present, the extra entropy loss in aqueous solutions of nonpolar gases means the water structure has become more ordered under the influence of the dissolved nonpolar molecules. As Frank and Evans describe it "the water builds a microscopic iceberg round the nonpolar molecule." This writer prefers to say that the water structure is immobilized adjacent to such molecules.

If one considers the flickering-cluster type of water structure in which the half-life of the cluster (10^{-10} to 10^{-11} seconds) depends on the resonance scheme of the hydrogen bonding, it seems reasonable that such a cluster having one side or a portion of its surface adjacent to a nonpolar molecule
 It is being protected. This concept is borne out by the observation that the entropy loss is greatest for the larger solute molecules, such as radon and chloroform.

If nonpolar molecules show such effects as previously described, one can imagine the greatly exaggerated effects that might be produced by ionic solutions. In addition to the possible effect of surface alone, there is the intense electric field due to the ionic charge. When small distances are involved, the field intensity is around 1 million V / cm, assuming the bulk dielectric constant of water (80) gives a field of $0.5 \times 10^{6} \mathrm{~V} / \mathrm{cm}$ at a
 minimal, since the dielectric constant of water has been shown to be approximately 2 to 4 around a point charge such as an ion.

ROLE OF THE HYDROGEN BOND

Forslind ${ }^{3}$ has discussed in detail the process of molecular association and the hydrogen bond. For a hydrogen bond to form between two electronegative atoms, it is first necessary that there be a close approach of these atoms. The dipole-dipole interaction between water molecules themselves is apparently a slow, sluggish type based on the difficulty of nucleation of the condensed vapor phase. It appears that the initial approach between water molecules is due to the van der Waals and molecule dipole attraction until interpenetration of electron clouds is achieved. At this point the attraction between the hydrogen nuclei and the two unpaired electrons of the oxygen provides a significant orienting influence.

It is known that the hydrogen atom may be simultaneously attracted to two or more electronegative atoms, such as fluorine, oxygen, chlorine, and nitrogen. The hydrogen atom may thus act as a bond between oxygens. When a hydrogen is bonded to one electronegative element, such as oxygen in the case of $\mathrm{H}_{2} \mathrm{O}$, the strong pull exerted by the atom on the bonding electrons leaves an effective positive charge on the hydrogen sufficient to cause attraction for a second electronegative atom.

Frank and Wen present a resonance scheme for the hydrogen bond in water. This considers resonance between three types of structures. It recognizes that hydrogen bond formation is an acid-base interaction. When a bond is formed, one molecule becomes more acidic and the adjacent molecule more basic than the unbonded water molecule. Thus a coopera-tive-type bonding is pictured such that when one bond is formed the tendency is for several to form and when one bond is broken a cluster breaks down. This gives a picture of flickering clusters of various sizes and shapes first bonded or associated and then breaking down. The half-life of such clusters is 10^{-10} to 10^{-11} seconds, which corresponds to the dielectric and bulk relaxation time of water but is long enough (10^{2} to 10^{8} times a molecular vibration period) to be meaningful.

Tanford ${ }^{10}$ presents facts of interest in consideration of the water structure. The heat of sublimation of ice is $12,200 \mathrm{cal} /$ mole at $0^{\circ} \mathrm{C}$. Of this, 1400 cal/mole represents the heat required to give the water molecules the random motion they possess in the gaseous state (translational enthalpy). The remainder, $10,800 \mathrm{cal} / \mathrm{mole}$, must be the energy required to break the hydrogen bonds holding the structure together. The heat of fusion of ice is $1400 \mathrm{cal} / \mathrm{mole}$, only about 15% of the energy required to break the hydrogen bonds in the crystal. It is therefore obvious that liquid water must retain a considerable amount of structure, which is maintained by the hydrogen bonding mechanism.
201
Relations between Ion Characteristics and Immobilization of Water Molecules

Figure 16.5. ΔE versus ion radius for some cations and anions.

 approximately $1.20 \AA$, radius changes from positive to negative. In this case $\gamma_{1} / \gamma-1$ and a water molecule in the vicinity of an ion is more mobile than in pure water. This provides a concept termed "negative hydrogen." Wang, ${ }^{15}$ in studying self-diffusion of water in solutions of KCl and Kl ,
 of the negative hydration concept.

RELATIONS BETWEEN ION CHARACTERISTICS AND IMMOBILIZATION OF WATER MOLECULES

An increase in the ordered structure of water involves entropy loss, while a decrease in structure involves entropy gain. It is thus possible to use the entropy of solution ΔS which is the entropy change (calories per degree per mole) in passing the hypothetical mole fraction of unity in solution, as a basis for correlating structure effects of ions. It is thus possible to calculate $\Delta S^{s t}$, which is the contribution to the entropy change ΔS due to the effect of ions on the structure of water. Robinson and Stokes ${ }^{14}$ present data.for a number of ions (Table 16.2).
For all alkali and halide ions except the smallest (Li^{+}and F^{-}) $\Delta S^{s t}$ indi-

The Structure of Water and its Role in Clay-Water Systems
process. His concept is based on the logical approach that the water molecules are in constant motion; thus continual exchange may take place between the water molecules closest to the ion and those farther away. The magnitudes defining the frequency of exchange of water molecules near the ions are the quantitative characteristics of ion hydration in solutions.

If a water molecule is in the immediate vicinity of other water molecules, then it spends an average time γ in the immediate vicinity of a certain selected water molecule. Time γ is the average time the two molecules remain as neighbors. The activation energy of exchange or the energy required to separate them as neighbors is E . The time a water molecule is in the immediate vicinity of an ion will not be γ, because an ion is not energetically equivalent to a water molecule. The time a molecule is associated with the ion will be γ_{Δ} where $\gamma_{t} \neq \gamma$ mainly because of the difference in the activation energy of exchange. This energy is no longer E but $E+\Delta E$.
γ_{1} / γ and ΔE are quantitative characteristics of ion hydration in solutions. If an ion firmly holds the water molecules it means the time a molecule spends in the vicinity of the ion is much greater than the time it spends associated with another water molecule and γ_{i} / γ is large. For permanent bonding to an ion $\gamma_{t} / \gamma=\infty$: Any decrease in γ_{t} / γ indicates weakening of the ion bond with the water molecules of the solution. γ_{l} / γ is related to ΔE by the relation $\gamma_{1} / \gamma=\exp (\Delta E / R T)$; thus finding ΔE for the ion results in a quantitative description of its hydration.

Samoilov ${ }^{12}$ worked out the method for calculating ΔE for individual ions from experimental data on self-diffusion in water and the temperature coefficients of ion mobility in solutions and arrived at the following relationship

$$
\frac{1}{U_{1}} \frac{d U_{1}}{d T}+\frac{1}{T}-\frac{1}{D} \frac{d D}{d T}=\frac{\Delta E}{R T^{2}}
$$

$\overline{1+\alpha \exp (\Delta E / R T)}$

$\begin{aligned} D & =\text { self-diffusion coefficient of water } \\ \alpha & =\text { numerical coefficient with a value of } 0.0655\end{aligned}$
Table 16.1.
The values of ΔE and γ_{1} / γ calculated from the above equation are given in
Table 16.1. ΔE and γ_{1} / γ for some monatomic ions ($21.5^{\circ} \mathrm{C}$)

Ion	Li^{+}	Na^{+}	K^{+}	Cs^{+}	Cl^{-}	Br^{-}	I^{-}	Mg^{2+}	Ca^{2+}
$\Delta E(\mathrm{kcal} /$ mole $)$	0.73	0.25	-0.25	-0.33	-0.27	-0.29	-0.32	2.61	0.45
γ_{1} / γ	3.48	1.46	0.65	0.57	0.63	0.61	0.58	86.3	2.16

203
16.3 is shown in Figure 16.6. This shows good correlation for cations and anions if they are considered separately. One would expect some difference

 molecule interaction, the role of the hydrogen bonding must be considered. The hydrogen bonding mechanism is most effective between anions having high electronegativity. Thus F^{-}, being the most electronegative of the anions in this series, has an abnormally high effect as far as increasing the ordered structure of water. This effect is reduced as the electronegativity of the anion is in the series of $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}decreased.

Bingham ${ }^{15}$ presents data (Table 15.3) on the ionic elevations of fluidity for several cations. The plot of this data versus $2 / a^{2}$ (Figure 16.7) for the

cates an increase of disorder in the structure of water, being the greatest for the largest ions (Cs^{+}and I^{-}). The negative $\Delta S^{4 \prime}$ for $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$, and $\mathrm{Al}^{\mathrm{s}^{8+}}$, on the other hand, indicates these ions would promote a long-range order in the water structure.

There is obviously a size effect involved as well as a charge effect. A plot of the ionic field strength z / a^{2} for the ions versus $\Delta S^{a t}$ from Tables 16.2 and

Table 16.2. Entropy of solution of monatomic
Ion

Cl^{-}
Br^{-}
I^{-}
H^{+}
Li^{+}
Na^{+}
K^{+}
Rb^{+}
Cs^{+}
Mg^{2+}
Ca^{2+}
Al^{3+}

Figure 16.6. $\Delta S^{u t}$ versus z / a^{4} for several cations and anions.
larger, thicker solvated layer being built up around the particle. This would be comparable to enlargement of area A in Figure 16.3. This concept has
 from shrinkage measurements and volume water loss. For a kaolinite in the 98 'U!! A for Na-kaolin, and 106 A for $\mathrm{Ca}-\mathrm{kaolin}$. The experimental techniques involved in the precise measurement of these thicknesses are extremely difficult and these values are only qualitative indications of size that serve to confirm the theory.
The influence of the size of ions on their ability to enhance the develop-
ment of the water structure has been pointed out by many investigators.

(s0u) K! 1 p! ply

Figure 16.7. Ionic elevation of fluidity versus z / a^{2} for several cations and anions.
Bingham's data indicate the Na^{+}ion to be a structure promoter, while the entropy data show it to be a structure modifier. The structure-promoting tendency of ions is related to the field strength of the ion; the higher the
 the size and charge of the ion, as the smaller the size and larger the charge, the greater the field strength.

THE "WATER HULL"

The concept of immobilization of water induced by ions of high charge and small size provides a basis for the mechanism of formation of a "water hull" or "solvated layer" surrounding a clay particle. Since the surface of a clay crystal is composed of positive and negative sites resulting from the exposure of such ions as $\mathrm{Al}^{3+}, \mathrm{Si}^{++}, \mathrm{O}^{2-}$, and OH^{-}, one would expect such active sites to exert an influence on the surrounding water. This influence might be even more pronounced, since these ions at the surface are part of a rigid crystal lattice. They have the capability of attracting the dipole water molecule or other positive or negative ions to satisfy their charge deficiency. The extent or thickness of the water layer built up will depend on the types of ions associated with the liquid. Those ions that are structure promoters,

술

as plasticity and viscosity being greatly affected. In systems having small particle size, large surface area, and high solids cont distance between particles may approach the water-film thickness. The properties of this interparticle water determine the behavior of the system. The excellent geometric fit between the kaolinite crystal and the ice structure has been pointed out by Mason. ${ }^{17}$ Because of the small (-1.1%) misfit with ice, kaolinite is a natural effective nuclei for ice formation. Thus one would expect very little disorder at the kaolinite-water interface and good bonding between the two. Figure 16.10 shows the buildup of the water structure on the edge of a kaolinite crystal and the good fit and the hexagonal
ring arrangement of the water molecules. Figure 16.11 shows the effect of the large K^{+}ion on the water molecules. Figure 16.11 shows the effect of disrupts the structure and prevents its buildup that the addition of such ions can be seen that it would take little force to shear such a system. can be seen that it would take little force to shear such a system.
Figure 16.12 shows the case for the Ca^{3+} ion as the impu
Figure 16.12 shows the case for the Ca^{2+} ion as the impurity. This
strengthens the structure and enhances its development to larger distances,

[^7]Forslind ${ }^{3}$ suggests that small ions that fit into the water structure without disrupting it would enhance its development. Larger ions would be expected to retard its development. From the data presented, the critical size radius for a monovalent cation is approximately $1.36 \AA$. This is in close agreement with the size of the "hole" in the hexagonal water structure. Ions such as K^{+}or Cs^{+}, being larger than this critical size, would disrupt this structure (Figure 16.8) unlike those ions that are smaller or more highly charged such as $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$, and Al^{3+} (Figure 16.9), which would retain the structure. The extent or thickness of the water layer built up around a clay particle
depends on the type of ions associated with the water, with such properties

ష్

multiply charged ions strengthens the structure of each. Theories have been presented pertaining to the structures of water and glass that have nearly identical concepts, Tilton ${ }^{19}$ on glass structure and Pauling ${ }^{20}$ on the water structure. Water containing high concentrations of ions, when cooled, becomes increasingly viscous and freezes without crystallization into a glasslike material.
Further clarification must await the development of techniques for moredetailed study of the nature of the water structure in the immediate vicinity
of ions and clay-particle surfaces.

REFERENCES

1. J. D. Bernal and R. H. Fowler, J. Chem. Phys., I, SIS (1933).
2. T. Moeller, Inorganic Chemistry. Wiley, New York, 1952, p. 187.
E. Forslind, "A Theory of Water," Swedish Cement and Concrete Research Institute at the Royal Institute of Technology. Stockholm, 1952
3. J. Morgan and B. E. Warren, J. Chem. Phys., 6, 666 (1938).

and if such a structure reaches dimensions approaching the interparticle distance, high forces would be required to shear the system.

CONCLUSIONS

 It is obvious from this discussion that there is no one theory of water structure that completely explains its behavior. The theory proposed to explain the effect of ions on the structure as related to the behavior of clay-water systems is certainly not applicable in all instances. If size is a controlling influence, with the suggested $1.36 \AA$ being critical, it does not explain the fact that the viscosity of clay suspensions is reduced equally by $\mathrm{Li}^{+}, \mathrm{Na}^{+}$, K^{+}, and Cs^{+}as shown by Johnson and Norton. ${ }^{18}$As a ceramist studies the water structure it becomes evident that there are similarities between the water and glass structures. Both have tetrahedral coordination with oxygens bonded by a cation in a random network having only short-range order. The addition of the large monovalent ions disrupts or weakens the structure in both cases. The addition of the smaller

Casting slips are fluid suspensions of one or more particulate ceramic materials dispersed in a liquid (usually water) at high solids volume by deflocculating agents. A casting operation involves consolidation of suspended
 absorbent mold. Casting-slip suspension particles are normally predominantly noncolloidal ($>0.5 \mu \mathrm{~m}$), although some colloidal material must be present to insure slip stability and good rheological qualities.
Deflocculation of clay and clay-based aqueous suspensions by alkali hydroxides and hydrolyzable alkali salts has received detailed attention, ${ }^{1.2}$ as has the role of organic ${ }^{3}$ and inorganic ${ }^{4}$ polyions in promoting deflocculation of clay slips. The potential-determining functions of hydrogen and
 tive adsorption of organic polyions in deflocculation of metal oxides has also been thoroughly investigated. ${ }^{0-12}$
Although interrelationships between rheological and deflocculation properties and slip casting have been the subject of a great many studies, ${ }^{13-17}$ the part played by particle size in general and by particle-size distribution in
H. S. Frank and Wen-Yong Wen, "Interactions in Ionic Solutions," Discuss. Faraday
Soc. 24, 133-140 (1957). Soc.. 24, 133-140 (1957).
C. Tanford, "The Struct
10. C. Tanford, "The Structure of Water and Aqueous Solutions," Temp. Measurement Control Sci. Ind., 3, 123-129 (1963).
H. S. Frank and M. W. Evans, J. Che
12. O. Ya Samoilov, "A New Approach to the Study of Hydration of Ions in Aqueous Solutions," Discuss. Faraday Soc.. 24, 141-146 (1957).
14. R. A. Robinson and R. H. Stokes, Electrolytic Solutions; Measurement and Interpreta-
W. H. East, "Fundamental Study of Clay: X. Water Films in Monodispersed Kaolinite

Fran
A. L. Johnson and F. H. Norton, "Fundamental Study of Clay: II Mechanism of De-
flocculation in the Clay-Water System," J. Amer. Ceram. Soc, 24, (6) 189-203 (1941).
L. W. Tilton, "Noncrystal Ionic Model for Silica Glass," Jr. Res. Natl. Bur. Stand., 59,
(2) 139 (1957).
20. L. Pauling, The Nature of the Chemical Bond. Cornell University Press, Ithaca, New
York, 1960, p. 464 .

Figure 17.1. Particle-size distribution and rheology of alumina slips: (a) particle-size distribu-
tion and (b) flow behavior for different aluminas deflocculated in water.

Adding 4\% fine alumina to the coarse alumina did not change the shearthickening character possessed by the coarse alumina alone. However, the mixture flowed more rapidly at each shear stress (a decrease in the apparent
 alumina slip and showed moderate shear thinning.

The loading limits for the five alumina slips are noted in brackets in
 tions, had a lower loading limit than the other three powders.

Quartz Slips

 and \mathbf{B}), each having minimal colloid and narrow size distribution. Slips de-
 quartz A and B of 48 and 50% percent, respectively. The fual parts blend
 flow rate than did either component powder.

Whiteware Slips

Most whiteware casting bodies are heterogeneous mixtures of clays, ground feldspathic minerals, and powdered silica. Typical of such formulas are the sanitaryware bodies. Figure 17.3 gives particle-size distribution and rheology data for the ball-clay component, the kaolin component, and the

Particle-Size Distribution and Slip . . operties
particular seems to have received little attention in the literature. ${ }^{18,10}$ This discussion deals with literature of polydisperse systems and the role of particle-size distribution in governing deflocculation and rheology of ceramic suspensions.

NOILOGI\&LSIG ZZIS-3TDIL\&甘d GNV ADOTOBH8 dITS

Some slips move easily at slower rates of shear but resist stirring at higher speeds, assuming a dry, grainy appearance. When allowed to stand quietly the dry-appearing slip returns to its original shiny, fluid state. This

 some authorities ${ }^{22}$ prefer the term "shear thickening." Other kinds of slip uoljessos uodn pue 'sos!
 usually termed "pseudoplastic," although some observers recommend the more general expression "shear thinning." ${ }^{22}$

Alumina Slips

 compared for their flow behavior as slips. The flow characteristics were measured with a capillary tube viscometer (Cooke-Harrison). ${ }^{23,24}$ Size distributions were determined by a sedimentation technique (Numinco Sedigraph 5000, Micromeritics Instrument Co.) after the powder was dispersed with sodium hexametaphosphate in water in a Waring Blendor. For rheology measurements, a powder was defle 0.1 hp mixer (Lightnin', Mixing Equipment Co., Inc.) to continue stirring the slip. All slips studied were loaded to this limit. Each powder, therefore, was characterized by a different limit.

Three alumina powders were studied individually and in two combinations: a "coarse" alumina, a "fine" alumina, and a commercial casting grade alumina. The combinations were a 4% fine alumina- 96% coarse alumina mixture and a calculated body comprised of a mixture of castinggrade alumina, coarse alumina, and fine alumina. The particle-size distribution for the five resulting powders is given in Figure 17.1a.

The flow curves for the five slips are shown in Figure 17.1b. The coarse alumina was strongly shear thickening and, in fact, would not increase in flow rate at shear stresses above about 400 dynes $/ \mathrm{cm}^{2}$. The casting-grade alumina was slightly shear thickening. The fine alumina, in contrast, was shear thinning.

Figure 17.3. Size distributions (a) and flow behavior (b) of ball clay, kaolin, and nonplastic components of a sanitary casting body. The solid volumes represent pourable loading limits of ζ '81'廿! $\mathrm{m}^{2} / \mathrm{g}:(3)$ nonplastics. $1.9 \mathrm{~m}^{2} / \mathrm{g}$; and (4) body, $21.2 \mathrm{~m}^{2} / \mathrm{g}$. Numbers in brackets are the percent solids by volume.

> - COARSER NONPLASTIC - FINER NONPLASTIC

Figure 17.4. Sanitaryware casting body coinciding with moderate variation of intermediaterange particle-size distribution caused by a change in nonplastics component size distribution: (a) size distributions and (b) flow behavior with sodium silicate added.
217

Figure 17.6. Shear rate-shear stress curves for a commercial sanitaryware slip using a

ference between fresh and aged slip overswings was reported as

 the increase in torque.
A research viscometer, the Ferranti-Shirley coneplate instrument, ${ }^{28}$ was used in obtaining the rate of shear-shear stress curves on slip B shown in

 seconds). In each case the up-and-down cycle was repeated immediately following the initial cycle. The marked differences in curve configuration立
岂 sample was protected with a damp cloth to prevent moisture loss and
allowed to stand 15 minutes, and the two-cycle sequence was repeated. The allowed to stand 15 minutes, and the two-cycle sequence was repeated. The

Particle-Size Distribution and Slip Properties

216

the deflocculation curves for the respective bodies (Figure 17.4b) indicates a decided increase in initial-flow deflocculant requirement and much greater fully deflocculated fluidity for the body with separately ground nonplastics. Analogous rheological changes also occur where coarse china clays are interchanged in high-solids whiteware casting bodies.

FLOC STRUCTURE IN COMMERCIAL CASTING SLIPS

Commercial casting slips are usually maintained in a state of deflocculation that allows moderate thickening with time. Control laboratories in commercial plants use various flow-tube and rotational viscometric devices for consistency and gel-rate measurements. In Figure 17.5 are given defloccula-tion-curve and thickening-rate data for a commercial sanitaryware formula, obtained with the commonly used Gallenkamp ${ }^{26}$ and Brookfield ${ }^{27}$ rotational viscometers. Gel-rate data were determined with the Gallenkamp by rotating its flywheel through 360°, releasing it, recording degrees of overswing past the zero point for fresh slip, and then allowing the spindle to stand for 6 minutes in the cocked position before releasing again. The dif-

219 Figure 17．8．Effect of changes in casting rate of sani－ tary－ware（Figure 17．7）from variation in clay colloid content at constant slip weight，gel rate，and inter－
mediate particle－size distribution．
than 1μ in a whiteware slip constituted an index of rate of cast．The data of Figure 17.7 show the changes in rate of cast with changes of minus 1μ

 specific surface（i．e．colloid fineness）is reduced below some critical point， rate of cast will rise sharply．

NOISSnJSIO ONV K\＆甘WWns

The rheological curves of Figure 17.1 show the profound effect of quite small weight percentages of fine（i．e．，colloidal and near colloidal）particles

 and Jones ${ }^{31}$ and of Pryce－Jones ${ }^{32}$ obtained with suspensions of narrow dis－ tributions of quartz particles in the range of 1 to 25μ ．Clarkess observed sharp reductions in apparent viscosity of 50 vol $\%$ solids 30 to 175μ suspen－ sions of quartz and glass particles upon addition of colloid－size polyanions． Eveson et al ${ }^{34}$ reported puzzlement at the anomalously low relative vis－ cosities obtained for mixtures of suspensions of monosize spheres in water． These observations appear to be related to theoretical considerations of
curves obtained were similar to the original first and second high－shear－rate cycle traces．Beazley ${ }^{29}$ has proposed that data of this nature show the slip to be in a state of aggregated，liquid－holding flocs（consisting of particles held together by a combination of coulombic and van der Waal＇s forces），form－
ing a network．The initial impact of shearing shows strong stressing that breaks the network into individual flocs，each of which contains consider－ able liquid．Breaking of the flocs frees some liquid and extends the distribu－ tion of particles so that a sudden reduction in stress occurs．Subsequent oscillations，as rate of shear increases，are joint consequences of increasing stress and alternating shear thickening from Brownian－motion－induced particle contacts and continuing shear breakdown．The more gradual application of shear diagramed in the insert graph of Figure 17.6 indicates， according to Moore，${ }^{30}$ an approach to equilibrium between breakdown and restructuring．Once the structure has been completely disrupted，there must be a period of time before it reforms，thus accounting for the disappearance of the bulge on second cycle traces．The reappearance of the bulge on ＂aged，＂previously cycled samples is evidence of time thickening．

CASTING RATE VERSUS PARTICLE SIZE AND SURFACE AREA

Casting rate，consistent with good drain，release，and a state of plastic firm－ ness of the cast，is of primary concern to the manufacturing plant．${ }^{18}$ Particle cast formation．One observer ${ }^{18}$ noted that the percentage of particles finer

客 specific surface．

BODY P．S．v．CAST RATE
，09／WW＇SS3NSIIHL ITM IS甘J

Figure 17.10. Plots of sanitary-ware-body and calcined-alumina-body distributions superimposed on a plot of Andreasen limit curves ${ }^{19}$ calculated for a maximum particle-size $D=50 \mu$ 0.50 limits established by Andreasen for optimum distributions.
increases in fluidity obtained by combining narrow distributions to make a more extended distribution or by adding small volumes of fines to a coarser distribution.

Andreasen ${ }^{19}$ studied continuous distributions of quartz grains and concluded that optimum packing for a distribution whose largest size D appeared in the relation

$\left(\frac{\mu}{D}\right)^{\eta}$

where P is the percentage of particles finer than size μ, and η a fractional constant. Optimum packing was reported as lying between $\eta=0.33$ and 0.50. Andreasen limits calculated for $D=50 \mu$ over a range of η values are shown by Figure 17.10. Plots for a sanitary-ware body (from Figure 17.3) and an alumina casting body (from Figure 17.1) superimposed on the graph show that the sanitary-ware distribution more nearly approaches the Andreasen theoretical limits for optimum voids. An extrapolation of the A and S curves into the range of colloidal dimensions shows the sanitary-ware body to have a markedly smaller S / L value, hence lower theoretical voids. A similar calculation and plot for a refractory grain casting body is shown by Figure 17.11 and indicates that the distribution conforms to the
Andreasen limits only in the lower size range. The very sharp changes in fluidity and defl
The very sharp changes in fluidity and deflocculation response with small
changes in intermediate particle size shown by Figure 17.4 and the marked

Furnas ${ }^{18}$ and of Karlsson and Spring, ${ }^{\text {ss }}$ which point out that voids volume in packed polydisperse powders is a function of (a) the percentages of constituent monosize particles and (b) the ratio of the smallest to largest size particle. The smaller the S / L (ratio smallest size S to largest size L) and the more continuous the distribution, the lower the voids volume of the system. Furnas' argument is demonstrated by the graph of Figure 17.9. The voids volume for a monosize powder is assumed to be 40%. The addition of a second, smaller monosize powder to the larger-size powder has the effect of filling the voids of the predominant larger-size mass, thus reducing the voids volume of the combination. As the particles of the finer size are made still finer (i.e., more particles per unit volume), the combined powder voids volume drops to about 17% at $S / L=0.01$ and remains constant regardless of the value of S. By using progressively smaller multiple monosize powders in combinations approaching a continuous distribution, the reduction in voids as S / L diminishes is less abrupt but approaches 5% at very low S / L (10^{-4} to 10^{-5}). Thus for a fixed liquid volume, that suspension whose particle-size distribution is most nearly continuous and whose S / L is low, would theoretically make maximum use of the liquid in flow. Of course, this lize a portion of the liquid. Such an argument might account for the large -
 of finer monosize spheres with a larger amount of large single-size spheres.

Particle-Size Distribution' and Slip Properties

ష్స

Figure 17.12. Graphical presentation of data of Bo et al. ${ }^{34}$ showing the effect of particle dis-
tribution on poros'ty and permeability of packed distributions of glass spheres.
elementary reaction rate theory ${ }^{87,30}$ treats shear-thinning behavior in terms of a few empirically determined constants but does not take into account dependence of these constants on colloidal and surface properties of the dispersed particles. Although these models do appear to successfully picture suspension rheology over a fairly wide range of shear rate, ${ }^{30}$ their basic
assumptions were questioned assumptions were questioned ${ }^{10}$ and a modified model was proposed in which
the hydrodynamic-structural theory was extended tion of relaxation times. The effect would be to widen the range over which shear thinning can occur. Another model based on particle collision and aggregation processes ${ }^{41}$ accounts for increased viscosity at both low and high rates of shear. A recent comparison of these two theories ${ }^{42}$ for shear shear stress dand the latter to more nearly agree with observed shear rateshear stress data.

In light of these observations it seems possible to consider investigating deflocculated, high-solids ceramic suspensions within the context of packed powders. The particles of colloidal dimensions constitute a complicating unit that breaks up into a distribution whose extensind the system into a onit that breaks up into a distribution whose extension depends on the-rate
of shearing.

REFERENCES

21. A. B. Metzner and M. Whitlock, "Flow Behavior of Concentrated (Dilatant) Suspen22. F. R. Eirich. Ed., Rheology: Theory and Applications, Vol. 4, Academic, New York. 23. R. D. Cooke, "The Plastic Properties of Enamel Slip." J. Amer. Chem. Soc., 7, 651-
W. N. Harrison, "Vitrenous Enamel Slips and Their Control," J. Amer. Ceram. Soc.,
G. W. Phelps and A. Silwanowicz, "The Role of Nonclay Particle Size in Whiteware Slip Casting." J. Can. Ceram. Soc., 39, 17-19 (1970).
A. Clark and H. J. Hodsman, "Viscometer," J. Soc. Chem. Ind., 56, 67((1937).
J. R. van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow
Measurement, Interscience, New York, 1963, pp. 139-150.
R. McKennell, "Cone-Plate Viscometer Comparison with Coaxial Cyliner Viscometer,"
K. M. Beazley, "Breakdown and Buildup in China Clay Suspensions," Trans. Br.
Feram. Moore. "The Rhcology of Ceramic Slips and Bodies," Trans. Br. Ceram. Soc.. 58. 470-494 (1959).
H. Freundlich and A. D. Jones, "Sedimentation Volume, Dilatancy and Plastic
Properties of Concentrated Suspensions, J. Phys. Chem., 40,1217 , 236 (1atancy," Durham Philoso.
Soc., 10, 427-467 (1948). Coarse Settling Suspensions," Trans. Inst. Chem. Eng.
(London) 45, T25I-T256 (1967).
(London) 45, T25I-T256 (1967).
G. F. Eveson, S. G. Ward, and R. L. Whitmore. "Theory of Size Distribution in Paints,
Coals, Greases, etc. Anomalous Viscosity in Model Suspensions," Discuss. Faraday Soc., (11), 11-14 (1951).
K. Karlsson and L. Spring. "Packing of trregular Particles," J. Mater. Sci., 5, 340-344 (1970).
M. K. Bo, D. C. Freshwater, and B. Scarlett, "The Effect of Particle Size Distribution on the Permeability of Filter Cakes," Trans. Inst. Chem. Eng., 43, T228-T232 (1965). ?
M. M. Cross, "Rheology of Non-Newtonian Flow: A New Flow Equation for Pseudo-
M. M. Cross, "Kinetic Interpretation of Non-Newtonian Flow," J. Colloid Interface
T. Gillespie, "Application of the Hydrodynamic-Structural Theory of Non-Newtonian
Flow to Suspensions which Exhibit Moderate Shear Thickening with Particular
Reference to 'Dilatant Plastisols'," J. Colloid Interface Sci., 22, 554-562 (1966).
A. S. Michaels and J. C. Bolger, "The Plastic Behavior of Flocculated Kaolin Suspen-
sions," Ind. Eng. Chem. Fund. 1, 153-164 (1962).
R. J. Hunter and S. K. Nicol, "The Dependence of Plastic Flow Behavior of Clay
Suspensions on Surface Properties," J. Colloid Interface Sci., 28, 250-259 (1968).
R. K. Schofield and H. R. Samson, "Flocculation of Kaolinite Due to the Attraction of
W. Phe "The Organic Colloid Fraction in Clay Slip Casting" Proc Fall Meel
ings ME/WW Div, Amer. Ceram. Soc., 1970, 9-15.
F. J. Stevenson and J. H. A. Butler, "Chemistry of Humic Acids and Related Pig-
ments," Organic Geochemisıry, G. Eglinton and M. T. J. Murphy, eds., SpringerVerlag, Berlin-Heidelberg, 1969, Chap. 22.
H. J. Modi and D. W. Fuerstenau, "Streaming Potential Studies on Corundum in Aqueous Solutions of Inorganic Electrolytes," J. Phys. Colloid Chem., 61, 640-643
(1957).
G. A. Parks and P. L. De Bruyn, "The Zero Point Charge of Oxides," J. Colloid Sci.,
G. Y. Onoda and P. L. De Bruyn, "Proton Adsorption at the Liquid-Solid Interface. Pt.
(a) S. M. Ahmed, "Studies of the Dissociation of Oxide Surfaces at the Liquid-Solid Interface," Can. J. Chem., 44, 1663-1670 (1966): (b) S. M. Ahmed and D. Marsimov, "Studies of the Oxide Surfaces at the Liquid-Solid Interface. Pt. II. Fe Oxides," Can. J.
D. W. Fuerstenau, "Streaming Potential Studies on Quartz in Solutions of Aminium Acetates in Relation to the Formation of Hemimicelles at the Quartz-Solution Interface," J. Phys. Chem., 60, 981-985 (1956).
P. Somasundaran, T. W. Healy, and D. W. Fuerstenau, "Surfactant Adsorption at the Solid-Liquid Interface-Dependence of Mechanism on Chain Length," J. Phys. Chem.. 68, 3562-3566 (1964):
P. Somasundaran and D. W. Fuerstenau, "Mechanisms of Alkyl Sulfonate Adsorption at the Alumina-Water Interface," J. Phys. Chem., 70, 90-96 (1966).
P. Somasundaran, T. W. Healy, and D. W. Fuerstenau, "The Aggregation of Colloidal
Alumina Dispersions by Adsorbed Surfactant Ions," J. Colloid Interface Sci., 22, 599605 (1966).
S. R. Hind, "Study of Factors Involved in Slip Casting," Trans. Ceram. Soc., 22, 90-
F. P. Hall, "The Casting of Clay Ware-A Resume," J. Amer. Ceram. Soc., 13, 751-
G. A. Loomis, "Properties of Clay Casting Slips," J. Amer. Ceram. Soc., 23, 159-162
A. Dietzel and H. Mostetzky, "Mechanism of Dewatering of a Ceramic Slip by The Plaster Mold: I. Experimental Investigation of the Diffusion Theory of the Slip-Casting
W. E. Worrall and W. Ryan, "The Mechanism of Slip Casting," J. Br. Ceram. Soc., 1,
(a) C. C. Furnas, "The Relations Between Specific Volume, Voids, and Size Composition in Systems of Broken Solids of Mixed Sizes," U.S. Bur. Mines Report Invest. No. 101 suo!

18

Viscosity of Concentrated

Newtonian Suspensions

K. Sommer

The viscosity η of a dilute suspension of rigid spheres in a liquid was deduced by Einstein in 1905 to be given by $\eta=\eta_{t}\left(1+2.5 c_{v}\right)$
where η_{n} is the viscosity of the liquid and c_{v} is the ratio of the volume of the suspended matter to the total volume.
Subsequently, many new formulas have been developed for highly concentrated suspensions and nonspherical particles; however, these

 needed to separate the different effects in concentrated suspensions.

THEORY

 the liquid phase and on the direct interactions between particles. These two

Experiment
2. Both suspensions have the same solid at the same C_{u}. 229 2. Both suspensions have the same solid athe to same for 4. The two liquids hath
4. The two liquids have similar physical and chemical properties so that $\dot{E}_{s_{1}}$ 5. The only difference
5. The only differences in the two liquids are their viscosities ($\eta_{r_{1}}$ and $\eta_{r_{2}}$).
Writing Equation 6 for both suspensions, and making the above assump-
Writing Equation 6 for both suspensions, and making the above assump-
tions, we can combine the two equations to yield

$\frac{E_{s}}{E}=1-\frac{\left(r_{1} / r_{2}\right)-1}{\left(\eta_{1} / \eta_{2}\right)-1}$
EXPERIMENT
 of $23 \mu \mathrm{~m}$) suspended in two oils with similar chemistry but different vis-

[^8]cosities (0.43 and 2.51 P). For both suspensions $C_{v}=0.4$. Newtonian behavior is lound in both cases.
and plotted versus $\dot{\gamma}$ in Figure 18.2. A linear relation is found between $\dot{\gamma}^{*}$
Also shown in Figure 18.2 are similar results for cases where C_{ν} is 0.20 and 0.35 . These are also linear. The mean shear rate for a given external shear rate decreases as C_{ν} decreases.
Experiments using different solid particles but the same liquid have been carried out. Two suspensions with the same liquid (and same liquid viscosity) are formed using glass spheres in one case and Plexiglas spheres of curves for the two cases are given in Figure 18.3 .
 cosity. However, the mean shear rates in the liquids were the same

Figure 18.3. Flow curves of plexiglas spheres and glass spheres suspended in the same oil

Figure 18.5. Flow curves of chocolate at two temperat

 mercial ceramics. The binders provide green strength and plasticity to clayfree ceramics so that bodies can be molded and retained in the desired
 dry pressing, extrusion, tape casting, roll forming, thick-film printing, slip casting, injection molding, and compression molding.

.Y. Onoda, Jr

 Binder SolutionsG. Y. Onoda, Jr.

The Rheology of Organic

hydrophilic but also provide enough bulk so that solute molecules can penetrate between polymer molecules.

The long-chain molecules of binders consist of smaller units, called monomers, that are linked together. The number of monomers in a polymer
 that characterizes the chemical structure of the molecule.

The carbohydrate-derived binders are characterized by a ring-type monomer, the ring being a modified α-glucose structure. The ring has five carbon atoms, as shown in Figure 19.1. Each carbon atom can be identified by a number, such as C-1 or C-2, according to its position indicated by the numbers in parenthesis in Figure 19.1. The linkages between rings occur by an ether bond (-O-) between $\mathrm{C}-1$ of one monomer and $\mathrm{C}-4$ of another. The various modifications occur by side groups (R) attached to C-5, C-2, or C-3. The degree of substitution (DS) is the number of sites on which modifications are made in a monomer. When DS is one, the C-5 site possesses the side group. As the DS values increase above one (maximum of 3), the C-2 is the next favored position for substitutions (after C-5), and C-3 is the least favored. When not possessed by a special side group the R position on $\mathrm{C}-2$ and $\mathrm{C}-3$ is filled by an OH group.

The monomer formulas for a variety of water-soluble, carbohydratederived binders are given in Figure 19.2. The typical DS values are also given.

The monomer formulas for some important binders that are not of vegetable origin are given in Figure 19.3. These include the vinyls, acrylics, and polyethylene oxides. The vinyls are characterized by a linear backbone consisting of carbon-carbon linkages, with a side group attached to every other carbon atom. The acrylics are similar to vinyls in that they have the same backbone structure. However, some acrylics have two side groups attached to the carbon atom.

Both vinyls and acrylics have flexible backbones because of the rotatable carbon-carbon bonds and these can lead to a molecule with a coiled and curving configuration. Thus the spatial length of a molecule may be much
particulates. Also, the liquid is necessary for providing fluidity for slips or plasticity for extrusion or semidry pressing. Dry green strength in the body is developed by the evaporation of the liquid. The binder is retained in the body and provides organic bridges between the ceramic particles.

Organic binders strongly affect the rheology of the liquid phase. They increase the viscosity and change the flow characteristics from Newtonian (for pure water) to pseudoplastic in most cases. Also, with some binders gels can develop under various conditions. The rheology of the solution directly affects the behavior of suspensions and pastes formed by adding particulates to the solution.

The applicability of a given organic binder for a specific ceramic process is very much dependent on the rheological characteristics of the binder solution. In this chapter relationships between rheological variables and ceramic processing phenomena are discussed. A wide variety of organic binders are compared on the basis of rheology and in relation to processing.

CHEMICAL STRUCTURE

Most soluble organic binders are long-chain polymer molecules. The backbone of the molecule consists of covalently bonded atoms such as carbon, oxygen, and nitrogen. Attached to the backbone are side groups located at frequent intervals along the length of the molecule. The chemical nature of the side groups determines in part what liquids will dissolve the binder. If the side groups are highly polar, solubility in water is promoted. Binders soluble in polar organic solvents have side groups of intermediate polarity. Solubility in nonpolar liquids is promoted by nonpolar side groups.

The chemical polarity and resulting affinity for a liquid is a necessary but not a sufficient condition for effecting solubility in the liquid. The side groups of a molecule bond strongly to the side groups of adjacent molecules, thereby giving the binder a high cohesive strength. If the solvent molecule cannot disrupt this intermolecular bonding, solvation does not take place. This condition occurs, for example, with pure cellulose and pure poly(vinyl alcohol) binders. Both of these polymers must be modified chemically at their side groups to effect solubility. This is accomplished by making the side groups bulkier, thereby reducing the amount of interaction that can take place between molecules. In the case of poly(vinyl alcohol), approximately 12 to 20% of the OH side groups must be replaced by acetate groups to convert the polymer to the cold-water-soluble form. Cellulose is modified to water-soluble form by substituting hydroxyethyl, methyl, carboxymethyl, or hydroxypropyl side groups. These groups are not only

The Rheology of Organic Binaer Solutions

Binder	R Groups	DS
Methylcellulose	$-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{4}$	2
Hydroxypropylmethylcellulose		2
Hydroxyethylcellulose	$\begin{aligned} & -\mathrm{CH}_{2}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{OH} \\ & -\mathrm{CH}_{2}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{OH} \end{aligned}$	0.9-1:0
Sodium carboxymethylcellulose		
Starches and dextrins	$-\mathrm{CH}_{2}-\mathrm{OH}$	
Sodium alginate		
Ammonium alginate		

Figure 19.2. Formula for some water-soluble, carbohydrate-derived binders.
smaller than the actual length of the molecule backbone. This has an important effect on the rheology of binder solutions, as is discussed later. The backbone of the carbohydrate-type binders is rather inflexible compared with those of the vinyls and acrylics. These molecules tend to remain extended, thereby having a larger spatial effect than those molecules that can coil and ball up into a compact configuration.

The monomer formulas for some binders that are soluble in organic solvents are given in Figure 19.4.

RHEOLOGY AND MOLECULAR STRUCTURE
The increase in viscosity of a liquid as large molecules (and colloids) are added is strongly influenced by their shape. The effectiveness of a molecule or colloid for increasing viscosity is dependent on its "sphere of influence" in the liquid. Molecules and colloids are constantly in motion (Brownian) because of thermal vibrations and impact by the liquid molecules. The solute molecules or colloids are tumbling and rotating, and the time-average
 increasing shear strain rate. When the shear stress is removed, the alignment of molecules may disappear immediately. In this case the shear stressstrain rate dependency is reversible. If the alignment dissipates gradually the lower-viscosity state is retained for some time after the higher shear stresses are removed. This time-dependent rheological behavior is known as thixotrophy.
viscosity of binder common pseudoplastic behavior of binder solution, the measuring conditions (e.g., method of measurem in terms of the specific available on viscosity for different binders are often and flow rate). Data conditions, so comparing the viscosity of different binders must be made with appropriate precautions.
"Gelation" is a third rheological condition of importance in binder solu-
The Rheology of Organicic Binder Solutions

Cellulosics (see Figure 19.1)	R Group
Ethyl cellulose	$-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}-\mathrm{CH}_{3}$
Vinyls	
Poly(vinyl butyral)	$-C H-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-$

Poly(vinyl formol)

$$
\begin{array}{ll}
\text { Acrylics } \\
\text { Poly(methyl methacrylate) }
\end{array}
$$

Figure 19.4. Formulas for some binders soluble in organic solvents. tively they increase the viscosity of a solution. Designations such as low, medium, and high viscosity grades of binders are commonly employed for specific binders that are available in different molecular weights. Such definitions have not been established for comparing different binders, however. For purposes of comparison, it is convenient to establish definitions for viscosity grades.

(dว) 4

Figure 19.5. Criterion for viscosity grades based on viscosity-concentration relationship.
Examination of Figure 19.6 shows the trends in the viscosities for vinyl-, acrylic-, and carbohydrate-derived binders. The vinyls and acrylics have very low or low viscosity. The cellulose derivatives are predominantly in the medium-and high-viscosity ranges. Also, the alginates and most of the
natural gums (which are carbohydrates) have high or very high viscosities.
A class of binders, called "emulsions," can also be considered as very-low viscosity binders. Emulsions are organic substances that are finely divided and dispersed in a liquid (e.g., water) with the aid of emulsifying agents (certain surfactants).

EMULSIONS

Wax emulsions were among the first important binders of the emulsion
type. The properties of waxes have long been recognized as useful for binder type. The properties of waxes have long been recognized as useful for binder
applications. They provide a reasonable level of green strength for many applications. At the same time they are soft enough so that granules are

 bodies with water.
During the past several decades, a variety of wax or waxlike binders in emulsion form have been developed, including paraffin wax, modified paraffin wax, microcrystalline wax, mineral wax, and synthetic waxes such as stearic acid derivatives.
The viscosity imparted by binders is one of the primary considerations in the selection of a binder for a specific process. While binder is added to provide the necessary green strength, it must also impart the appropriate viscosity to the liquid in the batch material. For slip casting, doctor blading, and spray drying, the slip must have a low enough viscosity to carry out the process. This requires that the solution in the batch have low enough viscosity. In contrast, the liquid present for extrusion processes must have high viscosity ${ }^{11}$ (10^{4} to $10^{6} \mathrm{cP}$). If the liquid is too fluid, it would be too easily squeezed out and separated from the ceramic mass.

The graph in Figure 19.5 defines the criterion for categorizing viscosity
grades that are used in this chapter. While the borderlines between grades are arbitrarily selected, they are convenient for the present purposes. The viscosity grade of a binder is determined by superimposing the viscosity-versus-concentration curve on the graph of Figure 19.4. The field within which the curve falls defines the viscosity grade (very low, low, medium, high, or very high).

From data given by binder suppliers and available in the literature, the viscosity grades of a wide variety of water-soluble binders have been

	Viscosity Grade					Electrochemical Type			
	$\begin{aligned} & \text { Very } \\ & \text { Low } \end{aligned}$		Medium		$\begin{aligned} & \text { Very } \\ & \text { High } \end{aligned}$				
Gum arabic	-						x		X
Lignosulfonates	-						X		X
Lignin liquor	-						X		X
Molasses	-					x			X
Dextrins	\bullet					x			X
Poly(vinylpyrrolidone)						x			
Poly(vinyl alcohol)			-			\mathbf{x}			
Polyethylene oxide			\rightarrow			X			
Starch			-			X			X
Acrylics		-					X		
Polyethylenimine PEI								X	
Methycellulose			-	-		X			X
Sodium carboxymethylcellulose			-				x		X
Hydroxypropylmethylcellulose						X			X
Hydroxyethylcellulose						X			X
Sodium alginate			\sim				x		X
Ammonium alginate				-			X		X
Polyacrylamide						X			
Scleroglucan				-		X			x
Irish moss				-			x		X
Xanthan gum				-					x
Cationic galactomanan					-			X	X
Gum tragacanth					-	X			X
Locust bean gum					-	X			X
Gum karaya					\bullet	X			X
Guar gum					\square		x	x	X

Figure 19.6. Viscosity grades for some water-soluble binders. vis | Gu |
| :--- |
| |

Lignosulfonates

Molasses
Poly(vinylpyrrolidone)
Poly(vinyl alcohol)
Starch
Polyethylenimine PEI
Methycellulose
Sodium carboxy
Sodium carboxymethylcellulose Hydroxyethylcellulose

Ammonium alginate
Polyacrylamide
Scleroglucan
gum
Gum tragacenth
Guar gum

The Rheology of Organic Binder Solutions
An equation useful for estimating what viscosity grade of binder is necessary for a ceramic application is derived below. In Equation 1 the parameter k is a measure of the viscosity grade of a binder. Using the definitions of Figure 19.4, the range of k for each viscosity grade is as follows:
viscosity grade

$$
\begin{aligned}
& \text { very low } \\
& \text { low } \\
& \text { medium } \\
& \text { high } \\
& \text { very high }
\end{aligned}
$$ $1.0-3.0$

$3.0-\infty$

The value of k required for a given ceramic process depends on the amount of liquid, the amount of binder, and the viscosity needed for the process.

The amount of liquid can be estimated from space-filling considerations. A dry powder packs to a certain packing density. If V is the total volume of the pack, this volume is the sum of the actual volume V_{8} occupied by the
 as percent of theoretical density, is given by
$\overline{V_{1}+V_{v}}$

When the volume V_{L} of liquid added to the powder exceeds V_{ν}, the mixture is fluid. A plastic state arises when $V_{L} \approx V_{v}$ (assuming the liquid has a high viscosity). A semidry pressing condition exists when $V_{L} \approx 0.3 V_{v}$. It is useful to define a parameter y given by

(3)

which represents the fraction of void space actually occupied by the liquid. The concentration of binder c, expressed as percent of liquid weight, is $\frac{100 \rho_{B} V_{B}}{\rho_{L} V_{L}}$
where ρ_{B} and ρ_{L} are the densities of the dry binder and liquid; respectively. Combining Equations 1 through 4 by eliminating c, V_{v}, and V_{L}, we

$$
k=\left(\frac{100-\rho}{\dot{\rho}}\right)\left(\frac{\rho_{L}}{\rho_{B}}\right) \frac{y \log \eta}{100\left(V_{B} / V_{B}\right)}
$$

247
tions a pseudoplastic solution may have a very high viscosity. At high shear

Figure 19.8 shows a solution viscosity-shear rate relationship for a 2% solution of hydroxyethylcellulose, a typical, strongly pseudoplastic binder. The ranges of shear rate corresponding to particle suspensions, leveling of paints, pouring of solutions, mixing and stirring, spraying, brushing, and rolling are indicated. For this particular binder, the viscosity resisting the settling of particles is more than three orders of magnitude greater than the viscosity under spraying or painting conditions.
In thick-film printing, pseudoplasticity is important for having low viscosity during screening but high viscosity once deposited so that the slip

(dコ) Aı!soxs!^ O.şZ
Figure 19.8. Typical viscosity-shear rate functions for 2% solutions of hydroxyethylcellulose.
Different curves represent different HEC grades of varying molecular weight.

It is common in practice to find that the amount of binder used cor-
 approximately the maximum amount that could be added without closing up the pore spaces in the body (which could be detrimental to burnout) The 19.7. We see range is designated by the width of the marker in Figure 19.7. We see that specific binder viscosity grades are identified for the three
types of processes that fall into this types of processes that fall into this V_{B} / V_{A} range. For extrusion processes
medium-viscosity grade binders are needed. Low. or very binders are needed for slips. Simidry pressing clearly requires very-lowviscosity binders.

The above conclusions explain why certain types of binders are used for certain processes. Starch, methylcellulose, and hydroxyethylcellulose are common binders for extrusion, for example, because they are of medium viscosity grade. Dry pressing preceded by spray drying utilizes gum arabic, poly(vinyl alcohol), and low-viscosity-grade starches. Semidry pressing utilizes very-low-viscosity binders of lower cost, including lignin liquor, lignosulfonates, dextrine, molasses, and poly(vinyl alcohol).

It should be remembered that Figure 19.7 was constructed on the basis of the "typical" conditions described in the text. For any specific application, the variables may be different and the necessary viscosity grades should be calculated from these variables.

A nother reason for worrying about binder solution viscosities is that it is the high viscosities that limit how much binder can be dissolved in the liquid. Generally, once the viscosity reaches around $10^{\circ} \mathrm{cP}$, the binder cannot dissolve any further because of kinetic reasons. If too much binder is added, undissolved binder would exist in the body. This can result in large pores after firing and in springback problems because of the low modulus of elasticity of the binder.

 reasons that it is important in ceramics.A suspension of solid particles tends to settle out in simple liquids such as water if the particles are larger than colloidal ($>10^{-8} \mathrm{~cm}$). The slips utilized in ceramics would not remain homogenous if settling occurred. One approach to slow down the settling is to increase the viscosity of the liquid. However, slips must be fluid enough to be sprayed or painted. To solve this problem, a pseudoplastic solution is utilized. The settling of a particle involves very small shear forces and shear strain rates. Under these condi-
 advantage can be utilized with thermogelling solutions, since the gel is stable at higher temperatures. With higher temperatures the diffusion rate of water out of the gel is high and drying can be very rapid. Normal gels, which become liquid with heating, can only be dried at lower temperatures (if the gel is to be retained) where drying would be very slow.
The rheological behavior of binder solutions can be affected by the presence of electrolytes in solution. The electrolytes may increase or decrease the viscosity, or cause gelation or precipitation of the binder.
In general, nonionic binders have higher tolerances for most electrolytes than ionic binders. For example, the nonionic binders of methylcellulose, hydroxethylcellulose, and poly(vinyl alcohol) have stable viscosities over a wide pH range and can tolerate monovalent cations and multivalent metallic ions to fairly high concentrations with only a few exceptions. Ionic binders, such as carboxymethylcellulose, gum arabic, guar gum, and alginates, are particularly susceptible to alkaline earth ions, heavy metal ions, and trivalent cations. Stability with respect to pH changes exists over Whaller pH range.
When electrolytes are a problem in binder stability, one approach to
remedy the problem, other than changing binders, by adding chelating agents that will tie up the detrimental cations.

Biodegradation

All carbohydrate-derivative binders are susceptible to degradation by enzymatic attack as a result of bacteria or fungi in the solution. Natural gums are particularly susceptible. Hydroxyethylcellulose is somewhat more resistant, while methylcellulose has rather high resistance to attack. In contrast, binders such as poly(vinyl alcohol), acrylics, polyethylene oxides, which are not derived from carbohydrates, are not susceptible to biodegradation.
Biodegradation reduces the molecular weight of the binders and consequently reduces the viscosity of the solutions. When this problem is encountered, a preservative or microbicide should be used to inhibit the degradation. The suppliers of the specific binder usually can recommend appropriate preservatives or microbicides. Care must be exercised that these agents do not introduce metallics that would be undesirable to the finished product.
The Rheology of Organic Binder solutions
does not run and level out throughout the surface area. The time available before the slip is dry is only sufficient for a localized leveling between adjacent screen hole patches.
Thixotropy often is not a desirable feature when the pseudoplastic behavior is important. If the slip remains of low viscosity after being acted upon by the process step, the advantage of high viscosity at low shear rates become lost. A fast recovery of high viscosity when shear is reduced is essential.
Pseudoplasticity may also be an important factor in extrusion processes, although this has not yet been proven. Without external forces, the solution would have only small shear forces acting on it and may make the body more rigid by being at high viscosity. Under extrusion forces, the solution viscosity may be lower, thereby aiding the deformation process.
Most organic binders are pseudoplastic to some degree. While the effect is small in some, appreciable pseudoplasticity is exhibited by binders such as hydroxyethylcellulose, scleroglucan (Polytran FS), sodium e), poly(vinyl alcohol), and alginates. The pseudoplasticity increases with increasing binder

MISCELLANEOUS PROPERTIES

Gelation

Under certain conditions, binder solutions can form gels. For example, poly(vinyl alcohol) (fully hydrolyzed grades) can be gelled by the addition of certain dyes (e.g., Congo red) and borax. Sodium alginates can be gelled with alkaline earth and heavy metal ions. Locust bean gum is gelled by borax. Gum karaya, irish moss, and agar gel by the gradual swelling of the binder. Heating increases the fluidity, and cooling brings about gel formation. Under certain conditions starches and starch derivatives can also be gelled.
Thermal gelation is an unusual type of gel formation exhibited by 50 and $90^{\circ} \mathrm{C}$, depending on the specific binder type.
Gel formation has not been stressed as useful in the ceramic literature. Bodies having gelled liquids dry much more slowly because the liquid does not flow to the surface during drying. Water must leave the body by diffuion within the gel structure. However, one advantage of a gelled structure is that the binder does not migrate to the drying surface, ${ }^{12}$ as it would if it
The nonionic binders do not contain metals except as impurities. However, some contain nitrogen, as with PVP, polyacrylamide, polyethylenimine, and PEI. The use of these nitrogen-containing-binders appears to be very limited in ceramic processing, possibly because the nitrogen can be deleterious in firing or because the cost of these binders tends to be high. The use of protein binders during the 1940s suggests that nitrogen may not be harmful in many cases, however.
For those binders having only carbon, hydrogen, and oxygen as primary constituents, burnout problems can still be encountered. The ash content is a measure of the level of metallic contaminants. Most of the purer binders have ash contents in the 0.5 to 2% range. This can introduce metallic contaminants on the order of 100 to 500 ppm to a ceramic. Also, significant levels of carbon can remain if the binder does not undergo complete thermal degradation. Particularly in reducing atmospheres, the binders with pure carbon-carbon linkage in their backbone and with smaller side groups tend to carburize. Oxygen is required to convert the carbon to CO or CO_{2}

REFERENCES

 Amer. Ceram. Soc., 28 (1), 25-31 (1945). C. C. Treischel and E. W. Emrich, "Study of Several Groups on Organic Binders Under 4. Wild "Review of Organic Binders for Use in Structural Clay Products," Amer Ceram. Soc. Bull., 33 (12), 368-370 (1954).
6. H. Thurnauer "Controls Required and Problems Encountered in Production Dry Pressing." Ceramic Fabrication Processes, W. D. Kingery, ed., Massachusetts Institute of Technology and Wiicy, 1998.
7. S. Levine, "Organic (Temporary) Binders for Ceramic Systems," Ceram. Age, 75 (1), 3942 (1960); 75 (2), 25-36 (1960).
8. T. A. Smith, "Organic Binders and Other Additives for Glazes and Engobes," Trans. Br. Soc., 61 (9), 523-549 (1962).
9. A. R. Teter, "Binders for Machinable Ceramics," Ceram. Age, 82 (8), 30-32 (1966).
10. A. Pincus and L. Shipley. "The Role of Organic Binders in Ceramic Processing," Ceramic Ind., 92 (4), 106 (1969).
11. J. F. White and A. L. Clavel, "Extrusion Properties of Non-Clay Oxides," Bull, Amer. Ceram. Soc., 42 (11), 698-702 (1963).
12. J. E. Comeforo, "Migration Characteristics of Organic Binders," Ceram. Age, 132
Many binders are compatible with other binders. That is, a combination of two binders does not cause precipitation, unexpected gelation, or other detrimental effects. In some cases the use of two binders has certain merit. For example, poly(vinyl alcohol) has good bonding power and may be desired for green strength. However, this binder may not have enough thickening power for the desired application. It is possible to add hydroxyethylcellulose, for example, to obtain high viscosities. In another case the dispersion action of gum arabic may be very useful, but the strength and plasticizing capability of poly(vinyl alcohol) may be needed for dry pressing. Mixtures of poly(vinyl alcohol) and gum arabic are possible because of their compatability. The compatability of different binder combinations can often be ascertained by consulting the suppliers of the binders.

Plasticizers

When dry, binders often became hard and stiff. Granules for pressing often
 pressure. Plasticizers are additives that soften the binder in the dry or neardry state. They are lower-molecular-weight organic species that dissolve in the same liquid as the binder. After drying, the binder and plasticizer are intimately mixed as a single material. The plasticizer disrupts the close aligning and bonding of the binder molecules, thereby increasing the flexibility of the material. While softening the binder, the plasticizer tends to reduce the strength.
Water-soluble plasticizers include substances such as glycerine, poly(ethylene glycol), poly(propylene glycol), and propylone glycol. These are effective for poly(vinyl alcohol), methylcellulose, hydroxethylcellulose, poly(ethylene oxide), polyacrylamides, and several other binders.

Binder Burnout

The amount of foreign contaminants due to the binder left in the fired body depends largely on the chemistry of the binder. Some binders are anionic polyelectrolytes. These include lignosulfonates, carboxymethylcellulose, and alginates. They are often effective as dispersants for clay-based systems. However, these polymers are salts and contain cations such as sodium, potassium, calcium, and ammonium. The metals can be deleterious to many ceramics requiring high purity. The use of these polyelectrolytes as binders is usually with clay-based systems and certain refractories in which the introduced cations can be tolerated. Those with ammonium cations are employed when higher purity is required.

Mixedness of Suspensions

K. Sommer
H. Rumpf

Obtaining homogeneous suspensions is one of the goals of processing slips and pastes for a variety of operations. To assess how well a slip or paste is
 degree of mixedness. The use of the variance, a statistical parameter, for various types of suspensions is described in this chapter.

CONCEPT OF VARIANCE

For a simple two-component system, the volume concentration X_{1} for component 1 is given by

$X_{1}=\frac{V_{1}}{V_{1}+V_{2}}$

where V_{1} and V_{2} are the volumes of components 1 and 2 . The system as a whole has an average value of X_{1}. If small samples are taken that all have the same values of X_{1} as the overall sample, the mixture is called ideally homogeneous.

Ideal homogeneity cannot be obtained in practice; that is, the concentration of a sample in a real mixture is generally larger or smaller than that for

253
The well-known statistical parameter variance is a useful measure of mixedness. The variance σ^{2} is the mean square deviation of concentration from the average:

$$
\sigma^{2}\left(X_{1}\right)=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{l}\left(X_{1}-P_{1}\right)^{2}
$$

 ponent 1
$\quad K=$ number of samples taken.
For a finite number of samples

$$
\sigma^{2}\left(X_{1}\right)=\frac{1}{K} \sum_{1}\left(X_{2}-P_{1}\right)^{2}
$$

In the remaining text, the variance is also referred to as the mixedness. If the two constituents of the mixing are entirely separated (e.g., at the beginning of mixing), every sample will contain either only constituent 1 or constituent 2 . The variance for this system is $\sigma_{0}^{2}\left(X_{1}\right)=P_{1}\left(1-P_{1}\right)$
and is independent of the size of the sample and of the size of individual particles.

$\sigma_{\text {Ideal }}^{2}\left(X_{1}\right)=0$
 STOCHASTIC HOMOGENEITY

In contrast to the ideal homogeneity there is another final state of mixing that is characterized by the fact that it is not the composition of the samples that is the same in any part of the mixed material, but only the probability that their composition is the same. We call this a uniform random mix and its state is called stochastic homogeneity. What is often called a random mix is really a uniform random mix. A random mix can exist when the distribution of probabilities is different. A uniform random mix is the most homogeneous state of mixing that can be obtained by motion if there are no selective forces present.
When samples with a constant number of particles n are withdrawn from a composition, a generally valid variance of the numerical concentration for

N
plicated, because the concentration of a component i in a sample is correlated to the concentrations of each of the other components.
MIXEDNESS AND TEST ACCURACY
It can be shown that the following equation of the variance of the stochastic homogeneity of a two-component suspension holds quite generally

$$
\sigma_{2}^{2}\left(X_{t}\right)=P_{1}\left(1-P_{1}\right) \cdot \frac{\nu_{1}}{V}
$$

where ν_{1} is the particle volume of component $!$ and V is the total volume of the sample. It has also become clear that this calculable final state depends only on the composition of the mix, the particle size or particle volume, and the size of the sample. Figure 20.1 shows the two latter correlations.
The calculations are made for a highly concentrated suspension with
 standard deviation σ_{z} along the y-axis. The particle size d has been taken as the parameter of the straight line. The larger the sample volume and the hastic homogeneity is not a characteristic of the mixer, neither is the initial

SUSPENSION

When a monosize-particle fraction is mixed into a suspension, the liquid molecules ν_{2} are so small that it is perfectly fair to claim that the particle volume v_{1} is an integral multiple of v_{2}. Equation 1 therefore applies to this case, too. For a suspension the "sample particle volume" V_{p} consisting of the solid component and the liquid is identical to the total sample volume V. A comparison with Pawlowski's equations shows that in the limiting case $P_{1} \rightarrow 0$ Equation 1 converts to that of Pawlowski. It differs from Stange's equation by the factor $\left(1-P_{1}\right)$.

The same analysis as above can also be applied to random packing. In this case we do not regard liquid molecules but rather vanishingly small
space units as the monosize-particle volume of the second component.

MIXING OF SEVERAL MONOSIZED-PARTICLE

fractions of unequal particle sizes
For the mixing of several monosized-particle fractions it is assumed that the single-particle volumes ν_{t} are always an integral multiple of the next smaller particle volumes ${ }_{t+1}$:
(2) ν_{1} is the greatest single-particle volume and v_{n} is the smallest. From this we determine that the smallest ratio of different single-particle volumes v_{t} / v_{t+1}
 the value 1.2 is often regarded as a monosized fraction. Therefore Equation 2 is a practical simplification. With these assumptions an equation for the ariance of the stochastic homogeneity can be formulated

$\sigma_{2}^{2}\left(X_{k}\right)=P_{k}\left(1-P_{k}^{\prime}\right) \cdot \frac{\nu_{k}}{V_{p}}+P_{k}^{\prime 2} \cdot \sigma^{2}\left(\sum_{1}^{k-1} X_{i}\right)$

(3)

and

concentration of the component i. The above formulas are relatively com-

$\sigma_{2}^{2}\left(\sum_{1}^{k} X_{i}\right)=P_{k}\left(1-P_{k}^{\prime}\right) \cdot \frac{v_{k}}{V_{p}}+\left(1-P_{k}^{\prime}\right)^{2} \cdot \sigma^{2}\left(\sum_{1}^{k-1} X_{t}\right)$

X_{1} is the volume concentration in a sample and P_{1} is the theoretical volume
Figure 20.2. The concentration in a mixer as a function of the position r, and the time t.
state of the completely separated components, for both are only charac-
eristic of the composition of the mix. variance changes from the initial to the final state. It is therefore necessary to examine which amount of the total variance is a material attribute and which is an attribute of the mixing.

Assuming mixing in which the components at time $t=t_{0}$ are completely separated the concentration distribution in space will approach a balance in the course of time ($t>t_{0}$). When repeating this mixing test under identical starting conditions, a perfectly characteristic concentration profile $P(r, t)$ will on the average develop at time t. When we compare the concentrations $X(r, t)$ of the various tests in position r, at time t., they will vary randomly about the expected value $P(r, t)$ (Figure 20.2).

The deviation from the theoretical value is therefore affected by two variation factors: first by the systematic deviation of the mean concentration $P\left(r_{r}, t\right)$ and secondly by random variations of the concentration $X\left(r_{,}, t\right)$. It can now be shown that the total variance in the mixing is given by:

$$
\sigma_{\text {total }}^{2}(t)=\sigma_{M}^{2}+\sigma_{z}^{2}+\left(1-\frac{\nu_{1}}{V}\right) \sigma_{\text {Byst }}^{2}(t)
$$

σ_{M}^{2} and σ_{2}^{2} are variances that are independent of time. The change with time of the total variance $\sigma_{\text {total }}^{2}(t)$ is only determined by the change with time of the systematic deviation, and $\sigma_{\text {ayet }}^{2}$ is the real criterion for assessing a mixer. Mixing is completed when this systematic variance becomes zero. The total variance in the final state is therefore a constant composed of σ_{M}^{2} and σ_{2}^{2}.
 measurement σ_{M} determined in tests with chocolate or cocoa butter-sugar mixes is also presented in Figure 20.1. It can be seen that it is generally much greater in the given range than the random variations of stochastic homogeneity. That is why, for a discussion of $\sigma_{\text {total }}(t)$, the inaccuracy of measurement must at the latest be noted at or shortly before the end of mixing, and this is unfortunately often neglected in the literature.
Figure 20.3 shows how the standard deviation s of the sample composition of a mix changes during mixing. The mixing time is plotted along the x axis and the empirically determined standard deviation s along the y-axis. A cocoa butter-sugar suspension containing 50% sugar by volume was mixed in a Werner-Pfleiderer kneader, which was completely filled.

The test points were obtained during a mixing test. They cannot lie below the accuracy of measurement. After a certain mixing time they are therefore bound to enter the band between $\sigma_{M O}$ and $\sigma_{M u}$. During the tests the mixing time was $t_{M} \approx 12$ minutes.

When σ_{M} is greater than σ_{z} it is impossible to ascertain whether
stochastic homogeneity has been reached. During actual mixing it is only the method of measurement is less state of mixing when the inaccuracy of enters the confidence limits fors than σ_{z}. This would give a curve that homogeneity is reached at t_{z}. It is certain that t_{z} is not less the t_{z}. Stochastic cannot safely be asserted that t_{z} is greater than t_{M}, nor by how much it is greater than t_{M}
The question of how homogeneous a mixture has to be will ultimately be decided by technical requirements if, in the application, variations up to σ_{M} are admittable, the mixing test can be applied, and t_{M} is a sufficient mixing time. A longer mixing time produces neither a measurable nor a technically required advantage. In many cases the analytical determination of mixedness by measurement of the concentration is worse than the sensory judgement (e.g., homoeopathy, taste, texture). If technical requirements demand used, if indeed this is possible. If accurate measuring method homogeneity is absurd, because. it cannot be checked for greater mixing

REFERENCES

1. J. Pawlowski, "Zur Statistik der Homogenisierprozesse," Chem.-Ing.-Techn., 36, (11),

1089/98 (1964).
. K. Stange, "Die Mischgute einer Zufallsmischung als Grundlage zur Beurteilung von Mischversuchen," Chem.-Ing.-Techn., 26, 331/337 (1954).
K. Sommer and H. Rumpf, "Varianz der Kyrnermiser and H. Rumpf, "Varianz der stochastischen Homogenität bei K. Sommer, "Einflu β des Probevolumens." Chem.-Ing.-Techn., 46, 257 (1974).

[^9]
 expansion curve of a glass-forming system, shown in Figure 21.2. For the glass, V_{0} represents the volume at zero temperature. The temperature T is
 also has an abrupt change in slope at the glass transition temperature (T_{a}). However, the glass still has a finite thermal expansion at $T<T_{g}$.
262. Quantitative Theory of CrackIng and Warping During the Drying of Clay Bodies
systems, most workers seem to follow the approach of Philip ${ }^{14}$ and treat water transport as a diffusion process. Since this approach is directly applicable to "thermal stress theory," and since careful measurements ${ }^{16}$ confirm the validity of the diffusion equations over an order of magnitude of time, we choose to follow this scheme. Further, progress ${ }^{16-18}$ in techniques of solution of the nonlinear concentration-dependent diffusion equation for cases of interest in soil science and the establishment of a thermodynamic basis ${ }^{19-21}$ for the drying process in soils may prove to be of direct utility in ceramics.

In this paper we do not utilize the sophisticated methods of the soil scientists for solution of the nonlinear diffusion equations. Rather, it is shown below that by being concerned about the magnitude of the effects due to variable water diffusivity and by accounting explicitly for approxi-绪 theory to gain a quantitative understanding of drying stresses.

PHENOMENOLOGY OF SWELLING

A typical water-expansion curve for clay is shown schematically in Figure
 the volume fraction of water. If V_{w} and V_{s} are the actual volumes of water and solid in the body, C is equal to $V_{w} /\left(V_{w}+V_{s}\right)$. An abrupt change in expansion occurs at $C=\theta$. When a body is drying, it shrinks until the clay particles touch. Further drying occurs without shrinkage by replacing the water in the pores by air. The volume fraction θ is that point where the particles touch during drying.

KINETICS OF DRYING

 through clay-water systems is best comprehended and related to permeability models when the flow relative to the clay particles is considered. This results in his using the moisture ratio γ, which is equal to

 2. However, he also shows that there is a direct conversion between the diffusion coefficient appropriate when the (γ, m) variables are utilized and the diffusion coefficient using the (C, z) variables, that is, $D(C, z)=(1+\gamma)^{3} D(\gamma, m)$

This leaves us free to write the diffusion equation in the usual way as
(3)

 constant for all $C>\theta$, we get the solution ${ }^{22}$.

$$
C(z, t)=C(0,0)-\frac{j w}{D}\left(\frac{z^{2}}{2 w^{2}}+\frac{D t}{w^{2}}-\frac{1}{6}\right.
$$

 time, the form of the concentration profile becomes fixed; $d C / d t$ is equal to $-j / w$, a constant everywhere, and the concentration distribution is para-
bolic.
y Bodies

Figure 21.3. Stress-strain diagrams for a plastic clay at several water contents (taken from Norton²): $a=y$ ield point. $b=$ fracture. Note: percent water is weight percent water $M: C=$
$M / 100\left[(M(1-X)+X]\right.$ where X^{-1} a specific gravity of clay.

A characteristic difference between a clay-water system and a glassforming system is that above their glass transition, glasses are viscous and can only support a hydrostatic stress. As seen in Figure 21.3, however, at water contents where $C \gg \theta$, the clay still has a finite modulus of elasticity. When clays are in the plastic range, they can maintain their shape against finite deformation forces, for example, those due to gravity.

Several additional points about Figure 21.3 deserve comment. (1) For a decrease of water concentration ΔC of about 0.30 (which is equivalent to 15 wt \%), the modulus of elasticity increases by a factor of about 5. (2) The strain at the yield point remains remarkably constant over the entire range of water contents. (3) The occurrence of cracking as indicated by the points b on the curves occurs at higher strains but lower stress at C increases.

It is well known that so long as $C>\theta$, a clay-water paste will dry at a rate determined entirely by conditions external to the piece ${ }^{1-3}$; that is to say, water flow through the clay paste is always adequate to maintain the flux density of water j consistent with the evaporation kinetics. Typically, the volume of water evaporating per unit surface area per second, that is, the flux j, is given by

266 Quantitative Theory of Cracking and Warping During the Drying of . Bodies
Figure 21.5. Variation in moisture conductivity (proportional to D) of three clays. Note moisture content is weight percent water $M ; C=M /[100 M(1-X)+X]$ where X^{-1} is
specific gravity of clay. (From Ford, ${ }^{1}$ Figure $28, p 1$)
o causes temperature differentials, as a result of the heat of
but these are ignored here for simplicity.
THERMAL STRESS THEORY
To understand the consequences of water differentials, such as those given in Equations 4 through 6, we look for an analogy to thermal stress theory.

 exist for simple shapes such as slabs, cylinders, and spheres. ${ }^{6 \cdot 8}$ For example,

 of the z axis placed at the slab midplane is:
(7)

 drops out in Equation 7 and $\sigma(z)=E a(\bar{T}-T(z) /(1-\nu)$. (This condition is also true for tangential stress at the surface of spheres and cylinders of radius R , that is, $\sigma(R) \sim[\bar{T}-T(R)]$. In this convention positive values of σ are tension. Hence, during cooling the maximum tension occurs at the surface $z=w$ or $r=R$.
(8)

$$
\rho^{-1} \cong-\frac{3}{2} \frac{a}{w^{2}} \int_{-w}^{w} T z d z
$$

Notice that when temperature distribution is symmetric, $1 / \rho=0$, that is, a plane slab remains flat.
Materials that are capable of developing residual stresses can exist with a nonuniform temperature distribution T_{0} without a stress. If they are quenched to a new temperature regime where stresses can be supported, the stress, strain, and curvature present at the new temperature distribution T are given by substituting ($T-T_{0}$) for T in Equations 7 through 9. A constant function of z is both linear and symmetric. Hence, for T a ennstant function of z, the stress and curvature are calculable by substitut-

$$
\text { The normal strain in the plane } \epsilon_{x x} \text { is given by }
$$

and the curvature ρ by

- Z/W

Figure 21.6. Comparison of water distribution for case of constant D (i.e., $D=D_{w}$) and variable D.
bound for the water concentration differentials. Second, the differentials [$C(w, t)-\bar{C}(t)]$, will increase as time advances during the stationary-state period. Actually, as seen in Figure 21.6, the estimate is quite good for a twofold variation in D across the piece. Because of the decrease of D_{ω} with time, the maximum concentration differential occurs at the time when $C(w)=\theta$.
It is interesting that constant D solutions to Equation 3 for cylindrical or spherical symmetry and constant drying rate also yield stationary-state concentration distributions that are parabolic, just as those in Equation 4 and Figure 21.4, with the only replacement being fractional radius r / R for fractional thickness z / w. Likewise, the differentials are only slightly modified (because of the difference in averaging procedures) to:

$$
\epsilon_{x x}(z)=\epsilon_{y y}(z)=\frac{a}{w} \int_{-w}^{+w} T d z+\frac{3 z}{2 w^{3}} \int_{-w}^{+w} T z d z
$$

Application of Thermal Stress Theory to Drying
Further, since

$$
\ln \frac{[1-C(w, t)]}{[1-C(\psi, t)]} \cong\left(\frac{C(\psi, t)-C(w, t)}{1-C(w, t)}\right)
$$

$$
\frac{\sigma(w, t)}{A(w, t)} \cong \frac{1 / 3[1-C(w, t)] \int_{0}^{w} A(\psi, t)[C(\psi, t)-C(w, t)] d \psi}{\int_{0}^{w} A(\psi, t) d \psi}
$$

The quotient of the two integrals in Equation 13 is just the average of the

 $\sigma(w, t)<\frac{1}{3[1}-c(w, t)[\bar{C}(t)-c(w, t)]$
and substitution of numerical values suggests:

$$
\left(s_{I}\right)
$$

Thus we see now that the stress is directly proportional to the flux of

For spheres and cylinders of radius R, we can write analogous approxi mations for the tangential stress:
sphere
The question remains as to what value of σ to select to avoid the developmen of cracks during drying. From Figure 21.3 it appears that (for the clay fracture exists. Also, if this remains less than about 0.05 , no chance of opportunity for irreversible deformation. Then change occurs during elastic deformation and hence $\nu=y$,
Quantitative Theory of Cracking and Warping During the Drying of Clay Bodies
 glass by quenching are approximately described in this way by letting the zero stress temperature distribution T_{0} be that which is present when the center of the slab goes through the glass transition temperature T_{g}.

xyOGH.L SSGylS TVWyGhl so NOILシวITddy

TO DRYING
 $\sigma<\sigma_{y p}$), the equations of thermal stress apply with the substitution $C \rightarrow T$,

 see in Figure 21.3, the elastic constant varies markedly with water concentration: Thus we must use an expression ${ }^{24}$ that avoids the approximation of constant properties. For an isotropic slab dried at an equal rate from both surfaces, the result is:

응
where $A=[E /(1-\nu)]$ and water expansion a_{c} are functions of concentraion, X is the dummy concentration variable, ψ is the dummy distance variable, and $C(z, 0)$ is a water distribution at which there is no stress. Provided this stress-free distribution is one of uniform concentration, we may replace $C(z, 0)$ with any constant water concentration, for example, $C(w, t)$. Then the maximum tension stress always occurs at the surface and
$A(w, t) \int_{0}^{w} A(\psi, t) \int_{c(w, t)}^{c(\psi, t)} a_{c}(X) d X d \psi$
き

$$
\frac{\sigma(z, t)}{A(z, t)}=-\int_{C(z, 0)}^{C(z, t)} a_{c}(X) d x+\frac{\int_{0}^{\omega} A(\psi, t) \int_{C(z, 0)}^{C(\psi, t)} a_{c}(X) d X d \psi}{\int_{0}^{\omega} A(\psi, t) \mathrm{d} \psi}
$$

It is not difficult to evaluate Equation 11 directly for a given case. By It is not difficult to evaluate Equation 11 directly for a given case. By
making some reasonable approximations, however, we can gain further
insight. Since $a_{C}=1 / 3[(1-C)]$ for an isotropic material insight. Since $a_{C}=1 / 5[(1-C)]$ for an isotropic material

$$
\sigma_{\mathrm{Max}}(t)=\sigma(w, t)=
$$

$\int_{0}^{\omega} A(\psi, t) d \psi$
$\int_{0}^{\omega} A(\psi, t) d \psi$ $\sigma_{M \mathrm{Mx}}(t)=\sigma(w, t)=\longrightarrow \int_{0}$

$$
\int_{C(w, t)}^{c(\psi, t)} a_{c}(X) d X=\frac{1}{3} \ln \left\{\frac{[1-C(w, t)]}{[1-C(\psi, t)]}\right\}
$$

Maintaining drying rates within these restrictions should avoid fracture, provided j, the drying rate, is kept equal at all points on the surface. Warping is prevented during the drying of an isotropic system during the entire drying cycle if the water concentration distribution is symmetric, as is easily seen by substituting ($C-C_{0}$) for T in Equation 9. It also follows from Equation 9 that even if the drying rate is nonuniform, there will be no shape change in a fully dried slab, cylinder, or sphere with an originally symmetric water distribution, provided no stress relaxation occurs during drying. For a material with the properties shown in Figure 21.3, this requires that $\sigma<\sigma_{y p}$. Retention of shape also is achieved if the conditions of Equation 17 are fulfilled.

Since D_{w} decreases as time of drying increases, Equation 17 suggests that minimum drying time is achieved if j decreases with time during the stationary-state period.

POSSIBILITY OF "TEMPERING" A CLAY
 DURING DRYING

The analogy of clay drying to glass cooling poses the question, Can residual compressive stresses be created in a dried piece by a method similar to that used to create stresses during rapid cooling of glass?" First this requires the creation of a water distribution that causes some stress relaxation. Such a result can be achieved if $\sigma>\sigma_{y p}$. It is clear from Figure 21.3 that this is most easily obtained at the higher water contents, which suggests drying initially at a rate such that j is greater than that permitted by Equation 17.
 the scope of this paper whether the strong dependence of D on C prevents the possibility of obtaining stress relaxation during initial stages of drying without obtaining fracture near the end of the drying cycle.

Relation to Observations
The predictions from theory are consistent with the observation that the most critical period for fracture during drying is at the end of the constantrate period. They are also consistent with the comments of Ward, "In ferential shrinkage of the body, which may have several causes: to differential rate of loss of water from different positions, causes: (1) Difinterior. (2) Uneven distribution of moisture within the article prior to and ing, resulting in non-uniform total mhrink within the article prior to drybecause of the orientation of particles during shaping (4) Mechage
 surface on which it is resting, particularly with heavy shapes and particles formed and dried on plaster moulds."

It is difficult, however, to obtain a quantitative agreement with the observations of Macey and Wilde, ${ }^{\text {? }}$ who measured the maximum rates of drying permissible for a brick clay. For example, for a slab of 1.27 cm half width, they found that $j_{\text {max }}=1.5 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{cm}^{2}$ second. According to Equation $17, j_{\text {Max }} \cong D_{w} / w=0.8 D_{w}$. Hence, from drying data $D_{w} \cong 2 \times$ $10^{-8} \mathrm{~cm}^{2} / \mathrm{second}$. For comparison, one can make estimates on diffusivity of water in clay from data presented by Ward. Comparing the water flux j with the concentration gradient at the surface, $(d C / d z)_{w}$ for ball clay
(Figure 21.7), one gets $D_{w} \approx 1.6 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{second}$. aqueous conductivity data, Figure 21.4 , and the relation between hydroaqueous conductivity data, Figure 21.4, and the relation between hydro-
static pressure P and equilibrium water concentration ${ }^{2} d P / d C=1 . \times$ $10^{\circ} \mathrm{dynes} / \mathrm{cm}^{2}$, one obtains $D_{\omega} \cong 1 \times 10^{-3} \mathrm{~cm}^{2} /$ second. A discrepancy of about two orders of magnitude is present.

Several explanations are possible: (1) Factors completely different from the stresses caused by water differentials govern the maximum permissible drying rate. (2) Nonuniformities of body and/or drying cause local stresses far in excess of those considered by our assumption of a uniform isotropic clay body and a uniform drying rate. (3) The drying rate, diffusion coefficient, and deformation characteristics were all measured on different clays and perhaps at different temperatures, and hence good agreement cannot be expected. Some support for the last point is found from the water-diffusion data on Smiles and Harvey ${ }^{23}$ on the bentonite-water system. Extrapolating to the range of water concentrations of interest in clay drying, one obtains $D \cong 10^{-9} \mathrm{~cm}^{2} /$ second, which is lower than the result obtained from Macey's observed safe drying rates.

Another discrepancy between Macey's results and Equation 17 is that
Macey found in the drying of cubes that $j_{\text {Max }} \sim w^{-2.6}$. Although none of the

$$
\begin{aligned}
& \begin{array}{l}
\text { References } \\
\qquad \text { ACKNOWLEDGMENT } \\
\text { A. H. Heuer critically reviewed the manuscript and made useful and wel- } \\
\text { come suggestions to improve its unity and clarity. }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text { England, } 1964 . \\ & \text { F. H. Norton, E }\end{aligned}$
Francis, Butterworths, London, 1961.
$\begin{aligned} & \text { 3. H. Salmang, Ceramics Physical and Chemical Fundamentals, translated by Marcus } \\ & \text { Francis, Butterworths, London, } 1961 \text {. }\end{aligned}$
4. F. H. Clews, Heavy Clay Technology. Academic, London, 1969.
6. A. J. Dale, Modern Ceramic Practice, McClaren, London, 1963.
Shapes," Trans. Br. Ceram. Soc., 38, 464 (1939). H. H. Mome Different Sizes and
7. Rexperiments on the Drying of Clay," Trans. Br. Ceram. Soc., 43, 93 (1944). G. Wilde,
$\begin{aligned} & \text { R. Q. Packard, "Moisture Stress in Unfired Ceramic Bodies," J. Amer. Ceram. Soc.. } \\ & \text { 50, } 223 \text { (1967). }\end{aligned}$
$\begin{aligned} & \text { H. H. Macey, } \\ & 207 \text { (1947). }\end{aligned}$
9. B. A. Boley and J. H. Weiner, "Theory of Thermal Stresses," Wiley, New York, 1960.
$\begin{aligned} & \text { A. R. Cooper and D. A. Krohn, "Strengthening of Glass Fibers: II. Ion Exchange," J. } \\ & \text { Amer. Ceram. Soc., } 52,665 \text { (1969). }\end{aligned}$
II. O. Richmond, W. C. Leslie, and H
Chemical Concentration Gradients," Trans. American Society for Melals, 57 (1), 294-
2. A. E. Schei
Processes in Porous Media." Fundamentals of Transport Phenomena in Porous Media,
13. G. Dagan, "Some Aspects of Heat and Mass Transfer in Porous Media," Fundamentals
14. J. R. Philip, "Hydrostatistics and Hydra, Elics in Swelling Medi", Fundamen of
D. E Smiles, "I
(1974).
Sci., 117 (5), 257-262 (1974). (See numerous references to earlier work Equations," Soll
17. J. R. Philip and J. H. Knight, "On Solving the Unsaturated Flow Equation: 3. New
18. J. Y. Puasi-A nalytical Technique," Soil Sci., 117 (1), 1-13 (1974).
18. J. Y. Parlange, "Theory of Water Movement in Soils: 10. Cavities with Constant Flux"
$\begin{aligned} & \text { Soil Scl., 116 (1), 1-7 (1973). (This paper gives reference to the nine carlier contributions } \\ & \text { by this author.) }\end{aligned}$

274 Quantitative Theory of Cracking and Warping During tie Drying of Clay Bodies
simple shapes, spheres, cylinders, and slabs, considered in this paper are
cubes, $j_{\text {Max }} \sim w^{-1}$ or R^{-1}.

CONCLUSIONS

It has been shown that by treating water flow as being analogous to heat flow, it is possible to calculate stresses and warping of simply shaped bodies during drying. The approximate results are simple enough to be readily useful. They suggest ways of optimizing the drying process, for example, steadily decrease the drying rate during the period when the body is shrinking; however, at present they lack experimental confirmation. Thus it is hoped that the theory will be useful in (a) provoking a more detailed analysis of the process using, for example, the methods of Philip ${ }^{16}$ and Parlange, ${ }^{18}$ and a more detailed description of the deformation characteristics and (b) providing a useful model for design of a series of experiments in drying kinetics of a single body involving determination of water-diffusion coefficients, a detailed determination of the deformation characteristics, and a study of drying fracture and warping.

Tabular alumina aggregate bonded with calcium aluminate cement is a technically important refractory concrete. The mineralogical changes that occur during the curing and drying of this concrete greatly affect many of its properties. One important use of this concrete is in hardening UHF antennae for Minuteman Missile systems. The concrete protects against the heat and shock of a nuclear blast. In this application the dielectric and loss tangent characteristics (at UHF frequencies) must be consistent because the impedance of the antenna is matched. Mismatch causes gain loss, and transmitting power is not sufficient to contact the antenna.

Development studies during the past several years on hardened UHF antennae has led to a better understanding of the mineralogy of_curing and drying of the refractory concrete. The phase that develop and their effects on processing and properties have been analyzed. The results of this work are discussed in this chapter.
Quantitative Theory of Cracking and Warping During the Drying of Lady Bodies
G. Sposito, "Volume Changes in Swelling Clays," Soil Sci., 115 (4), 315-320 (1973), S. Iwata, "Thermodynamics of Soil Water: IV. Chemical Potential of Soil Water," Soil Sci., 117(3), 135-139 (1974).
S. Al-Khafal, R. J. Hanks, "
S. Al-Khafal, R. J. Hanks, "Evaluation of the Filter Paper Method for Estimating Soil
H. S. Carslaw and J. C. Jaeger, "Conduction of Heat in Solids." 2nd ed., Clarendon
Press, Oxford, 1954, p. 112.
Press, Oxford, 1954, p. 112.
D. E. Smiles and A. G. Harvey, "Measurement of Moisture Diffusivity of Wet Swelling
Systems," Soll Sci., 116 (6), 391-399 (1973).
I. S. Alvarez and A. R. Cooper, Jr., "Therm
I. S. Alvarez and A. R. Cooper, Jr., "Thermal Stress Distribution for a Thin Plate with
Temperature Variation through the Thickness," to be published by J. Appl. Mech.
$\stackrel{\circ}{\sim}$ ल ベ ̇ㅜㄹ
$6 L 2$

Previous Literature

		'I'zz ammitd
\cdots		
$\mathrm{H}+\mathrm{HV} \stackrel{\text { J.OEI~ }}{ }$		

 the monocalcium aluminate.

The literature ${ }^{1}$ discusses the reaction of CA with water at 1 atm pressure.
 CAH_{10} and $\mathrm{C}_{2} \mathrm{AH}_{8}$. These dehydrate at higher temperatures to $\mathrm{C}_{3} \mathrm{AH}_{8}$ and
 (600 to $1000^{\circ} \mathrm{C}$), the excess A reacts to form various ceramic bonding phases, such as CA_{2} and CA_{6}, along with $\mathrm{C}_{12} \mathrm{~A}_{7}$.

Majumdar and Roy ${ }^{2}$ studied reactions under hydrothermal conditions (high pressure and temperature). They investigated materials initially having C / A ratios of 3:1 and 4:3. In the hydration reaction, $\mathrm{C}_{3} \mathrm{~A}$ formed $\mathrm{C}_{3} \mathrm{AH}_{6}$ and the $\mathrm{C}_{4} \mathrm{~A}_{3}$ formed $\mathrm{C}_{4} \mathrm{~A}_{3} \mathrm{H}_{3}$. During decomposition the $\mathrm{C}_{3} \mathrm{AH}_{6}$ formed
 to AH and H at $130^{\circ} \mathrm{C}$ and 3000 psi . The hydrothermal products are compared in Figure 22.1 with those formed at 1 atm . In general the decomposition of the major phases is lowered about $100^{\circ} \mathrm{C}$ in systems under pressure.

Table 22.1. Hydration-dehydration of CA cement at atmospheric pressure

Compounds and Reactions	Stable Temperature Range (${ }^{\circ} \mathrm{C}$)	Major Decomposition Temperature (${ }^{\circ} \mathrm{C}$)
$\mathrm{CA}+\mathrm{H} \rightarrow \mathrm{CAH}_{20}+\mathrm{C}_{2} \mathrm{AH}_{8}$	-	-
$\mathrm{CAH}_{10} \rightarrow \mathrm{C}_{2} \mathrm{AH}_{4}+\mathrm{AH}_{3}$	0-20	20
$\mathrm{C}_{2} \mathrm{AH}_{4} \rightarrow \mathrm{C}_{3} \mathrm{AH}_{6}+\mathrm{AH}_{3}$	25-58	58
$\mathrm{AH}_{3} \rightarrow \mathrm{~A}+\mathrm{H}$	27-350	232 and 277
$\mathrm{C}_{3} \mathrm{AH}_{6}-\mathrm{C}_{13} \mathrm{~A}_{7}+\mathrm{H}$	58-350	310-320

ing about 3000 lb . It consists of sized tabular alumina (6 mesh maximum size) bonded with calcium aluminate cement. The cement contains about The process can be divided overall concrete contains $94 \% \mathrm{Al}_{2} \mathrm{O}_{3}$. The process can be divided into four major steps:

1. Mixing and casting. The correct ratios of dry concrete and water are
2. Curing. The cement-water reactions occur and heat is liberated to form
mixed and then properly placed in the mold.
3. Curing. The cement-water reactions occur and heat is liberated to form the initial bond in the system.

Queueing. The period where the castings are allowed to reach thermal 4. Drying. Removal of the water to the required level. 4. Drying. Removal of the water to the required level. Free water in the concrte causes dielectric losses in the antenna and must
be removed. With a fairly rigid drying schedule, it was found be removed. With a fairly rigid drying schedule, it was found over a period of time that residual moisture varied between 2.5 and 4.0%. The variable that correlated best to this variation was the cement lot used to manufacture the concrete, and possibly the CaO content of the cement. Other manufacturing variables that can have some effect are "casting water" or "concrete consistency," curing condition, and queueing conditions.

Another concern resulted from postmortem analysis of antennae that split during drying. This analysis revealed dehydration products that are not considered typical for normal low-temperature ($275^{\circ} \mathrm{C}$ maximum) drying of concrete bonded with calcium aluminate cement. These dehydration products have been previously described in the literature, but not under the same conditions of pressure, temperature, and composition encountered in this particular system.

As a result of these concerns, studies were carried out to better define the effect of processing variables on bond-phase mineralogy during drying.

PREVIOUS LITERATURE

 To cement, and aggregate, one must first establish the hydration reactions and temperatures and then follow the dehydration reactions that occur later. In the hydration-dehydration reaction of calcium aluminate cement, the following notations are used: (1) C is for CaO , (2) A is for CaO . The overall concrete contains $94 \% \mathrm{Al}_{2} \mathrm{O}_{3}$. Free water in the concrte causes dielectic loses innevious Literature

To follow the thermal r

Mineralogy of Curing and Drying of A Refra

POSTMORTEM PHASE ANALYSIS OF CONCRETE

Studies on production failures revealed that the predominant phases were
AH (bochmite) and $\mathrm{C}_{4} \mathrm{~A}_{3} \mathrm{H}_{3}$. The curing was carried out in an ambient of atm. Therefore, the presence of AH and $\mathrm{C}_{4} \mathrm{~A}_{3} \mathrm{H}_{3}$ was contrary to what was stated in the literature; these products are produced only under hydrothermal conditions. It was therefore hypothesized that the in the large castings were subjected to hydrothermal conditions as a result of the pressure developed internally by trapped water vapor. To investigate this possibility, autoclave studies were initiated.

AUTOCLAVE STUDIES

In this work it was assumed that during drying an antenna would behave similarly to a "leaky" autoclave. On this basis the maximum pressure in the large concrete mass at any temperature would be that of saturated steam at the temperature in question. The "leaky" portion of the assumption relates to the casting permeability. Casting permeability yields to several processing variables, the work relating to process variables is discussed in the next section.

The autoclave stidies were straightforward. Dry concrete, the same as that used in antenna manufacture, was blended with 9% "casting water" and 3 in. diameter $\times 6$ in. high cylinders were cast at about 20 to $24^{\circ} \mathrm{C}$. The cylinders were cured for 16 to 24 hours at 20 to $24^{\circ} \mathrm{C}$ and 90 to 95% relative humidity (RH). Cured cylinders were then placed in a standard autoclave for pressure-temperature treatments as shown in Table 22.2. The standard autoclave was limited to $166^{\circ} \mathrm{C}$ and 80 psi. For higher conditions the samples were placed in a model bomb over water and heated to the listed temperatures that yield the indicated pressures. Holding times at maximum pressures for 24 hours were found to be adequate to yield reaction products. n all cases the steam was released at temperature and then the bomb or autoclave was cooled. Analysis of mineral phases was made using X-ray diffraction techniques. The relative X -ray intensity of reaction product versus temperature and pressure is shown in Table 22.2 and the results are discussed in the following paragraphs.

Gibbsite $\left(\mathrm{AH}_{3}\right)$ decomposes between 115 and $130^{\circ} \mathrm{C}$ at 10 to 25 psig to form boehmite. Previous work suggested this reaction would occur in this temperature range but at very high pressures (3000 psi). This work and the work of others have shown that at atmospheric pressure, regardless of temperature, the AH_{3} to AH reaction does not occur in high-purity
 in Table 22.3. These data confirm the hydrothermal decomposition of the concrete. The thermal analysis data show an additional phase not identifiable by the X-ray method used-calcium carbonate.
The calcium carbonate is of concern because of specifications relative to residual weight after drying. Experiments are currently underway to determine preferred conditions for carbonate formation.
The antennae average about 32 in . in diameter and about 30 in . high above the outer conductor. To establish concrete thicknesses that respond to hydrothermal decomposition versus those that respond to thermal decomposition, three different sizes of castings were made, dried, and
 height, $6 \times 12 \mathrm{in}$., $12 \times 12 \mathrm{in}$., and $30 \times 30 \mathrm{in}$. Results of this work are

Size (in.)		Distance from Surface (in.)	Relative X-Ray Intensity					
Diameter	Height		$\mathrm{C}_{3} \mathrm{AH}_{6}$	AH	$\mathrm{C}_{4} \mathrm{~A}_{2} \mathrm{H}_{3}$	CH	$\mathrm{C}_{3} \mathrm{AH}_{1.0}$	CA
6	$12^{\text {a }}$	0	6	3	-	-	PT	13
		$11 / 2$	24	15	-	-	PT	-
		3	27	16	-	-	PT	-
6	12^{6}	0	PT	16	3	-	10	-
		11/2	PT	16	3	-	14	-
		3	PT	10	5	3	15	9
12	$12^{\text {c }}$	0-1	9	10	PT	-	PT	-
		1-2	7	16	10	-	PT	-
		4	6	21	11	-	PT	-
		6	5	18	12	-	PT	-
30	$30^{\text {d }}$	0-1	-	9	-	4	-	10
		5	-	24	16	8	-	-
		10	-	56	24	9	-	-
		15	-	75	24	5	-	-
30	$30^{\text {e }}$	0-1	13	19	5	-	-	-
		7.5	5	44	18	-	-	-
		15	3	49	20	-	-	-

- Drying temperature $=400^{\circ} \mathrm{F}$.
Drying temperature $=540^{\circ} \mathrm{F}$.
drying temperature $=600^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{F} /\right.$ hour heating rate $)$. - Drying temperature $=500^{\circ} \mathrm{F}\left(\sim 5^{\circ} \mathrm{F} /\right.$ hour heating rate $)$.

Figure 22.2. Comparison of reported decomposition of AH_{3} and $\mathrm{C}_{3} \mathrm{AH}_{6}$
and 235 to $245^{\circ} \mathrm{C}$ for the $\mathrm{C}_{3} \mathrm{AH}_{5}$ decompositions. These accommodations are not necessarily for the water-release problem but rather for stresses caused by thermal gradients and strains caused by bond-phase changes to
 are depressed relative to surfaces because of the heat-sink effect resulting from the energy required for the decomposition reaction.

CASTING SIZE

During the early part of the program, several of the antennae suffered massive failure during drying. The typical fracture divides the shape in half, generally across the diameter. Samples of concrete obtained from these
 the halfway point vertically and were sampled along the radius surface to

Table 22.3. Relative X-Ray intensity and thermal analysis of mineral phases in dried
Table 22.3. Relative X-Ray intensity and thermal analysis of mineral phases in dried
concrete (typical)

Position	Relative X-Ray Intensity (Percent of total weight loss)							
	$\mathrm{C}_{3} \mathrm{AH}_{6}$		AH		$\mathrm{C}_{4} \mathrm{~A}_{3} \mathrm{H}_{2}$		CaCO_{3}	
Surface	10-15	(40-60)	10-20	(20-30)		-	-	(15-35)
Surface, 5 in.	4-7	(30-40)	20-40	(30-40)	tr-5	(5-15)	5-10	(10-30)
Surface, 10 in .	6-7	(25-35)	20-30	(30-40)	tr-5	(10-15)	5-10	(10-30)
Center	5-6	(30-50)	20-30	(30-40)	tr-5	(5-15)	5-10	(10-15)

of the casting surface respond solely to thermal decomposition, while the inner portions of the casting respond very well to hydrothermal decomposition. We have also found that certain processing variables contribute to the type of decomposition that takes place, and the limited information available is discussed later. Also of importance in this work was the fact that the residual mineralogy of the $12 \times 12 \mathrm{in}$. casting was nearly identical to that found in production antennae (compare Tables 22.3 and 22.4). This allowed us to decrease our sample weight from ~ 2000 to $\sim 150 \mathrm{lb}$.

PROCESS VARIABLES

The physical characteristic of the large concrete mass that must control the pressure in the casting during drying is the permeability. The counterpart to permeability relative to controllable variables would be heating rate during drying. Relatively small specimens with reasonable permeability, if heated rapidly enough, could create enough free water relative to its release rate at the surface to approach autoclave (saturated steam) conditions.
Heating rate has been specified for the concerns of this study; therefore, the variable that needs to be controlled to establish consistent drying behavior is permeability.
Conditions at the time of casting probably exert the greatest influence on permeability. Further, in any lot of concrete with constant aggregate sizing and cement behavior, the controllable variables that allow one to exert some influence on the castware permeability are "casting water" (amount of water required to achieve desired "casting consistency") and rawmaterial temperature, including casting-water temperature. Fixing material temperature allows one to measure independently the effect of casting water on resultant bond-phase mineralogy and, hence, indirectly on permeability. As a result of these implications, 12 in . diameter $\times 12 \mathrm{in}$. high castings were made using either 8 or 10% casting water. The normal casting water for this lot of concrete was 9%, dry weight basis. On the basis of thermal diffusivity, a drying schedule was estimated that would simulate the thermal gradient experienced by production-dried antennae. After the units were dried, strength was determined by diametral compression, and samples for mineral-phase analysis were chipped from the diametral cross section. The results of these analyses are shown in Table 22.5. A similar experiment was conducted using 8.5 and 9.5% casting water. Results for 8.5% casting water were similar to those obtained using 8% casting water, and those obtained using 9.5% casting water were similar to those found with 10% casting water. An exact quantitative comparison has not yet been obtained.
References
studies appear to be defined; however, certain inconsistencies are still
prevalent.
In addition to casting water and heating rate, cement-to-aggregate ratio
and sizing can influence the bond-phase decomposition reactions.
ACKNOWLEDGMENTS
Dr. Kaiser wishes to thank Boeing Aerospace Company, who is the major
contractor funding this study. In addition, the authors wish to thank W. H.
Boyer for the X-ray analysis results; R. W. Nimmer and W. R. Alder for
thermal analysis results; and M. A. Stett, M. E. Green, and J. W. Meeds
for carrying out the autoclave and 12 in. diameter cylinder studies.
REFERENCES
I. G. V. Givan, L. D. Hart, R. P. Helich, and G. Macizura, "Curing and Firing High
Purity Calcium Aluminate Bonded Tabular Alumina- Castable," presented at the
Refractories Division mecting of the American Ceramic Society at Bedford Springs,
Pa., Oct. 4, I974.
2. A. J. Majumdar and R. Roy, "The System CaO-Ala,
39, (12) $434-442$ (1956).

Table 22.6. Thermal decomposition temperatures for CA cement bond phases in dried concrete .		
Compound	Temperature Range (${ }^{\circ} \mathrm{C}$)	Peak Reaction Temperature (${ }^{\circ} \mathrm{C}$)
AH_{3}	210-240	~ 230
$\mathrm{C}_{3} \mathrm{AH}_{4}$	240-370	~ 315
$\mathrm{C}_{3} \mathrm{AH}_{1.5}{ }^{\text {a }}$	465-482	~ 470
AH	480-565	~ 525
$\mathrm{C}_{4} \mathrm{~A}_{3} \mathrm{H}_{3}$	565-620	~ 600
CaCO_{3}	650-790	~ 745

~
compounds that are difficult to identify by X-ray in this system, specifically calcium carbonate. Table 22.6 gives these phases and their measured decomposition temperature ranges at atmospheric pressure in flowing dry air.
temperature has not been indicate the presence of $\mathrm{C}_{12} \mathrm{~A}_{7}$ when the system thermal analyses of these samples are made form this compound. When position peak occurs at about $470^{\circ} \mathrm{C}$. X-Ray diffraction peaks-decomcompounds are similar; therefore it is X-Ray diffraction peaks for these for $\mathrm{C}_{3} \mathrm{AH}_{1.5}$. Often some intensification of the AH peak is cak is that this reaction.

CONCLUSIONS

Small variations (0.5 to 1%) in casting water can cause significant variation in hydrated CA cement bond-phase mineralogy during the drying process. These variations result from changes in permeability, causing differences in the internal pressure of the concrete.
Increases in internal pressure cause initial decomposition reactions to occur at lower temperatures, on the order of $100^{\circ} \mathrm{C}$. The products of these decomposition reactions, AH and $\mathrm{C}_{4} \mathrm{~A}_{3} \mathrm{H}_{3}$, still comprise a hydrate bonding phase that is more tenacious at higher temperatures than that observed with typical low-pressure decomposition.
hydrate phase decomposition interactions. Guidelines or limits for these
part four
GREEN-BODY FORMATION
AND MICROSTRUCTURE

> The green body is the precursor to the fired body, and consequently the quality of the product depends heavily on the detailed characteristics of the unfired body. In these chapters attention is focused on physical behavior of powders during the formation of green bodies (mixing, packing, and compaction), on the forces of adhesion that provide green strength, and on defects within green bodies that affect the microstructure of the product.

3 2
 W. D. Kingery

 Processing before firing involves processes used to manipulate fine-particlesize solids and form shapes suitable for firing. After firing the formed shapes must have useful properties meeting more or less stringent require- or cost; in other cases the required shapes are simple but requirements imposed on resulting properties are very difficult to achieve. In all cases some minimum level of properties is a processing objective.
Almost all variations in the material as it is prepared for the kiln are

 to obtain satisfactory ware.
A few of the ways in which the firing process can be interpreted as indicating the success of, and requirements for, prior processing are examined in this chapter.
A SPECTRUM OF RESULTS
During firing, a formed ceramic body tends toward chemical equilibrium, which is approached by reaction between components, chemical and diffu-

Figure 23.2. (a) Large internal pore in a sample of commercial PZT. (b) Foreign agglomerate in a sample of experimental $\mathrm{Al}_{2} \mathrm{O}_{2}$. (Fractographs, courtesy Roy W. Rice.) sion, and phase transformations; it also tends toward physical equilibrium a minimization of the surface energy and strain energy, approached by grain growth, pore elimination, and phase separation on cooling. When a material is processed such that the final composition ready for firing is a uniform homogeneous fine-particle-size mixture, these processes occur at a relatively low temperature uniformly throughout the sample. The result for two single-phase compositions is shown in Figure 23.1 for a completely dense pore-free uniform-grain-size optically transparent sintered yttrium

Figure 23.4. Idiomorphic grains in polycrystalline spinel containing a small amount of iquid
 New York, 1960.
oxide and for a hot-pressed zirconium oxide. When samples are prepared from uniform-particle-size material without agglomeration, nearly complete densification can be achieved at remarkably low temperatures as compared with ordinary firing requirements.

On the other hand, many samples are characterized by gross defects.
Large internal voids and unconsolidated foreign agglomerates, such as

Figure 23.5. Electron micrograph of electrical insulator porcelain illustrating solution rims
and cracks associated with large quartz grains. $1245 \times$ (courtesy S. T. Lundin). From W. D. and cracks associated with large quartz grains.

N
N
 near surfaces.
teristics were markedly affected by the residual water content and its influence on grain boundary behavior. In a more definitive study, Francois et al. ${ }^{2}$ investigated rapidly heated samples of uranium dioxide containing a small fraction of carbon. The surface was sealed during firing, with the result that gas generation in the pores led to a limitation of density that persisted during long heating; the pore configuration was such that pore growth occurred along with grain growth, essentially all the porosity remaining as intergranular pores (Figure 23.3).

Similarly, the control of composition, including minor constituents, has a major influence on the development of microstructure. If a small amount of wetting liquid is present, idiomorphic grain growth can take place, making it impossible to achieve a fine uniform grain size; the liquid phase formed at the boundaries of a largely crystalline material causes selected growth of large individual grains (Figure 23.4).

The results of compositional variations and the requirements for processing controls are classically illustrated by the influence of large grains of

Firing-The Prool Test for Ceramic Processing

296
shown in Figure 23.2, are very common indeed; so common, that fracture of commercial ware almost always is found to originate at this kind of macroscopic defect.

COMPOSITIONAL CONTROL

. therence, or seen the reen insufficiently dried. Many of us have had ware with excess water pres product.

A related but somewhat less spectacular result was observed by Laurent measurements. in the preparation of alkali halide samples for diffusion a temperature near the melting point; the residual pos by rapidly heating. to greater than in perfectly dry samples, and the measured diffusion charac

Figure 23.6. Irregular distribution of protoenstatite crystals in a steatite body. Major glass phase etched on a fractograph surface. $2700 \times$ (courtesy K. H. Schuller).
か
к)!

Figure 23.9. Progressive development of microstructure in Lucalox alumina. Scanning electron micrographs of (a) initial particles in the compact ($3125 \times$) (b) after 1 minute at $1700^{\circ} \mathrm{C}(3125 \times)$, (c) after $21 / 2$ minutes at $1700^{\circ} \mathrm{C}(3125 \times)$, and (d) after 6 minutes at $1700^{\circ} \mathrm{C}$

298
 Woods).
quartz in procelain bodies. The rate of dissolution of the quartz grains is the slowest process taking place during chemical equilibration. As a result, for usual particle sizes the quartz will completely dissolve to form a glass only fter long high-temperature firing. At lower temperatures a solution rim that has very different thermal-expansion characteristics forms around quartz grains and gives rise to stresses on cooling, often cracks as shown in Figure 23.5. Dramatic increases in the strength are obtained by using fine-particle-size silica as a body constituent or by replacing the quartz with another material such as alumina.

Figure 23.11. Change in the ratio (r / ρ) with dihedral angle for pores surrounded by different numbers of grains as indicated on individual curves.
or in the grain boundaries; a similar nondimensional parameter, $D t / a^{2}$, describes the time required for equilibration to occur. For an isothermal completely uniform mixture of uniform pore sizes, a corresponds approximately to the pore-separation distance. For processing variables that give rise to changes in pore distribution, as shown in Figure 23.7, the characteristic distance required for pore elimination corresponds to a much larger value related to the spacing between pore clusters or the distance for
 feasible, and microstructures with residual pore clusters result, as shown in Figure 23.8.

The exaggeration of any initial nonuniformity during the firing process is seen in Figure 23.9, which shows the progressive development of pores and grains for a sample of Lucalox alumina prepared from Linde A material.

Firing-The Proof Test for Ceramic Processing
maximize the green density, this is clearly, and intentionally, not true. Accidental and intentional variations of particle size and material distribution have strong consequences in the resulting structure.
diffusion, and the time required processes the rate-lımiting process is usually $D t / a^{2}$, where D is the diffusion coefficient $\left(\mathrm{cm}^{2}\right.$ second ${ }^{-1}$) t is constant (seconds), and a^{2} is a characteristic dimension (cm^{2}). When this parameter is nearly unity, diffusively limited processes are approximately complete. For firing processes the maximum reasonable time is limited by economic considerations and by the boundaries of normal human patience. The diffusion coefficient depends on the particular system and the temperature used for the firing process. The characteristic dimension over which diffusion occurs depends on processing parameters, particularly the uniformity and the grain size of the constituents. Large grain-size materials do not reach chemical equilibrium, as illustrated for the quartz particles shown in Figure 23.5. A result of nonuniformity is shown in Figure 23.6.
elimination and grain growth are controlled by diffucal processes of pore grain growth are controlled by diffusion, either in the bulk

Figure 23.10. Large voids formed by bridging of agglomerates in fine $\mathrm{Al}_{2} \mathrm{O}_{3}$, powder viewed
with scanning electron microscope at $2000 \times$ 保 with scanning electron microscope at $2000 \times$ (courtesy C. Greskovich).

Initially the structure appears quite uniform in the compact．However，after

 located between dense grains in which both grain size and pore size are
 Bu！u！ezuoo əldures \forall＇8u！ssəoosd jo ssəuaл！ large voids formed by bridging of agglomerates is shown in Figure 23．10．

 grains．If we take r as the radius of a circumscribed sphere around a poly－
 face is shown in Figure 23．11．When the ratio of pore size to radius of cur－ vature（ r / p ）decreases to zero，the interface will be flat and there will be no tendency for pore shrinkage or growth．Pores will be stable，as shown in Figure 23.3 for cubic pores in UO_{2} surrounded by six grains with a dihedral

Figure 23．14．Origin of fracture at large grains surrounding an oblong impurity zone in hot－ pressed alumina． $460 \times$（courtesy W．H．Rhodes）．

NUMBER OF GRAINS SURROUNDING A PORE（IN SPACE）
Figure 12．12．Conditions for pore stability．

RATIO OF PORE DIAMETER TO GRAIN DIAMETER
Figure 12．13．Conditions for pore stability．
（A117I日寸1s 380d） $0=\frac{d}{j}$ y0s 379N甘 78צ03HIO
References
REFERENCES
I. J. F. Laurent and J. Bernard, J. Phys. Chem. Solids, 7, 218 (1958); J. Cabance, J. Chim.
Phys. Physico Chim. Biol 59, 1123 , 1135 (1962)

[^10]304
Firing - The Prool Test for Ceramic Processing
angle of about 90°. When (r / p) becomes negative, there is a thermodynamic ther than shrinkage; that is, the direction of the shown for a range of dihedral on the ratio of pore size to grain size. This is pore in space in Figure 23.12, where a line of thermodynamic equilibrium separates regions of pore shrinkage (the usual case) from growth. This is shown in a different way in Figure 23.13.
This relation between pore behavior and the pore size/grain size ratio accounts for most of the increase in pore size during the early stages of tine powders and explains the extreme sensitivity of residual porosity to agglomerate formation and seemingly minor variations in processing. Large changes in structure occur in the early stages of firing phenomena accounts for thect subsequent events. The same underlying Figure 23.2a.

CONSEQUENCES

Because of the amplification of existing defects during firing, the arrangement and uniformity of body constituents resulting from processing before ware enters the kiln is the primary factor that determines many properties are almost always. As shown in Figures 23.2 and 23.14, fracture events are almost always initiated at regions of physical or chemical inhomo-
geneity. This is also true of such as thermal shock resistance properties dependent on failure events, deformation. Defects can also be introduced, and high-temperature processes-warping, bloating overfiring boduced by inadequate firing However, even when these faults are avoided and the dunting, and so forth. carried out to perfection, resulting properties and the firing process itself is the ware that enters the kiln. Cases in which firing serves wholly by inadequacies of processing are rare.

ACKNOWLEDGMENT

Work was supported by the U.S. Atomic Energy Commission under is given in W D to Ceramics, 2nd Ed., Wiley, New York, 1975. R. Uhlmann, Introduction

H. Palmour, III
INTRODUCTION
Systematic studies of the cumulative effects of prefiring variables on firing processes and subsequent properties have not been generally available in the open literature even for a single material. Prefiring variables include milling practice, binder and/or lubricant additions, forming procedures, burnout methods, and resulting fractional green densities.
Our work over a number of years ${ }^{1-10}$ with several different high-purity aluminas of chemical- or conventional-Bayer-process origin has shown that improvements in firing methods are related to improvements in the prefiring processing of those materials. ${ }^{8}$ The importance of various process variables upon the bend strength of finished alumina bars ${ }^{10}$ is shown in Figure 24.1.
 $83 \times$ and (b) SEM $250 \times$. After Palmour et al. ${ }^{8,19}$.
slower rate regimes) is designed, the dilatometer provides an instrumental means for assuring that the small test specimen follows the desired program from the onset of shrinkage D_{0} at some elevated temperature T_{0} (normally attained at some constant heating rate $d T / d t$) to completion of the firing at D_{f}, T_{f}. During the rate-controlled portion of the firing, the ceramic specimen itself provides its own feedback by means of the high-temperature dilatometer, calling for more or less power as required to maintain the preprogrammed shrinkage-time (and hence density-time) curve. During this phase, temperature becomes a monitored but wholly dependent variable; the resulting temperature-time trace is a consequence of the energy requirements of the specimen during sintering as it conforms to the programmed density-time profile.

When a temperature-time profile is determined in the dilatometer it may thereafter be used to program reproductions of the original rate-controlled firing. ${ }^{6}$ This makes it possible to achieve the desired density-time profile either in the dilatometer under temperature control or in conventionally instrumented kilns or furnaces. This ability to scale up, which has been successfully demonstrated for alumina processed in laboratory gas-fired periodic kilns, ${ }^{s}$ obviously is important in developing practical industrial applications for rate-controlled sintering technology.

308 Effect of Process Optimization Properties of Alumina Sintered Under Rate Control
The correlations between processing and strength were found to be related to the flaws in the samples9; the effectiveness of a given preparative step is inversely related to the characteristic size of flaws that it generates in
the final microstructure. An example of such process-related flaws is shown in Figure 24.2 .

The current study is an extension of these earlier investigations of processing variables and their relationships to rate-controlled densification processes. ${ }^{1-10}$ It is more quantitative and represents an attempt (within our experimental limits) to achieve for alumina a systematic optimization of the whole sequence of process steps that precede firing.

The apparatus used in rate-controlled sintering studies is a specially instrumented high-temperature dilatometer, described elsewhere, ${ }^{1,9,4,7}$ which permits monitoring and control of the shrinkage-time firing profile. Since linear shrinkage in any given direction is proportional to volume shrinkage, and hence to fractional density D, it is possible to preprogram the entire densification profile in terms of preselected densification rates $d D / D d t$, which are maintained over specific segments of the total density range to be traversed. Once such a program (usually comprised of three progressively

The equipment and methods used in characterizing and processing the alumina samples have been described in detail elsewhere. ${ }^{\text {b }}$
An organic binder is necessary for use with these alumina materials to assure sample integrity after dry pressing and to attain adequate levels of fractional green density. The binder utilized in our study was Carbowax 4000 (Union Carbide). Although the waxy binder provides some degree of lubricity to aid in forming an additional lubricant additive, isostearic acid has proved effective. On the basis of prior studies, the level of each of these additives was fixed at either 0 or $5 \mathrm{wt} \%$ unless otherwise noted.
All milling and remilling reported in this study was carried out at $\sim 60 \%$ of critical speed in a 3 gallon polyurethane-lined mill containing $\sim 1.9 \mathrm{~cm}$ diameter $99 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ balls with a $20: 1$ ball-to-charge ratio. Before-and-after spectrographic analyses of alumina materials did not show any significant impurity increases attributable to dry milling (18 hours), remilling if any (18 hours), or organic binder or lubricant additives.
In those experiments calling for a fluid vehicle for binder suspension and distribution, the binder was premixed in an appropriate quantity of a selected solvent (e.g., $600 \mathrm{ml} / 200 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$), which was then slurried (under agitation) with previously dry-milled alumina powder. The mixed slurry was dried at room temperature in large Pyrex trays prior to (a) crushing, screening, and forming or (b) remilling, screening, and forming.
For dry processing, the as-received flaky binder material was added directly to previously dry-milled alumina powder in a clean dry mill along with lubricant, if any. After the first several hours of remilling, the mill was emptied and scraped down with a plastic spatula to remove and redistribute any adherent, binder-rich material. After reloading, remilling was continued to complete the 18 hour schedule. This redistribution step was found to be extremely important, particularly if the batch formulation called for a (liquid) lubricant.
Rectangular bar specimens measuring $\sim 0.25 \times 0.30 \times 1.4 \mathrm{in}$. were formed by dry pressing a preweighed charge of prepared powder ($\sim 3.75 \mathrm{~g}$) in a hardened steel die in an air-operated hydraulic press. Unless otherwise noted, dry pressing was carried out at 2000 psi for materials containing binders and at 1000 psi for binder-free materials. When repressing was needed, the formed bars were placed in small rubber balloons, evacuated, tied off, and repressed isostatically at 40,000 psi, unless otherwise noted. The repressed bars displayed very little shape distortion.
On the basis of prior thermogravimetric (TGA) and dynamic differential calorimetry (DDC) studies of bind burnout schedule was designed. Formed bars were heated from 100 to
$200^{\circ} \mathrm{C}$ over a 4 hour period and from 200 to $500^{\circ} \mathrm{C}$ over an additional 4 hour span and were cooled to room temperature in the oven.

Starting materials included several different lots of chemically prepared Kemalox aluminas (W. R. Grace \& Co.), both undoped (KA-100) and MgO -doped ($\sim 0.09 \%, \mathrm{KA}-210$), together with two types of Alcoa superground, low-soda Bayer-process aluminas, including a moderate purity grade (A-16 SG) and a higher purity MgO-free grade (XA-139 SG). suond!ısәр чи!м suoje sןе! of sintering behavior, microstructural features, and mechanical strength have been described elsewhere. ${ }^{0-10,12}$

Exploratory phases of the experiments reported here were carried out
 of a refined preprocessing sequence was established with A-16 integrated process was applied to Linde and with doping (0.1%) added as MgO during initial dry milling.

PREFIRING PROCESS OPTIMIZATIONS

Dry Milling

The importance of intensive dry milling in the sintering of alumina has been stisnonad parensuowap asıadsip pue dn yeasq ol \forall әpu! 7 प!!м paz!!!!n sem uo!pesado su!ll!u әл!suaju! oi parja!qก
 condition.

sp!n!ı 4!!м suo!u!pp \forall дәрu!g

 alcohol slurries, using procedures already described. In this investigation other solvents (water, cyclohexane) were included with methyl alcohol in a more detailed study of binder distribution using Alcoa A-16 SG material. A dry binder milled directly in the batch was included as a control.

Water added in various ways was effective in increasing green density but was less effective than methyl alcohol in improving fired density. As vehicles, methyl alcohol and water were found to have a small concentration dependence of their effect on green and than $1: 1$. The anhydrous vehicle,
Table 24.2. Green density as a function of pressing variables for milled, undoped,
Linde A alumina, remilled with binder (B) and lubricant (\mathbf{L}).

Initial Pressure (psi)	Iso Repressing (psi)	Fractional Green Density	
	25000	B 2.5\%; L 2.5\%	B 5.0\%; L 5.0\%
	50,000	0.5938	0.5955
	255000	0.6022	0.6039
2000	50,000	0.5992	0.6030
	25,000	0.6086	0.6130
4000	50,000	0.5985	0.6079
		0.6110	0.6190

as those repressed isostatically. When well-processed A-16 SG was sintered under rate control with a reasonably well optimized density-time profile, a fractional density of 0.992 was achieved. For conventional firings the density was limited to ~ 0.990.
With finer, higher-surface-area Linde A, similar results were obtained (Table 24.2), but a 5% binder, 5% lubricant addition was found to be slightly better than only $2 \frac{1}{2} \%$ lubricant. Green density increased with both initial forming pressure and isostatic repressing pressure. An initial forming pressure of 2000 psi and a final isostatic pressure of $40,000 \mathrm{psi}$ was chosen
For milled, undoped Linde A, use of optimized processing conditions
 by 40,000 psi isostatic repress and controlled slow binder burnout) produced
 When fired conventionally ($1530^{\circ} \mathrm{C}, 2 \frac{1}{2}$ hours), a density of 0.9880 was attained.
Five batches of Linde A alumina were prepared by several methods to compare the effects of process variables on sintering characteristics. Table 24.3 shows some characteristics of the prepared materials.
Batches were characterized primarily by the fractional green density obtained during formation under an initial pressure of 2000 psi , followed by isostatic repressing at $40,000 \mathrm{psi}$. In the case of the binderless batch, an
Table 24.3. Processing parameters investigated in sinterability study for Linde A alumina

Batch	Condition	Milling Time (hours)	Remilling Time (hours)	$\%$ Binder	$\%$ Lubricant	Fractional Gecen Density
1	Doped $(0.1 \% \mathrm{MgO})$	18	18	5	5	0.6075
2	Doped	18	18	-	-	0.5055
3	Doped	~ 2	18	5	-	0.5502
4	Doped	18	19	5	-	0.5600
5	Undoped	18	19	5	5	0.6055

Differences in sinterability between batches 3 and 4 were not apparent from green density alone.
Figure 24.3 shows the relative importance of the prefiring process variables and the basic difference between the conventional sintering schedules conventional curves A through D refiles employed in this study. The four conventional curves A through D represent typical densification paths for
specimens conventionally fired at $8.7^{\circ} \mathrm{C} /$ minute to $1560^{\circ} \mathrm{C}$ an specimens conventionally fired at $8.7^{\circ} \mathrm{C} /$ minute to $1560^{\circ} \mathrm{C}$ and held for 3
hours. After 3 hours at $1560^{\circ} \mathrm{C}$, the relative-density differences existing

 final densities rank in the same order as their fractional treatment; their final densities rank in the same order as their fractional green densities.
Curve D shows the density-time path of the poorly milled batch with binder
 profiles are the slower densification rates maintained for the latter between 0.75 and about 0.90 and the somewhat faster sintering rates near the end of the firing (curves E through G).
 keeping with an overall objective of increasing mechanical strength. This does not necessarily mean firing to extremely high density and achieving a high degree of translucency. Grain growth encountered in raising density from about 0.992 to 0.995 , for example, certainly would reduce the bend strength by virtue of the increased grain size, probably offsetting any

Elfect of Process Optimization Properties of Alumina Sintered Under Rate Control
initial pressure of 1000 psi was used because of cracking problems at the 2000 psi level.

Batches were dry milled for 18 hours under previously described The fram tives employed, as previously discussed.

The "best" processing method (batch 1) utilized 5% binder and 5% lubrithough it was well milled material (batch 2) employed no additives, algreen density obtained after slow burnout of +18 hours remilled). The fractional that obtained using the binder alone and ~ 0.10 higher than higher than without the use of organics, when all were milled for a comparable time.

314

317 level of a strength-maximizing density has been difficult to determine in that become relevant as stress concentrators at very fine $(<2 \mu)$ grain sizes.

 pure s!чi jo sәл!

 variability attributable to processing.

This study has shown the importance of controlling preprocessing vari-

 same density (within 0.1%) as poorly processed material sintered for 3 hours at the same temperature; however, the well-processed material had a considerably finer grain size.

Figure 24.5 shows an important comparison between a well-processed sample sintered according to rate-controlled profile G (Figure 24.3), and a

Figure 24.6. Low-density region in MgO-doped, well-processed Linde A fired conventionally to $1450^{\circ} \mathrm{C}, 3$ hours. SEM $3040 \times$.

Figure 24.4. Microstructural comparison of MgO-doped Linde A sintered-conventionally at
$1560^{\circ} \mathrm{C}$ to about equal densities, SEM $1840 \times$. (a) best processing: 1 hour soak, $D=0.992$: (b)
poor processing: 3 hours soak, $D^{\circ}=0.991$.

Figure 24.5. Microstructural comparison of well-processed, MgO-doped Linde A using different sintering methods, SEM $1800 \times$. Note: about equal grain size. (a) conventional $1450^{\circ} \mathrm{C}$, 3 hours, $D=0.986$ and (b) rate controlled to $1560^{\circ} \mathrm{C}, D=0.993$.
REFERENCES

1. H. Palmour III and D. R. Johnson, "Sintering and Related Phenomena," G. C. Kuczynski, N. A. Hooton, and C. F. Gibbon, eds., Gordon and Breach, New York
1967, pp. 770-791.
2. H. Palmour III, R. A. Bradley, and D. R. Johnson, Kinetics of Reactions in lonic Sysiems, T.J. Gray and V. D. Frechette, eds., Plenum Press, New York, 1969, pp. 392-
R. A. Lawhon, "Rate Controlled Sintering of Polyphase Ceramic Bodies by Direct Instrumentation," Master of Science Thesis, North Carolina State University, Raleigh,
D. R. Johnson, "Densification Kinetics of Spinel Sintered under Rate Control," Ph.D. Dissertation, North Carolina State University, Raleigh, North Carolina, 1970.
3. M. L. Huckabee and H. Palmour III, "Rate Controlled Sintering of Fine-Grained $\mathrm{Al}_{2} \mathrm{O}_{3}, "$ Amer. Ceram. Soc. Bull., 51 (7), 574-576 (1972).
H. Palmour III and M. L. Huckabee, "Studies in Densification Dynamics," Sintering
and Related Phenomena, G. C. Kuczynski, ed., Materials Science Research Ser., Vol. 6, Plenum, New York, 1973, pp. 275-282.
4. H. Palmour III and M. L. Huckabee, "Process for Sintering Finely Divided Particuates and Resulting Ceramic Products," U.S. Patent Application filed April 26, 1973, Serial No. 354,S15.
5. H. Palmour, T. M. Hare, and M. L. Huckabee, "Optimal Densification of Ceramics by Rate Controlled Sintering," Final Technical Report, Contract No. N00019-73-00139. Naval Air Systems Command, March 1974.
H. Palmour III, T. M. Hare, and M. L. Huckabee, "Conventional vs. Rate Controlled Sintering of Alumina: I. Microstructural Comparisons," presented at the 77th Annual
Meeting of the American Ceramic Society, Washington, D.C., May 3-8, 1975 .
T. M. Hare, H. Palmour III, and M. L. Huckabee, "Convention vs. Rate Controlled Sintering of Alumina: II. Strength Comparisons," presented at the 77th Annual Meeting of the American Ceramic Society, Washington, D.C., May 3-8, 1975.
D. E. Witter, R. A. Bradley, D. R. Johnson, and H. Palmour III, "Use of Computers in Ceramic Research," Ceram. Age, 84 (11), 28-31 (1968); Errata, ibid., 85 (1), (1969). T. M. Hare, M. L. Huckabee, and J. P. Kirkland, "Intermediate Stage Densification
Kinetics for Alumina Sintered under Rate Control," presented at Fall Meeting, Basic Science Division of the American Ceramic Society, Pittsburgh, Pennsylvania, Sept. 24, 흥
6. D. Lewis and M. W. Lindley, "Enhanced Activity and the Characterization of Ball
Milled Alumina,"J. Amer. Ceram. Soc., $49(1), 49(1966)$.
7. A. Pearson, J. E. Marhanka, G. Maczura, and L. D. Hart, "Dense, Abrasion Resistant 99.8% Alumina," Amer. Ceram. Soc. Bull, 47 (7), 654-658 (1968).

Effect of Process Optimization Properties of Alumina Sintered Under Rate Control

Figure 24.7. Microstructural comparison of well-processed, MgO-doped Linde A using different sintering methods, SEM $1840 \times$. Note: comparable densities. (a) conventional $1560^{\circ} \mathrm{C}$,
I hour, $D=0.992$ and (b) rate controlled to $1560^{\circ} \mathrm{C}, D=0.993$. sample fired conventionally at $1450^{\circ} \mathrm{C}$ for 3 hours. Although the ratecontrolled specimen did spend some time $1500^{\circ} \mathrm{C}$, its grain size is not appreciably different from that of the conventionally sintered material. However, the rate-controlled specimen showed a considerably higher fractional density. Figure 24.6 shows a region of low density typical of the $1450^{\circ} \mathrm{C}$ conventional firing, illustrating that even the best processing advantage of rate-controlled sintering is that it permits such low-density regions to densify uniformly before pore-channel closure isolates them prior to final-stage sintering. Further evidence of this is seen in Figure 24.7. Specimens rate-control sintered according to profile G (Figure 24.3) had a finer grain size when compared at nearly equal density with conventionally sintered material.

ACKNOWLEDGMENTS

This work sponsored by the U.S. Navy, Naval Air Systems Command,
under Contracts N00010-73-C-0134 and N00019-74-C-0265. We gratefully

[^11]320
 compact greatly influences the properties of the green body, the course of subsequent sintering, and the properties of the sintered product. Efforts to explain this dependence, through an understanding of the nature of powder stacking, have often taken the form of constructing assemblies of spheres, either of identical or mixed sizes. This approach assumes that it is possible to represent a stack of powder in terms of a typical arrangement of particles, which is repeated many times to produce the stack.

The origin of the idea of modeling particle assemblies with spheres has been credited to Rene J. Hauly (1789), ${ }^{1}$ who was concerned with the atomic arrangement in crystals. A century later W . Barlow ${ }^{2}$ used the face-centeredcubic and close-packed-hexagonal models to describe particle stacking. In the 90 years since then, more than a score of investigators have contrived stacking models by the use of real or imagined spheres, of like or variable size, systematically or randomly stacked. One of the most comprehensive of such analyses was that of L. C. Graton and H. J. Fraser. ${ }^{3}$

Considering the great amount of effort that must have gone into these studies, as well as the length of time over which the results have been known to the public, it seems surprising that there are still no recognized laws of particle stacking, or even generally accepted industrial procedures based on these models. Thus this writer concludes that the unit-cell approach is inca-
pable of leading to a useful result in this type of natural process. This is not to imply that the work has been barren. A number of important trends and a few relationships that promise to apply to the general case of natural powder stacking have emerged, but these cannot be woven into a general understanding of stacking until a valid base for the subject has been established.

Except for the rare case in which the particles are so perfectly identical that they can assume a "crystalline arrangement,"" the assumption of repeated, typical arrangements of particles is not valid for hard particles. For most powders the particles differ individually in the detail or their shapes and sizes. ${ }^{5}$ Since the particles can come to rest only through mutual contact, these differences result in an infinity of local arrangements, which cannot be represented by any iterative model. The stack, nevertheless, has a distinctive character that reflects the nature of the powder or power mix that has gone into its composition and the manner in which the stack has been formed, for example, poured, shaken down, or slip cast. Thus, to describe a stacking realistically it is necessary to characterize the powder and also the mode of stacking in terms of parameters that can be evaluated independently of the specific particle shape and size, as well as the diference from site to site in the structure of the stack. In other words, it is necessary to characterize the stack as a whole, rather than particle by particle.

STACKING PARAMETERS

Two appropriate parameters that are capable of evaluation without reference to particle size or shape are: (1) the number of particles P in the stack and (2) the number of interparticle contacts C in the stack. Both these numbers are subject, in principle, to direct and exact evaluation. The numerical difference between them is a measure of the topological connectivity G of the stacking ${ }^{6}$:

$G=C-P+1$

(1)

In this view the powder stack may be thought of as a three-dimensional network in which the individual particles represent nodes that are joined by interparticle contacts that serve as branches of the net. The connectivity of such a net is defined as the number of branches (interparticle contacts) that would have to be severed to reduce the net to a single chain of particles. As a chain there is one more particle than there are contacts; hence the connectivity is one more than the difference between the number of contacts and the number of particles. It is obvious that porous particles are already multiply connected and that their connectivity becomes part of the
connectivity of the system as a whole. Where porous particles are involved, a more elaborate method for evaluating the topological parameters of the system is required. In some cases it might be possible to determine an average connectivity of the powder particles by serial sectioning and to add this to the main-network connectivity. It is doubtful that the result would justify the great effort required.

DeHoff and coworkers ${ }^{7}$ have demonstrated the important principle that the course of geometric change in second-stage sintering is determined by the connectivity of the system, which is often the same as the connectivity of the original powder stack. The ratio of the surface area to the volume of the porosity in second-stage sintering remains constant and is proportional to the connectivity. This makes it possible to design and construct a sinter body of specified structure and properties. The same authors have shown also that the permeability of the porous body is a simple function of connectivity. Other properties that display a qualitative relationship to the connectivity, but which have not yet been studied in detail, include powder flow rate, sintering rate and, perhaps, electrical and thermal conductivity. In a somewhat less direct fashion it appears that the connectivity may prove to be involved in some of the mechanical properties of both green and sintered bodies.

The number of particles P in a powder mass may be determined directly by the use of a Coulter Counter, or equivalent device. Such a count must be made without distinguishing the sizes and shapes of the particles. It is necessary, however, to count the particles separately, not as disintegratable clumps. The particles should be counted in the form in which they will appear as individuals in the ultimate stack. If they will break up into pieces
 required, in principle, that all the particles in the stack be counted, because any kind of segregation in the stack would tend to distort the count. In practice, it is impractical to make total counts, for which reason rather sophisticated sampling techniques may be required

The number of interparticle contacts C in a powder mass has been counted directly by a number of investigators, of whom the first seem to have been Smith et al. ${ }^{8}$ They used lead shot wetted with acetic acid, which left a white deposit of lead acetate at each point of contact. The white marks were then counted as the stack was disassembled. Such methods are cumbersome at best and become impractical as the particle size becomes very small. Fortunately, it is possible to estimate C through a knowledge of apparent density.

Apparent density is another property that applies to the powder mass as a whole. It has been found that the apparent number of interparticle contacts, at least over the range from half to fully dense (Figure 25.1). ${ }^{\circ}$ This important relationship, which makes possible the
question of how the characteristics of the stack can be controlled. It serves, for the present, to control the number of particles and the number of interparticle contacts. The number of particles per gram, or per unit volume, can be manipulated through the particle size and particle-size distribution. Since the quantities involved are directly additive it does not appear that the control of the number of particles requires special consideration at this time.
Control of the number of interparticle contacts can be had in two rather obvious ways, namely, through the orientation of the particles so as to contact a maximum number of neighbors and through the mixing of particle size and shape. Particle reorientation and relocation can be accomplished by mechanical agitation of the stack. The controlled mixing of powders involves suitable classification and blending of powders from selected sources. In so doing the apparent density of the stack provides an index of the number of contacts.
About 20 years ago, a study of the packing of powders became the subject of a series of theses at the Carnegie Institute of Technology sponsored by a luncheon club of Pittsburgh powder metallurgists. The results, which have not been published up to now, are summarized in this chapter and
 proposed. The authors of these theses are John A. Brown (1950), R. J. MacDonald (1951), and Richard H. Vogt (1958). Although some aspects of their work have been duplicated by others, there remains much that is new. A mild steel powder was made for the research by Arthur H. Grobe at the Vanadium Alloy Steel Company in Latrobe, Pennsylvania. The particles were typical of atomized powders, being ovate in form and spanning a large range of particle size. A water quench, which was part of the atomizing process, gave the particles a shiny, rust-resistant surface, which remained clean after 10 years of storage. The powder was first sized by taking cuts with consecutive sieves of a new Tyler Screen set (Table 25.1). Each cut was then tested for its apparent density. Duplicate measurements were made at four laboratories, namely, Kennametals, Westinghouse, Gibson Electric, and Carnegie Tech. In all cases the determination was made by the use of a Scott Volumeter. The results, which were mostly in good agreement, are summarized in Figure 25.2. It is to be noted that the apparent density diminished approximately in proportion to the particle size over most of the range. This is an effect that has been noted by nearly
 of the finer particles has been ascribed to bridging, or clumping, resulting from interparticle adherence that is more persistent the lighter the particle. The loss in density at the coarse end of this series is not commonly found. It is believed to be associated with a departure from the common particle

Figure 25.1. Average number of contracts per particie versus packing density. From Norman
and Maust ${ }^{〔}$. stimation estimation of the number of contacts from one simple measurement, was first reported by Smith et al. ${ }^{8}$ and has since been confirmed by others. ${ }^{10,11}$ The relationship displayed in Figure 25.1 is valid irrespective of particle size, but the slope of the curve varies with particle shape. That the relationship must differ with particle shape may be illustrated with a thought comparison of spherical versus dendritic particles, wherein it is evident that the apparent density of a stack of dendritic particles must be lower than that of a stack of spheres having the same total number of interparticle contacts. Thus powders of different shapes require special calibration for determination of the number of contacts through the apparent density.

EXPERIMENTAL INVESTIGATIONS

Having means by which the stack and the powder can be characterized in an exact and meaningful manner, it becomes of interest to inquire into the

Figure 25.3. Some typical plots of apparent density versus weight percent of the fine fraction
in binary mixtures: 408μ powder mixed with 163μ powder; 408μ powder mixed with 68μ powder. From Brown.

Figure 25.4. Diagramatic representation of the Westman and Hugill hypothesis to account
for the apparent density of binary mixtures of powders.'
McGeary, ${ }^{12}$ except that he carried the study to larger ratios and found very little change in the maximum density above a $6: 1$ ratio. Flow rate is a property that may be expected to vary with the number of

 in a powder stack proportional to the apparent density, it is expected that

 the mixture.
Ternary mixtures of the steel powders were examined by MacDonald. He荅 the associated binary maxima, located at about two-thirds of the coarsest fraction. This result has since been duplicated by other investigators. ${ }^{13}$
Segregation according to particle size became apparent as the foregoing
 the effect of vibratory packing upon the apparent density of binary mixtures. To observe directly any tendency for the particles to segregate
 uts each a different color. The particle size range was somewhat shorter than that used by Brown (Table 25.2), but the particle shapes were similarly

Table 25.1. Mean particle size, apparent density and
flow rate of unmixed sieve fractions of atomized steel
powder (Brown)

	융ㅇㅇㅇㅇㅇ으윽으우N육윽 $t+++++++++++$
움	-- < ¢

${ }^{a}$ A smooth flow was not observed. Stacking occurred.
 eprents the ideal volume of the fully dense material. The line $C F$ represents the packing volume of mixtures, obtained by adding the packing the unmixed components. The diagonal lines terminating at C and F are the contributions of the two cuts to the total volume, based on the concept that the coarse fraction is of primary importance in determining the skeleton of the stack and that the fine fraction first fills the void spaces among the coarse particles and, when the void spaces are filled, begins to add to the total volume of the stack. Accordingly, to the left of the intersection of the diagonal lines the portion connecting the point C represents the packing volume as determined by the coarse fraction alone, while the portion at the right, connecting to point F. consists of the fully dense contribution of the coarse fraction added to the normal volume of the fine fraction. As is seen later in this chapter, and as was in fact recognized by Westman and Hugill, this analysis constitutes an oversimplification. It has the charm, however, of providing a rather good simulation of the variation of apparent density with composition.

The maximum in the apparent density of the composition series becomes higher as the difference in particle size increases, up to at least a ratio of coarse to fine of $6: 1$ (Figure 25.5). A similar finding has been reported by

Experimental Investigations
rotating at a speed of 1800 rpm. The cylinder was filled and the as-poured
volume was measured before the vibrating motor was started. Thereafter,
the vibrator was operated and readings of apparent density were made
periodically, until a steady state was indicated by constant readings.
The powder was blended in two ways. One method, similar to that used
by Brown, consisted of quartering and rolling the weighed portions of the
mixture upon glossy paper and then pouring the blend directly into the glass
cylinder. Particle-size segregation was apparent during blending, in the
as-poured stack, and became more prominent as the powder was left un-
vibrated in the cylinder. In an effort to overcome this separation, the two
powders of the binary combination were introduced into the cylinder
through two funnels so arranged that the two streams of powder combined
in fall. The mixing appeared, at first, to be more homogeneous, but after 24
hours of quiescent standing, gross separation of the fines to the bottom of
the cylinder was evident. No homogeneous stack was ever achieved in these
experiments.
It was first noticed that the apparent density increases with the height
of the powder stack in the cylinder (Figure 25.7). The effect persists,
moreover, through long vibration. For this reason a constant weight of
powder was used in all subsequent experiments. The same effect has been

융
Figure 25.6. Some typical plots of powder flow rate versus weight percent of the fine powder
in the mixture (same series represented in Figure 25.3). From Brown.
ovate and smooth. Instead of using a Scott Volumeter, Vogt poured used the filling volume to cader into a 100 ml glass graduate cylinder and the glass container made it possible to apparent density. At the same time glass cylinder was strapped to a wooden base with rubber visually. The base was vibrated by means of a small motor with an eccentric fly wheel

Table 25.2. Mean particle size, apparent density of as-poured and vibrated sieve fractions of white sand (Vogt)

Lot	Sieve	Mean Particle	Apparent Density As-Poured Sraction	Apparent Density
No.	Fize (μ)	$(\mathrm{g} / \mathrm{cc})$	Vibrated $\mathrm{g} / \mathrm{cc})$	
A	$-20+30$	715	1.348	1.462
B	$-30+40$	506	1.306	1.466
C	$-40+50$	358		
D	$-50+70$	254		
E	$-70+100$	180	1.158	1.392
F	$-100+140$	127	1.073	1.322
G	$-140+200$	89	0.994	1.268

found by other experiments; for example, Bell et al. ${ }^{14}$ used an additional
loading on the powder to secure increased densification. It may be surmised
that the larger load tends to assist the breaking of bonds between particles,
reducing bridging and clumping.
Vogt also found the now-familiar effect of particle size on the apparent
density of single-size cuts (Figure 25.8 . Again it can be seen that this effect
persists in spite of vibratory packing, although the finer cuts densify most
during vibration.
Vibratory setlling of binary mixtures was found to increase the apparent
density of all mixtures progressively, until no further change would take
place (Figures 25.9 through 25.12). The composition of maximum density is
preserved, although it tends to occur at slightly higher fines content after
vibration. No reversal in densification, such as that reported by Gugel and
Norton, ${ }^{18}$ was found. This may appear surprising in view of the additional
fact that the size separation became distinct during vibration. Intuitively, it
had been supposed that the most dense state, toward which the stack would

n

Figure 25.12. Apparent density versus weight percent of fines in mixtures of two powders
$(715$ and 89μ) with size ratio of $8: 1$. From Vogt.
sampling the extreme top layer of each of the mixes after stabilization by vibration. The particles of the sample were spread on a glass slide and were counted under a microscope. The ratio of the number of coarse to fine particles in the original mixture is plotted as a function of the ultimate ratio in the top layer of the stack after stabilization by vibration (Figure 25.14). Each line of this graph corresponds to a different size ratio of the powder mixture. The 45° line, labeled "stable mixture," represents the ideal case of no segregation. There was no case in which any of the mixtures approached this ideal line. The slopes of the experimental lines, which represent the -әр!

337

Discussion

Figure 25.15. Ratio of fine to coarse particles remaining in the top of the stack after vibrating plotted as a function of the particle-size ratio of each mixture.
 progressively to increase segregation, until the separation becomes almost complete, in the top of the stack, with a size ratio in excess of $8: 1$. It appears that there is no tendency for any particular size of particle to be most stable in the stack. The most stable finer cut was that nearest the size of the coarse fraction. This was indeed an unexpected result!

DISCUSSION

 system is seeking maximum density of packing for a given particle-size mixture and a given mechanical energy input. To be sure, the dynamic behavior may be thwarted by anchoring the particles in one way or another, but the tendency for the stacking to adjust itself dynamically must always be present, waiting for an opportunity to act.

Particle size varying, as it does, from top to bottom of the stack denies the usual simple ideas of interstitial filling as a direct reason for the higher density of mixed aggregates. Also, the progressive manner in which the density increases with size difference in binary mixtures does not argue for the conventional concept of hole filling by the finer particles. The the whole size mixing on the apparent density is something that involves the whole

ypels ul uolusod ןesilazan

융
 stack is filled with a wetting medium, so that the liquid, the bonds may become relatively weak and spontaneous particle migration may be initiated. A typical example is that of water added to dry sand. An almost instant shrinkage of the sand mass occurs, because the weakening of the interparticle bonds allows particle rotation. Indeed, dynamic particle stacking appears to attain its ultimate perfection in a slowly moving aqueous medium. This is illustrated by the case of the formation of opal, which consists of a close-packed stacking of identical silica spheres, the color of the opal depending on the sphere size.* Stratification and stacking of the silica spheres develops in thin crevices in rocks where sand and slowly moving water interact. The large number of contacts of the close packing stabilizes the structure, but, as many a wearer has found to her dismay, water and agitation can destroy the stacking and with it the opal.

Particle shape has had much too little study as a variable in particle stacking. There can be no doubt of its importance, but systematic means for dealing with so complex a variable are not yet available. Fortunately, many of the particles of industrial interest are individually dense, approximately equiaxed, and nearly convex in form. For such particles it is possible to visualize some principles of stacking. When a particle falls on a stack, it
 grows, three more particles are likely to rest on the first one, giving a total of six contacting neighbors, or an average of three contacts per particle. It
 tion in which it would contact more than six neighbors. Perfect spheres of identical size can assume a close-packed arrangement, like that of opal, in
 succeeded in causing a stack of steel spheres to assume close packing under the influence of three-dimensional vibration. It is geometrically possible for identical particles of any shape to be arranged in close packing, but orienta-

 erroneous assumption is shown by the fact that the grains in a polycrystalline material average 14 neighbors (i.e., 7 contacts per particle). Still more contacts per particle seem possible where the particle shape is branched, and especially where the particles are not rigid. For example,

stack of powder, not merely local sites. Moreover, it affects the as-poured stack and the vibrated stack in like fashion and amount. This seems to limit rather severely even the general idea of best fit as an explanation for the existence of a composition of maximum density. The only solid ground that
 apparent density. The experiments indicate simply that the number of contacts tends to maximize when about two-thirds of the particles are of the
 finer particles filter through the coarser particles until they are arrested by coming to a stratum of finer particles through which passage is difficult. The powder stack might be compared, in this respect, to a set of graded sieves, composed of the particles themselves. Some mechanical agitation seems necessary to give the particles mobility and to release particles from interstices in which they may be trapped. The same mechanical energy is expected, however, to promote mixing. The steady state to which the mixture tends during vibration amounts to an equilibrium between size separation and mixing, the mixing being the more pronounced the more energetic the mechanical input.

Densification by vibration has been shown by Bell et al. ${ }^{14}$ to proceed very rapidly at the beginning, most of the ultimate change in density being acts, rather virtually in situ, han it marticle migration must be size segregation. This too must result in an increase in the total number of contacts in the system and an increase in the stability of the structure.

Stability may be thought of as the resistance of the powder mass to change of stacking. This property is illustrated, for example, by resistance to flow, or by resistance to further densification under the influence of vibration, such as is displayed by the finer-size powders. In all cases the stability seems to increase with number of more fundamentally with the connectivity of the system.

The strength of the bond at the contact is also a stabilizing factor. The bond always has some strength, even when it consists of mere van der Waals forces, so that some mechanical force is needed to break it and readjustment of the stack in motion. Where a binder, such as a thin film of water, is present, the surface tension can provide a strong enough bond so that considerable force is required to produce particle immobilize the powder stack, no further densification occurs.

$340 \quad$ Dynamic. e Stacking
there scarcely could be any limit to the number of contacts in a bucket of
there scarcely could be any limit to the number of contacts in a bucket of
octopi. At the other end of the scale, a pile of straws may be expected to average considerably less than six contacting neighbors.

In real powder stacks, and especially under the influence of vibration, the increase in apparent density, above that corresponding to the three contacts per particle stack, may be thought of as a measure of the frequency of occurrence of higher-contact configurations. Similarity of particles should increase the likelihood of close-packed configurations, wherefore a sizesegregated stack may consist of strata containing not only particles of like size, but a larger fraction of close-packed configurations than would be possible for unlike neighbors. These matters invite further investigation.

Characterization

It must now be apparent that the deductions drawn initially with respect to the kind of description that would be needed for a stack of powder were well justified. No kind of iterative geometry could describe the structure of
 that can be applied are those that are totals for the entire stack. Number of particles, number of interparticle contacts, apparent density, and con-
 do not describe the stack completely, but there are additional parameters available. Total surface area and total curvature of surface are but two of a number of other parameters that can be evaluated for the stack as a whole and add to the detail of the description. Progress with the correlation of these geometric parameters with physical properties of the powder stack has been gratifying. Where correlations exist they have usually been found to be simple relationships, easy to apply in practice.

REFERENCES

 L. C. Graton and H. J. Fraser, "Systematic Packing of Spherto Porosity and Permeability," J. Geol., 43, 785-909 (1935).
4. R. M. Koerner, "Limiting Density Behavior of Quartz Powders," Powder Tech., 3, 308312 (1969/70).
5. J. E. Davis, V. G. Carithers, and D. R. Warson, "Practical Method for Using Particle
Size Distribution of Calcined Aluminas to Predict their Compacting and Sintering Size Distribution of Calcined Aluminas to Predict their Compacting and Sintering
Properties," Amer. Ceram. Soc. Bull., 11, 906-912 (1971).

Particle Compaction
 O. J. Whittemore, Jr.

The largest number of polycrystalline ceramic products are formed by pressing. Products include insulators for electronic equipment and electrical appliances, refractory brick and other shapes, some building brick, grinding wheels, nuclear fuel, and many other special ceramics. Product sizes may vary from 1 mm to grinding wheels 2 m in diameter. The particle or grain sizes within the products may vary from $0.05 \mu \mathrm{~m}$ to 1 cm . The pharmaceutical and powder metallurgy industries also employ pressing as their principal forming process. Pressing processes include: (1) dry pressing,
 water; and (3) isostatic pressing, with less than 2% water. Advantages of pressing are the rapid molding rates (as high as 5000 pieces/minute in rotary presses) and the precision (molded tolerances on the order of 0.1 mm). The final product precision, however, depends on many factors, including powder mixing and sintering control.

EQUIPMENT

A variety of presses are available for compacting ceramics. Their designs display consideration of compact size and shape, material compaction characteristics, molding rate, product density, and powder abrasiveness.

Equipment
The compacting force is applied by mechanical, hydraulic, or pneumatic means and sometimes by a combination of these. The force can also be applied repeatedly in some designs, in this way overcoming the rheological resistance to flow.

Mechanical

Many presses for molding small precise shapes compact by action of cams against push rods or plungers. ${ }^{1,2}$ Cams can be provided both above and below, and also in parallel so that secondary motion will achieve uniform compacting with different shape thicknesses. Developed originally for pharmaceuticals, these "pill" presses can be provided with hydraulic or pneumatic assists to equalize pressure. Rotary presses have a rotary table on which a number of dies are arranged in a circle, each being filled, compacted, and emptied in sequence. These presses are available with maximum pressures to 100 tons, although most are in the range of 1 to 20 tons.
Most refractory brick is formed in large mechanical toggle presses capable of pressures up to 800 tons. The toggle mechanism operates much like the elbow in a human arm. ${ }^{\text {' }}$ Toggles can also be driven hydraulically to provide pressures up to 1300 tons and to form deeper shapes (see Figure 26.1).
Friction presses have long been used to press tiles, and so forth. ${ }^{2}$ The
lunger is attached to a large vertical screw, which is driven down by a large friction wheel. By the time the plunger compacts the fill, it has high velocity. The impact can be repeated rapidly and from three to five impacts are normally applied. Large friction presses are now being employed in molding large thick refractory shapes. ${ }^{4}$ Although the press is rated at 500 tons the density achieved is close to that obtained on 1000 ton mechanical toggle presses (see Figure 26.2).
Cam and toggle presses close to a given volume. Therefore, although the size is assured, the density achieved is determined by the mold fill. Friction presses close to that point where the inertial energy is absorbed.

Hydraulic

Presses compacting by fluid pressure against a piston are generally used in the abrasives industry ${ }^{5}$ and occasionally in other industries. Hydraulic press sizes vary from a few hundred kilograms to 5000 tons. Here, in contrast to mechanical presses, the density is determined by the pressure while the size is determined by the mold fill. An objection to hydraulic presses is the generally slower rate.

 oretical have been produced. ${ }^{11}$ These products are not subsequently fired, as they are not bonded sufficiently to be removed from their containers.

BINDERS AND LUBRICANTS

se pa<oldura әre spe! binders or lubricants. ${ }^{12}$ If the ceramic composition includes clay in sufficient amount, other additions are not necessary. For example, foundry

 number of organic additives are used. These perform several functions.

Binders

When compact strength is required for subsequent handling or other uses, a
number of organic materials are used, usually as water solutions. Examples

Particle Compaction
and "dry-bag.", where that part of the flexible mold that contacts the pressurizing liquid is an integral part or lining of the pressure vessel. In the Products range from spark plug insulators (see Figure 26.3) to sewer pipe 2 m long and massive refractory blocks for glass furnace linings.

If feed material is passed between two horizontal smooth rolls, a continuous sheet of product may be compacted. ${ }^{8,9}$ If indentations are cut in the surface of the rolls, briquets are formed that may be granulated for subsequent compacting or may be sintered for refractory grog.

Roll-Compacting

LINE SHAFT] DRIVING DISCS

ONE METER
Figure 26.2. Friction press, 500 ton capacity." caused by the aggregates present; a bimodal pore distribution was noted, with the peak of smaller pores occurring at $0.04 \mu \mathrm{~m}$, which also is a ratio of 7 .
To reduce the frictional effects at the mold walls, lubricants such as stearic
acid and colloidal graphite are employed. These may be wiped or sprayed
on the mold wall or pumped through porting. ${ }^{16}$ on the mold wall or pumped through porting. ${ }^{\text {t }}$

GRANULATION

Fine powders usually have low bulk densities and high compaction ratios (ratio of bulk density to compact density). Fine powders also do not flow well when the die is filled. To alleviate these problems, some form of granu-

 liquid. Surface tension of the liquid holds the drops in spherical form, which, when dry, are free flowing, feed uniformly into the die, and have little dust.

 by precompacting and more uniform final products result. However, although high granule density will reduce the compaction ratio, coarse weak bodies may result, with greater density variations within the compact. ${ }^{17}$
For a basic understanding of powder compaction, an analytical equation of state would be desirable. However, information required includes the flow properties of powders under stress, stress or pressure distribution within compacts, the distribution of particle-to-particle stresses, and the strength distribution of ceramic particles. Some information has been determined on the last two factors on glass spheres. ${ }^{18}$
Because of the unsolved analytical problems, several empirical equations have been proposed that have value in understanding compaction. Walker ${ }^{19}$
are the lignosulfonates (residues from the sulfite paper process), dextrines, starches, celluloses, and poly(vinyl alcohol). Amounts added may be as low as 0.5% and as much as 5% for coarse-grained mixtures

Internal Lubricants

 may occur during compaction if a wax such as parafin rength bulene glycol) is added. These addin contained in the void volume of the particle mass. ${ }^{1 s}$ This was illustrated by preparing three series of mixtures of aluminas with poly(ethylene glycol) wax (Carbowax 4000, Union Carbide Corp.). ${ }^{14}$ The aluminas used were minum Company of America); and Linde A, $0.3 \mu \mathrm{~m}$ average size" (Union
 aggregates. After pressing at $15,000 \mathrm{psi}$, densities were determined, samples were fired at $800^{\circ} \mathrm{C}$ where no shrinkage occurred, weight losses were determined, and pore-size distributions were determined by mercury porosimetry.

Volume percent of alumina in the compacts is plotted in Figure 26.4 versus weight percent wax and shows little densification of the alumina. The mid pore sizes determined by mercury porosimetry are also indicated in Figure 26.4 and show little change for the 7 and $0.5 \mu \mathrm{~m}$ aluminas with wax contents up to $10 \mathrm{wt} \%$ ($27 \mathrm{vol} \%$). The wax thus filled the interstices between particles up to this amount. At higher wax contents the partic was noted for the $0.3 \mu \mathrm{~m}$ alumina up to $16 \mathrm{wt} \%$ wax ($39 \mathrm{vol} \%$).

Figure 26.4. Effect of wax addition on compacted alumina density (midpore diameters,
MPD, by mercury intrusion).
deformation so as to fill voids about the size of the original particles and (2) major fragmentation and filling of small voids. The initial stage of compaction, or die filling, is eliminated by definition of V^{*}. Sized alumina, silica, magnesia, and calcite particles that vary in hardness on Mohs' scale from 3 to 9 were studied. As hardness increased, the relative compaction at pressure decreased.

The coefficients a_{1} and a_{2} indicate the fraction of compaction occurring in the two terms. When their sum is not unity, other processes become operative before the theoretical limit of compaction is reached. As hardness increased, the sum of a_{1} and a_{2} decreased from unity for calcite to 0.85 for alumina. The coefficient a_{1} is chosen by data at the lower pressures and its value was found ${ }^{23}$ to be dependent on the lower pressure chosen. Oudemans ${ }^{25}$ studied compaction of fine alumina and iron oxide particles and was unable to apply either Cooper and Eaton's expression or that of Balshin.

Kawakita and Ludde ${ }^{25}$ compared equations of 14 other investigators with his equation:

$$
\frac{V_{0}-V}{V_{0}}=\frac{a b P}{1+b P}
$$

where $C=$ degree of volume reduction $V_{0}=$ initial volume
$V=$ volume at pres
$\begin{aligned} V & =\text { volume at pressure } P \\ a \text { and } b & =\text { constants characterist }\end{aligned}$
This equation can be rearranged as:

$$
\frac{P}{C}=\frac{1}{a b}+\frac{P}{a}
$$

a and $b=$ constants characteristic of the powder number and vibrating time, respectively.
and if there is a linear relation between P / C and P, the constants can be evaluated. The linear relation held for soft, fluffy, and pharmaceutical powders and also for stainless steel and copper oxide powders except for deviation at the lower pressures. Linearity of the P / C versus P plot was not found to be exact using Leiser's data ${ }^{23}$ for magnesia and alumina $-35+42$ mesh powders. Kawakita's equation has also been applied ${ }^{25}$ to tapping compaction and vibratory compaction, replacing pressure with tapping

Although compaction equations have been criticized as only curve fitting and none have been found to be generally applicable, they all focus attention on important considerations, such as the stages of compaction, the mechanisms, and the variables.

Particle Compaction
determined pressure-volume relationships in compacting several powders and observed the plot of logarithm of pressure versus volume to be linear. Balshin ${ }^{20}$ obtained a similar relationship assuming that incremental pressure is proportional to incremental energy expended.

$$
\log p=V L_{0}+C
$$

where p is pressure, V_{0} is relative volume, C is a constant, and L is a constant called the pressing modulus, considered analogous to Youngs' modulus used in Hooke's law. The pressing modulus is a function of the initial material properties but was observed to vary during pressing. Balshin howed near linearity in plots of $\log p$ versus relative volume for pressing graphite and sodium carbonate, and Huffine and Bonilla ${ }^{21}$ later showed linearity for mixed sizes of salt.

An equation describing the compaction behavior of metals was proposed by Heckel, ${ }^{22}$
 pression appears valid only for ductile materials.
He described three compaction stages as (1) densification by die filling, \ln $\left[1 /\left(1-D_{0}\right)\right]$, (2) densification by particle rearrangement, B; and (3) densification by particle deformation. However, the equation did not describe the compaction behavior of alumina. Leiser ${ }^{28}$ later found compaction of fused pure magnesia conformed to Heckel's equation but that of alumina, mullite, and glass did not. As fused pure magnesia has some ductility, this exA probablistic approach was proposed by Cooper and Eaton ${ }^{24}$ with an expression relating fractional volume compaction V^{*} with applied pressure P;

where $\quad V_{0}=$ initial volume of compact
$V=$ volune or dencity
$a_{1}, a_{2}, k_{1}, k_{2}=$ constants calculated to give agreement with experiment
The two terms assume a two-stage process, described as (1) rearrangement
of particles within the compact with accompanying slight fracture or elastic
Where the stages of ceramic powder compaction are die filling, particle rearrangement, and particle fracture, the mechanisms are considered to be particle sliding, elastic deformation, and fragmentation. Describing because two stages may be occurring simultaneously and mechanisms predominating during a stage cannot be clearly defined.
grinding wheel. Although there was only to occur in pressing a 24 grit retained on a 25 mesh sieve, this amount could result in collapse of many particle bridges. Kingery ${ }^{20}$ also showed reduction in size of fine fused alumina when pressed and repressed. Calkins ${ }^{10}$ studied the compaction of 250 $\mu \mathrm{m}$ diameter glass spheres that had been vibrated to minimum volume. After compaction, he determined the pore size distribution by mercury porosimetry of the compact without removal from the mold. The void frequency is shown in Figure 26.5 for the as-packed state, after 20,000 psi compaction (23% fracture) and after 40,000 psi compaction (45% fracture). The filling of voids or void-size reduction thus is accompanied by an increase in small voids.
Fracture is accentuated, however, when single-size particles are compacted as in this latter study. When mixtures of two particle sizes are compacted, Chattopadhyay ${ }^{27}$ found much less fracture of the coarser size. When 23% mesh fused-alumina particles were pressed at $24,000 \mathrm{psi}$, only 23% survived. When 70% of $-16+20$ mesh particles with 30% of one of

Figure 26.5. Void frequency of compacted $250 \mu \mathrm{~m}$ glass spheres.
three finer sizes was compacted, much greater amounts of the coarse size
 finest of the finer sizes. With the finest particles, the number of contacts
 particles occurs. ${ }^{28}$

Most compaction is not conducted at pressures where a large amount of particle fracture takes place. Instead, we rely on flow of the mixture of fine
 coarser particles to produce rearrangement of particles to obtain higher densities. Since we usually start with compaction ratios of 2 or larger, much of the compaction occurs at low pressures.

Particle sliding is more difficult to observe. Hartmann ${ }^{28}$ microscopically observed scratches on coarse particles after compaction. The orientation of the layered silicates (clays and talc) under pressure was demonstrated by Berry et al. ${ }^{17}$ The distinction between particle sliding and rearrangement is not easy to make for these minerals.

STRESS DISTRIBUTION

A common method of determining stress distribution within a compact is to measure density distribution and correlate stress with density. In pressing
 found in the cross section of the wheel. ${ }^{5}$ Lower densities are found on the center exterior of faces and ends. Grinding wheels are pressed from both ends. When a compact is pressed from one end, the density decreases from the top to the bottom.

Actual measurements of stress within a compact during pressing were made by Train ${ }^{29}$ by means of wire resistance gauges. The isobars of highest pressure in pressing from one direction were found to originate where the face of the moving plunger met the die wall and to pass diagonally through the compact meeting near the center. This work was done on magnesium carbonate, a relatively soft material.

Indirect "end point" measurements have been done by McRitchie ${ }^{30}$ in

 grids placed within compacts of alumina and talc by radiography.

Analytically, Schwartz and Weinstein ${ }^{32}$ computed the stress distribution from a knowledge of the cohesion and the angle of internal friction of the powder mass as related in the Coulombs' yield criterion. The predicted results were compared with measured results on urania powders.

355
25. K. Kawakita and K. H. Ludde, "Some Considerations on Powder Compression Equa26. W. D. Kingery, "Pressure Forming of Ceramics, Ceramic Fabrication Processes W. D. 27. A. K. Chattopadhyay and O. J. Jr. Whittemore. "Powder Compaction in Systems of Bimodal Distribution," Amer. Ceram. Soc. Bull. 52 (7), $575-57($ (973). Thesis, Massachusetts Institute of Technology, Cambridge, 1964 . D. Train, "Transmission of Forces Throug
Pelleting," Trans. Inst. Chem. Eng., 35 (4), 258-266 (1957),
F. H. Mc Ritchie, "A Device for Determining Pressure D F. H. McRitchie, "A Device for Determining, Pressure Distribution in Dry Pressing
Refractories," Amer. Ceram. Soc. Bull., 43, (7); $501-504$ (1964). A. R. Jr. Cooper and W. H. Goodnow, "Density Distributions in Dry-Pressed Com-
pacts of Ceramic Powders Examined by Radiography of Lead Grids," Amer. Ceram. pacts of Ceramic Powll., 41 (11), $760-761$ (1962).
32. E. G. Schwartz and A. S. Weinstein, "Model for the Compaction of Ceramic Powders,"
3. F. H. Norton, Refractories, 3rd Ed. McGraw-Hill, New York, 1949, pp. 130-139.
G. L. Barna, "Automatic Friction Press," presented at Pacific Coast Regional Meeting. American Ceramic Society, Oct. 24, 1974.
M. W. Gormly, "Technical Aspects of Vitrified Grinding Wheel Manufacture: III Mix-
ing and Molding," Amer. Ceram. Soc. Bull., 37 (4), 189-192 (1958) ing and Molding," Amer. Ceram. Soc. Bull., 37 (4), 189-192 (1958).
B. A. Jeffery, "Method of and Apparatus for Shaping Articles," U.S.
7. B. A. Jeffery, "Method of and Apparatus for Molding Materials," U.S. Patent 2,152,738 (1939) (to Champion Spark Plug Co.).
8. C. Orr, Jr. Particulate Technology, MacMillan, New York, 1966, pp. 400-427.
,
York, 1966, pp. 27-49.
44 (10), 513-522 (1961).
S. Levine, "Organic (Temporary) Binders for Ceramic Use," Ceram. Age, 39-42 (January 1960) and 25-36 (February 1960).
C. A. Bruch, "Problems in Die Pressing Submicron Size Alumina Powder," Ceram. Age, 44-47 (October 1967).
O. J. Whittemore, Unpublished research, University of Washington, Seattle.
A. W. Mohr, "Pressing Problems Not Unique," Ceram. Age, 24 (December
A. W. Mohr, "Pressing Problems Not Unique," Ceram. Age, 24 (December 1970).
B. A. Jeffery, "Preparing and Molding Material," U.S. Patent 2,251,454 (1941)
T. F. Berry, W. C. Allen, and W. A. Hassett, "Role of Powder Density in Dry Pressed Ceramic Parts," Amer. Ceram. Soc. Bull., 38 (8) 393-400 (1959).
D. J. Calkins, "Ceramic Powder Compaction by a Brittle Fracture Mechanism Using a
Glass Sphere Model," Ph.D. Thesis, University of Washington, Seatte, 1970.
M. Y. Balshin, "The Theory of the Process of Pressing." Vestnik Metalloprom, 18 (2) 124-137 (1938).
C. L. Huffine and C. F. Bonilla, "Particle-Size Effects in the Compression of Powders." R. W. Heckel, "Analysis of Powder Compaction Phenomena," AIME Trans., 221 (5) 1001-1008 (1961).
D. B. Leiser and O
D. B. Leiser and O. J. Jr., Whittemore, "Compaction Behavior of Ceramic Particles,"
Amer. Ceram. Soc. Bull., 49 (8), $714-717$ (1970).
A. R. Jr. Cooper and L. E. Eaton, "Compaction Behavior of Several Ceramic
Powders," J. Amer. Ceram. Soc., 45, 99, 97-101 (1962).
27
Adhesion Forces in
Agglomeration
Processes
H. Rumpf
H. Schubert
Agglomeration occurs naturally in powders because of adhesion forces that always act between fine particles. In some important cases agglomerates (granules) are formed intentionally by the addition of a liquid or binder. Because the behavior of powders is so strongly affected by agglomeration processes, this chapter focuses on the nature of agglomeration forces and the factors that affect these forces.

GENERAL CONSIDERATIONS

For particles larger than 1 cm , gravity forces acting on particles are much larger than the natural adhesion forces between particles. If the particle size is reduced, the gravity force decreases very rapidly (by the third power of particle diameter), while natural adhesion decreases approximately by the first or second power of diameter. With $1 \mu \mathrm{~m}$ particles, for example, van

General Considerations $\quad 359$

3. Liquid bridges. 4. Capillary liquid. 5. Viscous binders.

As an approximate rule, the adhesion forces increase in order from 1 to 6 . Chemical bonds are not specifically listed because they normally do not

Adhesion Forces in Agglomeration Processes
der Waals adhesion forces are about six orders of magnitude larger than gravity. Figure 27.1 shows this feature. Gold spheres of $10 \mu \mathrm{~m}$ diameter are adhering to a glass surface by van der Waals forces only. They stick as they come together, with negligible influence of gravity force. This is the world of fine particles; their behavior depends much more on surface phenomena than on volume forces.

To overcome adhesion forces by volume forces, we have to apply high centrifugal forces of about 10^{5} to 10^{6} times gravity. The result of such an experiment is shown in Figure 27.2. Gold particles of about $10 \mu \mathrm{~m}$ diameter, adhering to an originally plane anthracene surface, were submitted to high centrifugal forces until some of them flew off. Before flying away they plastically deformed the anthracene surface by van der Waals adhesion forces only.

Other adhesion mechanisms are realized by liquid or solid bridges. In the example srystallizing salts.

The principal bonding mechanisms of agglomerates are as follows:

1. Electrostatic.
2. Van der Waals.

> Adhesion Forces in Agglomeration Processes

occur unless a solid bridge is formed. An exception is paper, where the fibers adhere by hydrogen bonds. Chemical bonds of course can be effective between solid surfaces and liquid and can cause adhesion by viscous binders. With liquids of low viscosity, surface tension and capillary phenomena are responsible for adhesion. The bonding mechanisms listed above are discussed in detail in the sections that follow.

BONDING MECHANISMS

Electrostatic Forces

 from one to the other because of differences in the electronic work functions at both surfaces. This gives rise at equilibrium to a contact potential difference U that ranges between 0 and 0.5 V , depending on the two materials. The work functions of surfaces depend on local impurities and are often unknown.

The adhesion force F acting between two conducting spheres of radius R is given by ${ }^{1}$

$$
\frac{U^{2} R}{a_{0}}
$$

where $\epsilon=$ dielectric constant of the gas
$\epsilon_{0}=$ absolute dielectric constant of vacuum

a_{0} is assumed to be on the order of interatomic dimensions (e.g., 4×10^{-8} cm). Similarly, expressions exist for sphere-plane surfaces and plane-plane surface interactions. ${ }^{1}$

The adhesion forces between nonconductors are smaller than between conductors. In nonconductors the accumulated charges may extend up to a depth of about $1 \mu \mathrm{~m}$, while conductors may have charges concentrated in a layer of a few angstroms at the surface.

After a quick separation of particles, half of the charge remains on the separated surfaces, giving a surplus charge that may be neutralized in time according to the conductive conditions. The largest surface charge densities are realized if particles are contacted and separated many times, for instance, by impact in pneumatic conveying or by impact grinding. The bution has been measured ${ }^{2}$ for quartz and limestone particles that were subjected to a deagglomerating impact treatment. The

Bonding Mechanisms
maximum surplus charge density found was around 100 elementary charges
 V / cm at the surface. Fracture also produces surplus charges on the new surfaces.

Spherical particles of opposite surplus charge densities σ_{1} and σ_{2} attract each other according to Coulomb's law:

$$
F=\frac{\pi}{4 \epsilon_{0}} \frac{\sigma_{1} \sigma_{2} x^{-}}{[1+(a / x)]^{2}}
$$

where $x=$ diameter of the spheres
$a=$ distance of separation between the spheres
With ideal insulators, this formula also gives the adhesion forces in the case of contact.

Van der Waals Forces

 power law. We speak of the same forces, the London-van der Waals dispersion forces, which are due to fluctuating dipoles and which are found with

 Waals adhesion force F is inversely proportional to the square of the distance a between their surfaces according to the formula:

$$
\frac{H \Delta}{16 \pi} \frac{R}{a^{2}}
$$

where $\hbar \bar{\omega}$ is the Lifshitz-van der Waals constant, which ranges between I and 10 eV depending on the materials in contact. Thus van der Waals adhesion forces are not short-range chemical bonds between the surface molecules only. They depend on the whole solid continuum near the surfaces and
 still measurable up to distances a of about 500-1000 A (far above the effective range of single chemical bonds). Lifshitz has derived a so-called macroscopic theory of van der Waals adhesion forces, applying Maxwell's equations to the electrodynamic fields in the solid continua. A study of the van der Waals interaction is given by Krupp. ${ }^{1}$

Liquid-Bridge Forces

 The shape of a liquid bridge is such that the capillary pressure in the bridge is the same in the whole volume (if gravity is negligible). This means that the mean radius of curvature is the same at all points of the surface. We have evaluated the exact solution of the corresponding differential equation for all radially symmetrical geometries of the contacting bodies with variable distances, bridge volumes, and contact angles. The results are available in the form of a set of diagrams. ${ }^{3.4}$

Figure 27.4 gives the results of calculation for the case of two spheres where the contact angle δ is zero. Here, F is the adhesion force, γ is the surface tension, and x is the diameter of the spheres. The quantity $F /(x \cdot \gamma)$ is a dimensionless adhesion force F_{H} that can be conveniently plotted as a function of a / x, where a is the distance between the two spheres. Curves for different V_{l} / V_{1} ratios are plotted, where V_{1} and V_{0} are the volumes of liquid and the two spheres, respectively. The maximum F_{H} is equal to π, when a / x is zero and V_{t} / V_{s} is zero. With increasing V_{t} / V_{s} the force-distance curves become less inclined. For V_{1} / V_{1} greater than 0.1 , the force is nearly independent of distance.
 Function of the distance ratio a / x.
 diameter for a sphere adjacent to a plane surface. The Lifshitz-van der Waals constant $\not \bar{\omega}=5 \mathrm{eV}$ is relatively high; the contact potential difference $U=0.5 \mathrm{~V}$ and the surface charge density $\sigma=100 \mathrm{C} / \mu \mathrm{m}^{2}$ are both maximum values; the liquid-bridge angle $\beta=20^{\circ}$ gives a medium value of
 large as the van der Waals forces, which are by an order of magnitude greater than electrostatic adhesion forces between conductors, due to contact potential, and these are again about 100 to 10 times as great as adhesion forces due to maximum surplus charges of opposite sign.

Solid Bridges

чıรัว
 conditions. Pietsch's experiments ${ }^{5}$ have illustrated rather comprehensively the different tendencies. We are presently investigating these effects under still more defined drying conditions.
Sintering is a field of research of its own. The different sintering mechanisms have been studied intensively by many researchers. We are

 region of $0 \leq S \leq 0.3$. region

Bonding Mechanisms and Strengtn of Agglomerates
The factor $\%$ differs from Frenkel's ${ }^{6}$ factor, which is $\%$. The difference is practically unimportant. However, Frenkel's derivation of the velocity field in the sphere and sinter neck is not exact in the sense of a rigorous theory. If the force F_{t} is only van der Waals adhesion, we get
 $\gamma=500$ dynes $/ \mathrm{cm}$, $\hbar \bar{\omega}=5 \mathrm{eV}$, and $a_{0}=4 \times 10^{-8} \mathrm{~cm}$, the relation of the surface force term ($4 / \mathrm{s} \gamma$) to the adhesion force term ($\hbar \bar{\omega} / 80 \pi^{2} a_{0}{ }^{2}$) is 63:1. The van der Waals adhesion can therefore be neglected.

A compression force ($F_{\mathrm{co}} \approx F_{t}$) has the same influence as the surface
energy, if
For moist agglomerates having less than 30% of the void spaces filled with liquid, a theoretical tensile strength can be calculated from the mean value of the number of contact points times the adhesion force component in the tensile strength direction. The average adhesion force depends on the

Bonding Mechanisms and Strengin of Agglomerates
The factor $1 /{\text { differs from Frenkel's } s^{0} \text { factor, which is } ~}_{4 / 4 \text {. The difference }}$
 pression forces have a greater influence on the early stage of sintering. If,

 $x_{2}>3.14 \mathrm{~N} / \mathrm{cm}^{2}$. For a calculation of the sinter neck radius, the viscosity η should be known, but this value is generally not obtainable.
For $\gamma=500$ dynes/cm we get

$$
\frac{\epsilon}{1-\epsilon} \cdot P_{\text {isoss }} \approx \frac{F_{\mathrm{co}}}{x^{2}}=\frac{3.14 \times 10^{2}}{x / \mu \mathrm{m}} \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}
$$

$$
\frac{F_{c o}}{x^{2}}=2 \pi \frac{\gamma}{x}
$$

```
\(\frac{F_{c o}}{x^{2}}\)
```

```
\(\frac{F_{c o}}{x^{2}}\)
```

$\quad \frac{F_{\mathrm{co}}}{x^{2}}=2 \pi \frac{\gamma}{x}$
$\frac{\epsilon}{1-\epsilon} \cdot P_{\text {iscost }} \approx \frac{F_{\mathrm{co}}}{x^{2}}=\frac{3 .}{}$
pression forces have a greater influence
STRENGTH OF AGGLOMERATES

$$
\begin{aligned}
& \frac{F_{t}}{x^{2}}=\frac{F_{\mathrm{va} w}}{x^{2}}=\frac{\hbar \omega \mathrm{p}}{32 \pi a_{0}^{2}} \frac{1}{x} \\
& \left(\frac{b}{x}\right)^{2}=\left(\frac{4}{5} \gamma+\frac{\hbar \omega}{80 \pi^{2} a_{0}^{2}}\right) \frac{t}{x \eta}
\end{aligned}
$$

- interested in the first stage of sintering, where adhesion forces are reinforced by sintering effects. If, for instance, a powder with a relatively low melting point is stored for a long time, the particles stick together and the
 In this first stage of sintering, the driving forces are surface tension γ and a force F_{t}. The force F_{t} can be the sum of a compression force $F_{c 0}$ and the
 be neglected in the very first stage of sintering.

The resistance is usually related to viscous flow or creep, which is expressed by the viscosity η. We are interested in the growth with time of the sinter neck radius b (Figure 27.6) between two spheres of diameter x. The temperature is constant, and the variables are $b, x, \gamma, \eta, F_{t}$, and t. From a dimensional analysis it is found that

$$
\left.\frac{F_{t} \cdot t}{\eta \cdot x^{2}}\right)
$$

The analytical solution is based on a differential energy balance. In the time element $d t$, the dissipational energy due to viscous flow must be equal to the
 gives

 culated from the measured capillary pressure. Figure 27.8 also shows that which is about three times as great as (the liquid-bridge state). (the liquid-bridge state).
The measured tensile s
ration is realized by drainage or by imbibition. The capillary wher the satudrainage is much higher than after imbibition at comparable S (Figure 27.7), because the porous system is a sequence of caverns and necks. With drainage the capillary pressure depends on the radii necks; with imbibition it depends on the radii of curvature in thature in the The tensile stress/strain behavior of wet agglomerates is shown in Figure 27.8 for limestone pellets made from $65 \mu \mathrm{~m}$ particles. The maximum stress and maximum strain both increase with increasing saturation. If we compare the curves for drainage with $S=0.65$ and those for imbibition with $S=0.68$, we see that the somewhat smaller maximum stress in the case of imbibition is reached at a much greater strain. When, after imbibition, the agglomerate is strained, the liquid situation is changed into drainage. So approximately the same stress is reached, combined with much greater strain. This can quantitatively be derived from capillary-pressure hysteresis

Adhesion Forces in Agglomeration Processes

Figure 27.7. Capillary pressure p_{n} and tensile strength σ_{x} as a function of the liquid saturation
に
 is real contact combined with elastic and probably plastic deformation. At other points the distance is still larger but small enough to transmit adhesion forces. Each contact is characterized by a force-elongation curve. If the whole agglomerate is strained, the total force, transmitted in a certain cross-sectional area, is the sum of the contact forces. At a certain total elongation a maximum total force $T_{\max }$ is reached. The breakage occurs in the cross-sectional area with the smallest $T_{\text {max }}$. This gives the tensile strength. In the simplified theory it is supposed that all contact forces in the normal direction are equal in the case of breakage. It has been shown experimentally that this simplified theory is applicable to large monosized spheres and the liquid-bridge bonding mechanism. ${ }^{7}$

If more than about 80% of the void space between the particles is filled with liquid (capillary state, liquid saturation $S>0.8$), a capillary suction together by the outer pressure. The tensile strength σ_{z} equals the product P_{k} together by the outer pressure, T he tensile strength σ_{z} equals the product P_{k}
times S.

We have
saturation, and tensile/strength with wet limestone powders. In Figure 27.7 capillary pressure (P_{k}) and tensile strength of agglomerates $\left(\sigma_{z}\right)$ made from
 $1 / \mathrm{mm}$

Figure 27.10. Adhesion force F of liquid bridges between sphere and half space as a lunction of the radius r of a roughness peak. Parameter is the relative vapor pressure p / ρ_{o}
since the distance r is decreasing. On the right side of the minimum, the large sphere has no more influence and the van der Waals adhesion force

 particles of 10^{-2} to $10^{-1} \mu \mathrm{~m}$ are placed between the spheres. In practice this
 very fine silica powder of 10^{-2} to $10^{-1} \mu \mathrm{~m}$ particle size.

Liquid bridges are much less sensitive to roughness peaks if the bridge
 very sensitive to roughness peaks as shown in Figure 27.10 in the case of very small liquid bridges due to capillary condensation.

Again the adhesion force is plotted against roughness peak radius r. The radius of the large sphere is $R=5 \mu \mathrm{~m}$. The liquid-bridge force for $\beta=20^{\circ}$
 of the liquid bridge formed by capillary condensation depends on the relative vapor pressure p / p_{0} and is calculated according to Kelvin's law. At a
 the plate. At a certain size r of the roughness peak, the bridge between the large sphere and the plate bursts and only a small bridge between the small sphere and the plate remains. The adhesion force drops abruptly and rises

In general, tensile stress, shear stress, and strain experiments are necessary to understand and predict the mechanics of agglomerates. ${ }^{8-\theta}$

OTHER INFLUENCES ON ADHESION FORCES
 OTHER INFLUENCES ON ADHESION FORCE

Influence of Surface Roughness on the Adhesion Forces

In reality adhesion forces can be considerably changed by surface roughness. The influence of surface roughness is maximum with van der Waals forces, since they depend sensitively on the microgeometry in the contact region, while electrostatic adhesion of ideal insulators with opposite surplus charges is independent of the contact geometry and distance as long as $a / x \ll 1$.

The quantitative relations are demonstrated in Figure 27.9 for a sphere with radius R supporting a half-spherical roughness peak of radius r, which is in contact with the half space. The calculated adhesion force is plotted against the radius r of the roughness peak. The van der Waals forces are calculated for $R=0.5,5$, and $50 \mu \mathrm{~m}$. Each of the three curves has a sharp minimum that lies some orders of magnitude below the maximum value for the smooth sphere with $r=0$ or $r=R$. At the minimum both the small and解解 force. On the left side of the minimum, with smaller r, the attraction due to the large sphere increases, w
t
th
th

Figure 27.9. Adhesion force Fot liquid bridge, van der
Waals, and electrostatic interaction between a sphere and a half space as a function of the radius r of a roughness peak.

空
$\frac{d F_{\mathrm{so}}}{d F_{\mathrm{co}}}=\frac{P_{\mathrm{vow}}^{\prime \prime}}{p_{\mathrm{pl}}}=0.8 \times 10^{-\mathrm{s}}$
with $\quad P_{\mathrm{vdW}}^{\prime \prime}=(0.3-0.6) \times 10^{4} \mathrm{~N} / \mathrm{cm}^{2} \quad$ we get
$\rho_{\mathrm{pl}}=(3.8-7.5) \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}$ This value is in satisfactory agreement with Equation

This value is in satisfactory agreement with Equation 1 for $p_{\mathrm{pl}}^{\mathrm{H}}=10^{6}$ $\mathrm{N} / \mathrm{cm}^{2}$, measured with quartz-glass spheres. ${ }^{11} p_{\mathrm{p} 1}>p_{\mathrm{p} 1}^{\mathrm{H}}$ indicates an elastic

 der Waals adhesion pressure in the contact area. From Equation $1 p_{\mathrm{pl}}^{\mathrm{H}} / p_{0}=$ 0.9 to 0.95 can be estimated.

In tableting and briquetting F_{co} / x^{2} reaches values on the order of some $10^{5} \mathrm{~N} / \mathrm{cm}^{2}$ instead of $126 \mathrm{~N} / \mathrm{cm}^{2}$ as in the experiments referred to above. It
 higher values of $F_{c o}$ for, in addition to the elastic stress, grinding will take

 pression forces.

In general, the calculation of adhesion forces and the relevant influences indicates the tendencies. But they are restricted to geometrical models that

 distribution of adhesion forces. They often are log-normal distributed and range over one to two orders of magnitude.

SUMMARY

Aggiomeration is due to different adhesion mechanisms. We have a most comprehensive knowledge of the liquid capillary mechanism in moist agglomerates with above 80% saturation. The liquid-bridge adhesion mechanism has also been very well studied theoretically. Van der Waals adhesion

 normally smaller. An additional compression force increases particle adhesion by changing the particle position from one-point to more-point contact and, after that, by plastic deformation if the compression force is higher than about 400 times the original adhesion force. A new formula for the first stage of sintering is presented that can be used to assess the influence of a compression force in comparison with surface tension.
and the compression is isostatic, the relation between isostatic pressure $P_{\text {toot }}$
and the compression force $F_{c o}$ at the contact points is
 $P_{\text {ibot }}=\frac{1-\epsilon}{\epsilon} \cdot \frac{F_{c \rho}}{x^{2}}$
In a bulk powder with $\epsilon \simeq 0.5$, we get $P_{\text {tsot }} \simeq F_{\text {co }} / x^{2}$.
The values $F_{\text {co }} / x^{2}$ are given in Figure 27.11. Pressures between 1 and 10 $\mathrm{N} / \mathrm{cm}^{2}$ are very common in bulk powders.
In Figure 27.12 the median values F_{50} of the distribution curves in Figure 27.11 are plotted against the compression force $F_{c o}$. At $F_{c o}=0$ the adhesion force is $F_{\text {so }}(0)=10^{-7} \mathrm{~N}$. It increases very steeply with relatively small compression forces until the threefold adhesion force $F_{80}=1.2 \times 10^{-6} \mathrm{~N}$ is this first region the contact position changes from one-point to more-point contact. Above $F_{50} \simeq 10 F_{50}(0)$ the adhesion force. increases linearly with F_{co}, with

$\frac{d F_{50}}{d F_{\mathrm{co}}}=0.8 \times 10^{-8}$

If the increase of adhesion is due to plastic deformation, we derive from

Figure 27.12. Mean adhesion force F_{10} as a function of the compression force $F_{c o}$ for
limestone particles.
The authors are indebted to Dr. Sommer for his substantial contribution to the sintering calculations, W. Schutz for his measurements of adhesion forces, W. Muhr for his calculations of electrostatic forces, and K. H. Sartor and K. Schaber for their calculations of liquid bridges. This work was kindly supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg.

1. H. Krupp, "Particle Adhesion. Theory and Experiment," Adv. Colloid Interface Sci.. I (2). 111-239 (1967).

REFERENCES

ACKNOWLEDGMENT

28

Strength and Microstructures

This account, based on published and unpublished information, reviews the

 ing microstructures. The nonplastic additions were coarse or fine quartz Madagascar and Mexican graphite. All except the glass spheres had been comminuted industrially.
SOME FACTORS AFFECTING DRY STRENGTH
The bonds broken during dry strength tests are not commonly intrabetween these are between clay-mineral platelets or their aggregates, or for instance, are not usually fractured during tests. The nature of the bonds
is discussed elsewhere. ${ }^{1,2}$ Evidence is presented that the bonds, although of several types, are often ionic. The ions involved may remain incompletely dehydrated, even in test pieces dried at 105 to $110^{\circ} \mathrm{C}$.

Transverse strength tends to increase with the number of bonds per unit bulk volume and with the extent of the surface over which an individual bond produces effective adhesion. Strong bonds need not imply strong test
 because they contain abundant flaws. ${ }^{1,2}$

Transverse strength is influenced not only by bonds, but by the effectiveness of flaws in concentrating the applied stresses and thus breaking the bonds. A connection between this effectiveness and the porosity of the test piece may be anticipated. However, ions originally present in the interstitial water not only affect the porosity and pore characteristics of the dried test piece, but also contribute to the bonds. Thus bonds and the microstructures within which they exist are not independent variables. ${ }^{1,2}$

Dried clay-containing test pieces, with or without nonplastic additions, often have apparent porosities of 20 to 40%, and their strength commonly increases with decreasing porosity. Frequently, however, no obvious quantitative relation is discernible between strength and porosity. ${ }^{1-5}$ Indeed, within limits, strength and porosity can increase together. ${ }^{1,2,4}$ The absence of a

 material, accessible to the fluid used in determining it. It neglects pore size, shape, and size distribution. For instance, a pore may have an overall shape
 really dangerous flaws might be slotlike spaces between clay-mineral
 of packets in contact with the basal planes of platelets in adjacent packets could constitute further regions of dangerous flaws, although the void spaces in these regions might contribute little to the total porosity. ${ }^{1,2}$

Most clay-mineral crystals are flat and thin. The same is true, in greater or lesser degree, for Madagascar graphite flakes, cleavage fragments of tremolite, and grains of ground quartz, glass, and Mexican graphite. Tremolitic talc and especially asbestos contain fibrous particles.

During extrusion these shape factors promote particle orientation and, as a result, pore orientation and interconnection. Dry strength is thus anisotropic. ${ }^{1,2}$ Extruded test pieces are broken across, not along, planes or directions of particle and pore orientation, and thus higher, not lower, strength values are ascertained. These strength values may become higher still if the interstitial liquid in the plastic mixture contained dispersants, because these promote more intense particle parallelism and closer particle

Some Factors Affecting Dry Strength

379
packing. The dispersants may resulted from reactions between the interstitial liquid and solid marticles of feldspar, nepheline syenite, glass, ${ }^{5}$ and so forth, which release alkali metal ions.
The
acidic in the absence of exs in clay-water systems are commonly somewhat between the clay and the water occurs progres alkalies. However, interaction ion exchange, but also gradual chemical decompely and involves not only The resulting changes in the nature and concentration of the ions produce corresponding changes in the degree of flocculation of the clay minerals and, ultimately, in the microstructure and the associated clay minerals dried clay. Such changes are among the factors that cause dry strength to vary with the time and temperature of contact between the clay and water

 to change with the time and temperature of aging in the plastic state, ${ }^{2}$ although no reference to relevant experiments has been found.

Extrusion produces not only particle parallelism resulting from laminar plastic flow, but also slip bands, caused by compression within which the clay-mineral platelets lie at large angles to the surface, which is under tension during cross-breaking (Figure 28.1). In some circumstances these slip bands weaken the test piece. Planes or directions of particle orientation that are favorable for higher strength are not in these slip bands but instead are in the matrix. Those in the bands are not as favorably oriented and can cause fracture

Figure 28.1. A schematic section containing the axes of an extruded clay cylinder (with corproduces tensile stresses in the directions of the arrows. Traces of the clay platelets are represented by lines.
Table 28.1 Screen analysis of Madagascar (flaky) ${ }^{\text { }}$ and Mexican
(non-flaky ${ }^{10}$ graphites

	Percentage Weights Retained on U.S. Standard Screens								
Source									
	20	30	40	50	60	70	80	-70	-80
Madagascar	0.2	1.1	16.5	68.2	81.0	92.6	ND	6.8	
Mexico	ND	ND	8.3	46.5	79.5	88.8	97.9		2.3

often small. As an approximation the packets can be regarded as lying in a series of cylindrical shells, coaxial with extruded cylinder, with the widest shell having the diameter of the cylinder. The cylinder underwent a large reduction in diameter when forced through the circular orifice of the die. Thus there was no obvious tendency for the packets to lie on paraboloidal surfaces, convexly curved in the direction of flow, although this tendency was very apparent in certain cylinders extruded under other conditions. ${ }^{11}$ More specifically, the clay-mineral packets tended to be parallel to the axis of the cylinder and, towards the exterior, parallel to the curved surface (Figure 28.1).

The added nonplastic grains were mostly much coarser than the claybe flat, and the preferred orientation of their greatest cross-sectiond to resembled that of the major surfaces (basal planes) in the clay-mineral
 tended to parallelism with the axis of the cylinder, especially in its outer layer (Figure 28.1).

Slip bands were very variable in thickness and often less than $12 \mu \mathrm{~m}$ wide.

 with the extruded cylinder. Within each set the cones followed each other successively and each cone protuded into the one ahead. One set pointed in
 a section containing the axis of the cylinder, the traces of the slip bands intersected at about 90° and met those of the curved surface at approximately 45°. The clay-mineral packets in the slip bands lay at small angles to their wall (Figure 28.1).

Electron microscopy did not show conclusively whether the slip bands terminated at the actual curved surface of the cylinder or beneath the very
 surface. At the magnification of the optical microscope, the slip bands appeared to reach the surface itself.

The preparative, extrusion, testing, microscopical, and fractographic techniques were essentially those already described, ${ }^{9,6}$ but in addition some specimens were examined by scanning electron microscopy. The plastic bodies had water contents slightly below those at their sticky points. Data on the materials used, summarized here, are given more fully elsewhere. Similarly, the results of strength determinations appear in simplified form, although their validity was checked statistically in many instances.

The clay was largely kaolinite ${ }^{8,6}$ with some micaceous minerals. Its particle-size distribution included $50 \mathrm{wt} \%<1.0 \mu \mathrm{~m}$ esd (effective sieve diameter). An original water content of $39.6 \mathrm{wt} \%$ corresponded to a dry modulus of rupture of 775 psi .

The coarse and fine quartz particles were somewhat flat angular chips. A weight distribution ${ }^{3,6}$ of the coarse quartz, on U.S. Standard Screens, was $+140 / \mathrm{Tr}$., $-140+200 / 2.3 \%,-200+230 / 4.1 \%,-230 \times 270 / 33.7 \%$, -270/59.9\%.

The two different samples ${ }^{7}$ of finer quartz were quartz A (specific surface $2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$) and quartz B (specific surface $0.5 \mathrm{~m}^{2} \mathrm{~g}^{-1}$). They had an average particle size of 1.1 and $4.2 \mu \mathrm{~m}$, respectively.

The tremolitic talc used also contained considerable talc and antigorite, as indicated by X-ray diffraction. ${ }^{\text {s }}$ Polarizing microscopy revealed many cleavage fragments of tremolite, with some fibrous mineral constituents. The particle-size distribution of the total material included 81,43 and 12 wt $\%<49,15$ and $1.3, \mu \mathrm{~m}$ esd, respectively.

The chrysotile asbestos had a wide range of fiber lengths, but 95% of its fibers were less than 13.5 mm long. The fibers were bundles of fibrils, each about 200 A across, and were not very open structured. ${ }^{4}$

The crushed glass was composed of rather flat, sharp chips that, on U.S. Standard Screens, gave approximately $+100 / 0,-100+200 / 75,-200 /$ 25%. The glass spheres had a similar size distribution. ${ }^{5}$

Weight distributions, on U.S. Standard Screens, of the Madagascar (flaky) and Mexican (nonflaky) graphites appear in Table 28.1.

syganitx a aganylxa do saynlonylsogoin

 The cylinders contained packets of mutually parallel clay-mineral platelets. The plane of mutual parallelism within each packet, which is the basal plane of the clay-mineral crystals, was angularly related to the corresponding planes in neighboring packets, although the angular differences wereWhether or not the slip bands ended at or beneath the curved surfaces, fractography demonstrated that test pieces frequently failed along them. ${ }^{3}$ Such bands contained slotlike pores between clay-mineral platelets or between their packets, which lay across the directions of the applied stresses and were thus likely to be sites for the initiation and propagation of the cracks that lead to failure. The measured transverse strength is probably affected, not only by the mere presence of slip bands, but by their periodicity and width and by variations of the microstructure within them. Among factors that might influence these characteristics are the mineralogy, particle-size distribution and water-content of the clay, the ratio between the diameters of the extruder reservoir and orifice, and the rate of extrusion. Relevant published information is minimal, although there is evidence that more rapid extrusion reduces the distance between the successive slip bands, while, at similar extrusion rates, the distance increases in coarser-grained bodies. ${ }^{12}$
 $25,20,25$, and $25 \mathrm{wt} \%$ respectively, was added, produced corresponding increases in modulus of rupture of $4,47,27$, and 9%, respectively. Reduction in the water content of the clay-quartz mixture from 39.6 to $29.3 \mathrm{wt} \%$ changed the strength increase from 4 to 16%. This was the only mixture for which the effects of varying the water content, as well as the proportion of nonplastic grains, were studied in detail. 3.0

Strengthening resulted from the simultaneous operation of two mechanisms, while, for glass, a third was involved concurrently. Added nonplastic grains tended to reduce the number of slip bands per unit length of extruded cylinder, so that fewer dangerous flaws occurred on the surfaces under tension and the test piece appeared stronger. It was noticed that the addition of most nonplastics increased the pressure required to initiate extrusion. ${ }^{6,9,10}$ This, presumably, implied that the plastic mass had become more resistant to the compressional stresses necessary for the formation of slip bands. Added glass, however, lowered the pressure required for extrusion ${ }^{6}$ because it produced an interstitial alkaline solution that dispersed the clay and allowed it to flow more readily. As might be expected, slip bands remained relatively abundant unless the mixtures were very rich in glass (50 wt \%).

Many nonplastic particles were large enough to project into or across those slip bands that had been able to develop in their presence. These produced strengthening by impeding the propagation of cracks. For continued growth, cracks had to circumvent obstructing particles that, because lengths across the slip bands and the paths of the cracks therein (Fig. 28.1). Cracks arising from flaws in the matrix of the slip bands would encounter similarly oriented nonplastic grains athwart their paths. However, it is not yet known whether nonplastic grains impede the nucleation and the continued growth of cracks.

Increasing additions of coarse quartz grains changed the fractography of test pieces from angular and faceted because of failure along intersecting systems of slip bands, to relatively smooth because the slip bands had been reduced in number and continuity. ${ }^{8}$ These changes were obvious to the unaided eye. Similar changes were observable in test pieces of some of the mixtures containing nonplastics other than quartz. However, mixtures containing asbestos ${ }^{4}$ were notable for irregularly fractured surfaces, often without marked faceting, from which fibers not only protruded, but sometimes linked the two halves of the broken test piece. Here part of the total fracture mechanism involved rupture at clay-fiber boundaries and the partial or complete withdrawal of fibers from their clay sheaths.

STRENGTH INCREASES PRODUCED
 BY CRUSHED GLASS

There was evidence that crushed glass caused strength increases, not only
 tion of cracks along them, but also by producing an interstitial alkaline solution that dispersed the clay. ${ }^{5}$ Thus the intermittent shaking of $50 \mathrm{wt} \%$ of glass in water, during 6 hours at room temperature, produced a supernatant solution of pH 10 . When the clay was tempered with this solution, instead of with distilled water, its transverse strength increased by 9%. Although the interstitial solution in the clay-glass mixtures might not have attained so high a pH , it may be reasonably expected to disperse the clay
 decrease in the percentage of apparent porosities of the dried test pieces that accompanied the addition of increasing weights of glass to the clay.
 the glass fragments developed mantles of clay-mineral crystals having their basal planes approximately parallel to the surface of the substrate. This was found by examining thin sections. Such occurrences resemble the ionotropic deposition of clay-mineral platelets that occurs, for instance, around sodium chloride crystals that are in contact with aqueous suspensions of montmorillonite. ${ }^{15}$

The clay mantles around glass fragments implied the presence of boundary regions that, in the dry state, might be conducive to the overall strength of the clay-glass mixture. That such boundary regions were relatively strong was suggested by the reported adhesion between clay and glass, d, they If clay mantles developed around the other nonplastic grains studied, they were not obvious in thin sections, although they are known to form aroand clay suspensions through columns of quartz grains. ${ }^{16}$

snollonagy hlongyls ktno onisnvo snolliady

Fine quartz A and B^{7} and Madagascar ${ }^{9}$ and Mexican ${ }^{10}$ graphites resulted in $15,3,15$ and 24% reductions in the modulu which seems improbable, they must have ccompanied smaller additions than those investigated.

Numerous slip bands still developed in the presence of the percentages of added quartz or graphite cited. The quartz grains, especially those in quartz A, were commonly too small to lie across the slip bands and thus too small to increase the strength in the manner possible for coarse quartz. Thus it could be argued that the modulus of rupture need not fall below that of the clay without admixture because, in this clay, the number of slip bands that exert some control on the measured strength is not less than that in the clay containing the fine quartz. The observed strength reduction could result, however, from the very numerous clay-quartz boundaries (potential sites for dangerous flaws) exposed on the surfaces under tension during testing.
 specific surface of the quartz grains. In accord with these concepts, quartz A, which had about four times the specific surface of quartz B, produced five times the percentage decrease in modulus of rupture caused by the latter. A further possibility is that, although developing slip bands tend to remove small nonplastic particles from their paths, ${ }^{12}$ some quartz grains become trapped within them and modify their microstructure in such a way that cracks can be more readily initiated and propagated.

Both strengthening and weakening of clays and bodies by added quartz has been reported but without discussion of the mechanisms involved. ${ }^{17,18}$ Examination of the published data suggests that strengthening occurred when the quartz was markedly coarser than the associated clay-mineral crystals, as was found in the present study.

Many particles of Madagascar ${ }^{8}$ and Mexican ${ }^{10}$ graphite were large enough to lie across slip bands and thus to promote strengthening, yet they
caused weakening even when only $5 \mathrm{wt} \%$ was present. Grains of the two types of graphite differed in both internal structure ${ }^{1 \theta}$ and shape. Those of Madagascar graphite were flaky, while those of Mexican graphite were irregular but had a tendency to be simultaneously somewhat flat and elongated, but not flakelike.
The stresses accompanying extrusion often fractured Madagascar graphite into small blocks, many of which remained in mutual contact. Others, near the original surfaces of the flakes, were partially or completely separated by intrusive clay or protruded into their clay matrix. ${ }^{2}$ The resulting clay-graphite boundary resembled the hooking adhints that promote adhesion between certain pairs of materials. However, because of the numerous flaws at or near the boulted
Optical microscopy suggested that Mexican, unlike Madagascar, graphite was relatively free from gross flaws, including those produced during extrusion. However, its presence weakened the test pieces, presumably because dangerous flaws developed at its boundary with the clay.
The curved surfaces of test pieces, especially of those containing Madagascar graphite, showed graphite grains, partially fractured during contact with the die surfaces to produce trails of finer fragments. Often there existed a larger fragment ahead of the trails that was a remnant of the
 gerous flaws.
The nature of clay-graphite boundaries is worthy of further study. Clay minerals are hydrophilic, while graphite particles are sometimes regarded as essentially hydrophobic, which suggests that dried clay would not adhere strongly to graphite. However, the edge faces of graphite crystals, or sur-

 surface is hydrophilic and thus might form an effective bond with clay.
 ials that could impart some hydrophilic character to their entire surface. A sample of Mexican graphite, for instance, left 13.3% of ash, and much of this was derived from kaolinite. ${ }^{18}$ Nevertheless, the outer clay layers of
 underlying graphite grains, suggesting poor adhesion between the clay and at least part of the grain surface.
and 8%, respectively. ${ }^{8}$ During passage through the die, the glass fragments tore the clay surface and produced imperfections visible to the unaided eye. These could weaken the test piece and their effects can be overcome only when sufficient glass is present to strengthen the clay by the mechanisms previously discussed.

When $50 \mathrm{wt} \%$ of glass spheres, similar in size to the crushed glass fragments, was added to the clay, the surface imperfections just described were not obvious. However, the modulus of rupture was reduced by 25%. This weakening may be caused by the ability of a crack, propagating in a slip
 glass chip, often lying with its greatest cross-sectional area across the path of the crack. The slower reaction of the spheres with interstitial water, because their specific surface was less than that of crushed glass, and the consequent less-effective dispersion of the clay, may be involved also. However, the different effects on clay strength, caused by the addition of irregular and of spherical glass particles, are worthy of detailed study.

AN

Mixtures containing sufficient coarse quartz, crushed glass, tremolitic talc, and asbestos declined in strength, although smaller percentages had produced strengths above that of the clay without admixture. In the mixtures studied, the clay content was always more than adequate to cover the surfaces of the nonplastic grains. Slip bands were rare or absent in such mixtures so that dangerous flaws must be associated with other types of microstructure, including those at or near the boundaries between the clay and the nonplastic grains. For instance, the adhesion at these boundaries may be less than the cohesion within the clay itself. Moreover, the nonplastics grains were commonly larger than the clay-mineral crystals in their matrix and, unlike this matrix, they did not shrink during drying. Hence they could influence the spatial distribution or orientation of the vector linear drying shrinkage in their vicinity. The linear shrinkage is unlikely to be scalar because of the flatness of most clay particles and their tendency to common orientation. Pores might thus develop in the dried clay, near the nonplastic grains, having shapes and sizes conducive to their operation as dangerous flaws. ${ }^{20}$

Clay, in the interstices between nonplastic grains, may develop drying cracks. These reduce transverse strength and seem to form especially if increasing percentages of relatively coarse nonplastic grains are added to clay and the total water content of the various mixtures is kept constant. ${ }^{3}$ Because the clay is often more hydrophilic than the nonplastic grains and
$388 \quad$ Strength and Microstructures, dd Clay Mixtures
tributed substantially to the present account. Dr. E. W. White gave the author invaluable help in scanning electron microscopy.

REFERENCES

1. W. O. Williamson, "Strength of Dried Clay-A Review," Amer. Ceram. Soc. Bull., 50 (7), 620-625 (1971).
2. W. O. Williamson,
3. W. O. Williamson, "The Strength of Clays at Small Moisture Contents," Miner. Sci. Eng., 6 (1), 3-8 (1974).
4. F. L. Kennard III and
5. F. L. Kennard III and W. O. Williamson, "Transverse Strength of Ball Clay," Amer.
Ceram. Soc. Bull., 50 (9), 745-748 (1971). 4. F. A. Beightol, "Effects of Asbestos on the. Dry Strength of Clay," B.S. Thesis, Ceramic 5. J. Brun, "Dry Strength of Clay-Glass Mixtures," B.S. Thesis, Ceramic Science Section Department of Material Sciences, Pennsylvania State University, 1973. 6. F. L. Kennard III, "Factors Affecting the Dry Strength of Clay," M.S. Thesis, Ceramic Science Section, Department of Material Sciences, Pennsylvania State University, 1970. F. K. Koons, "The Effect of Fine Silica on the Strength of Dried Clay," B.S. Thesis, Ceramic Science Section. Department of Material Sciences, Pennsylvania State
University, 1974. University, 1974.
6. D. W. Wirth, "The Effect of Talc on the Dry Strength of Clay," B.S. Thesis, Ceramic 9. D. L. Amig, "Effects of Graphite on the Dry Strength of Clay," B.S. Thesis, Ceramic Science Section, Department of Material Sciences, Pennsylvania State University, 1973. 0. J. M. Ceriani, "Effects of Non-Flakey Graphite on the Dry Strength of Clay," B.S. Thesis, Ceramic Science Section, Department of Material Sciences, Pennsylvania State University, 1973.
7. J. H. Weymouth and W. O. Williamson, "Effects of Extrusion and Some Other Processes on the Microstructure of Clays," Amer. J. Sci., 251 (2), 89-108 (1953).
W. T. Higdon, "Studies of Ionotropy-A Special Case of Gelation," J. Phys. Chem., 62 (7), 1277-1281 (1958).
8. S. Anderson, D. Tandon, L. B. Kohlenberger, and F. G. Blair, "Strength of Adhesion of Dried Clay Slurries to Window Glass as a Function of Slurry pH," J. Amer. Ceram. Soc., 52 (9), 521 (1969).
D. I. Sideri, "On the Formation of Structures in Soil: II. Synthesis of Aggregates; on
the Bonds uniting Clay with Sand and Clay with Humus," Soil Scl., 42, 461-481 (1936). R. J. Hunter and A. E. Alexander, "Surface Properties and Flow Behavior of Kaolinite. Part III: Flow of Kaolinite Sols through a Silica Column," J. Colloid Sci., 18 (9), 846862 (1963).
E. Kieffer,
E. Kieffer, "On Testing the Binding Power of Ceramic Raw Materials," Ber. Deut.
Keram. Ges., 12 (9), 477-479 (1931).
V. Hofmann and.A. Rothe, "Plasticity and Dry Bending Strength of Kaolins and Clays
with and without the Addition of Quartz," Ber. Deut. Keram. Ges., 47 (5), 296-299 $\stackrel{\dot{\circ}}{\circ}$

29 Extrusion Defects

G. C. Robinson Extrusion is the process of shaping an object by pushing a material through an opening the size and shape of the cross section of the object. Extrusion equipment may be of two types, the piston extruder and the auger extruder.

 as 36 in . diameter pipes. The process is used to form crude natural clays or refined nonplastics, including oxides, graphite, and metal powders.
 These include lamination, surface and edge tearing, bridge and core crack-

 chapter.

The flow pattern of material through the conveying zone of the equipment and then through the forming zone is significant to extrusion quality. Flow is the result of a force applied to the extruded mass that causes its forward

Flow Characteristics

391

MATERIAL FLOW DURING EXTRUSION
movement. Forcing a Newtonian liquid through an orifice in a cylinder results in a straight-line relationship between the applied force and the rate of flow. In contrast, a Bingham plastic substance requires an initial force to start flow. This behavior is characteristic of many bodies. The slope of the rate of flow versus pressure curve is a measure of the mobility of the substance. Departures from the linear flow-pressure relationships, characteristic of dilatant and thixotropic materials, are also encoun and minimize sion of ceramic materials. To achieve extrusion control
defects, such nonlinear behavior must be kept to a minimum.

Piston Extrusion

Flow patterns occurring during piston extrusion have been studied by Astbury et al. ${ }^{2}$ Lines imprinted transversely to the direction of column flow showed that the center moves in advance of the exterior of the column. The
 Figure 29.1. The drag of the die tends to produce shear planes or cracks

45°
Figure 29.1. The influence of die taper on retardation of flow of exterior surfaces.
that extend from the surface of the column and cut across the flow lines into the interior of the column. One or both of these patterns may appear as cracks in the finished product.

Auger Extrusion

Auger extrusion will produce a pattern of flow similar to that produced by piston extrusion in the die section of the extruder. However, additional flow characteristics are developed by the auger.

Flow is not as efficient in the auger extruder. Forward movement depends on friction between the clay and the barrel lining to restrain the clay from turning with the auger. The clay must either slide on the surfaces of the auger or shear at intermediate surfaces between the auger surface and the interior barrel surface to move forward. The clay is discharged as a single rope (or multiple ropes for multiple wing augers) at the tip of the auger. The twisting of the auger causes the rope to be discharged as a coil, while the spacer and die tapers cause compression of the coil into a single column of extrudate. The hub of the auger produces the hole in the center of the coil. The coils may fracture in low-plasticity materials to produce a series of concentric and tapered cones, which are then forced together during travel through the die taper. Thus auger extrusion has the potential of producing a number of weakness planes that may develop into flaws in the finished product.

STRUCTURES PRODUCED BY EXTRUSION
 Lamination

Lamination has been the curse of extrusion since inception. There is always laminar flow in extrusion, but correct design of the die and raw-material mixture can prevent laminar flow from developing into cracks or weaknesses. The development of laminar flow during auger extrusion is shown in Figure 29.2. Lumps of different-colored clays were alternately fed into an extruder and then the column was sectioned to show the flow patterns. The section cut perpendicular to the direction of extrusion shows the characteristic circular pattern, while longitudinal sections show twin peaks of forward displacement. There is a lag in the center of the column produced by the dead zone of the hub of the auger and the resulting hole in the coiled
 of the die on the exterior surface of the extrudate. Failure of the column to be completely knitted together results in weak zones that may separate into

Structures Produced by Extru . . 395

Figure 29.4. Edge tearing; pronounced in lower, severe in middle, and aggravated by large Figure 29.4.
size grog in upper picture.

[^12]the die and the column. The clay has a low plastic strength and is incapable of surmounting the friction drag without cracking. This type of surface cracking and penetration of the cracks into the interior of the column shown in Figure 29.5.

Particle Orientation

The process of extrusion causes particles of flaky habit to orient parallel to the faces of the die. This orientation causes a greater shrinkage in the direction perpendicular to extrusion than in the lengthwise direction. Thus the flaky particles are a source of a laminated structure in a direction transverse to the direction of extrusion.

The orientation may cause a differential expansion during the removal of the last 2% of water from an extruded material. For example, comparison of the transverse and linear expansion for a 40% clay, 60% sericite mixture with the expansion of a 40% clay, 60% sand mixture has shown that the micaceous flakes of sericite cause a larger expansion and a greater differential than the rounded grains of sand.

Particle and Water Segregation
 there is a difference in composition between the surface and the interior of an extruded column. The skin of a die-slickened extrudate will show a higher
 column. The nonuniform particle size, water, and shrinkage in the column cross section can lead to cracks in the finished unit. Measurements were made at different points in the cross section of a conduit tile by Eighmie and
 volume drying shrinkage varied from 9.3 to 7.5% on different locations in one plane of the cross section.

Bridge and Core Cracking

The introduction of cores and their supporting bridgework can produce weak zones and cracks in the finished product. The selection of bridge and core configuration has been the subject of many articles but remains an art. The separation in the column caused by insertion of the bridge has been minimized by streamlining, serrating edges, and changing the separation distance from the die.

A study of bridgework design has been presented by Merry. ${ }^{4}$ There is a choice of supporting the bridge with a single cross bar or the use of an H

display internal lamination cracks. Examination of the fracture pattern occurring after strength determinations on plastic dry or fired products may reveal extrusion structures. The extrusion of different-colored materials or the application of patterns prior to extrusion may assist in examining the flow mechanisms occurring during extrusion.

[^13]

 for the drag between spacer lining and clay, and die lining and clay, which causes surface tearing and lamination.
The adhesion between substances can be evaluated by an experimental piston extruder operated without an orifice. The raw material for extrusion is packed into the cylinder by completely closing one end of the cylinder
 sand content in the plant raw material. With high sand contents, the Hbridge configurations were desirable and prevented the development of cracks. In contrast, clays with low sand content required the use of a single cross-bar configuration. Bridgew her in some parts of the cross section and may even direct and flow to other locations.

Column Splitting

 material can attempt to pull the column apart into a variety of patterns. A high-friction sandy material may pull apart in a continuous split as shown
 high friction may split into. four segments with a central twisting core shown in Figure 29.7

Enhancement of Extrusion Structure

 more apparent. When the plastic extrudate is frozen, expansion of the freez-

 under freezing conditons may not show such fault's under normal drying and firing procedures.
Liquid penetrants and fluorescent-die penetrants have been used to examine extrusion structures. Cutting apart a fired product will frequently

Figure 29.6. Column splitting in sandy material.
and pushing the material against the closure until a preselected pressure level is applied to the piston. The closure closure side of the cylinder. The slug of clay is pushed downward away from the closure side and the force required to cause movement of the clay slug through the cylinder is determined and used to indicate adhesion. The surface area of this clay slug can be measured and the adhesion is expressed as the force per unit area. The cylinder metal and its surface finish should duplicate the barrel lining auger surface, or die surface being evaluated.

Adhesion can be changed by changing the structure and composition of the metal or the extrudate. This provides a variety of potential control measures to decrease adhesion: (1) polishing the metal; (2) chrome plating the metal, (3) heating the metal, (4) increasing the water in the extrudate, (5) changing from angular to rounded particles in the extrudate, (6) adding lubricants to the extrudate, and (7) lubricating the interface between metal and extrudate. Extrusion quality and cost are optimum when the adhesion against turning is high and all other adhesions are low.

Internal Friction

 than the barrel diameter or when the compression greater than the on the open cylinder and measuring the increase in force required to
 be used and a curve is obtained of the force required versus increasing opposition to flow. Another approach is to measure the rate of flow through an opening versus the pressure causing flow.

The internal friction indicates the energy required for extrusion and the extent of "forging" desirable in extruder design. Materials of high internal friction should be extruded through equipment in which there is little size reduction occurring between the die diameter and the auger diameter. The size reduction can be large and coring extensive with materials of low internal friction.

Cohesion

Cohesion is the plastic strength of the extrudate. The stress at the elastic and plastic yield points can be determined on the extruded column by conventional means. The value is significant to extrusion quality.

A material of low cohesion will surface tear when the adhesion to the die
 appearance of surface defects. Very high cohesion will favor carryover of auger twisting into the extruded column but will lessen the forward displacement caused by spacer and die drag.

Cohesion can be increased by increasing the quantity of colloidal material in the mix, reducing the water, or adding organic plasticizers or deflocculants. Cohesion can be reduced by adding grog or other nonplastics. The smaller the particle size of a nonplastic addition, the more effective it is in reducing cohesion.

Plastic Strain

Plastic strain indicates how much you can bend or stretch the extruded column before it cracks. Plastic strain is symptomatic of lamination behavior. The higher the value of strain, the greater the forward displacement and the greater the carryover of auger twist. Any material with a than 0.10 is likely to show lamination faults. Also, such materials are difficult to dry.

High or low values of strain are undesirable. Low values of strain foretell

 strain give the best extrusion. Strain can be increased by adding plasticizers and reduced by adding small-size nonplastic particles.

The low limit of strain is influenced by the cohesion of the extrudate and,
 strain than by strain alone. A product of less than 1.0 predicts surface tearing, while a product between 1 and 4 indicates good extrusion.

Particle Shape

 These particles will orient and produce laminae across the cross section of the column without necessarily displaying any displacement structure in the direction of column flow.

Mica, sericite, vermiculite, and graphite are illustrations of flaky substances that can cause troublesome lamination. The lamination can be minimized by reducing the particle size, reducing the orientation force by minimizing die taper, or extruding at a soft consistency. Agglomerating the flaky particles into nodules of sufficient strength to resist collapse during

Drying Behavior
It is difficult to answer the question of whether or not lamination cracks are the fault of extrusion or of drying. The flow patterns and weak developed during extrusion, but plastic extrudate. The crack de gradients. Reducing the shrinkage gradients ation crack. Slower drying schedules can will reduce or eliminate the lamination crack. body composition to improve reduce lamination cracking, and lamination cracks. The addition of nonplastic improve drying behavior. Some nonparticles in two size classifications will improve dry
 to reduce drying she should be added to increase the permeability of the body. This combination will make a crack-free unit.

Abrasiveriess

The abrasiveness of the material determines the rate of wear of the metal parts of the extruder. This property helps determine maintenance cost

Figure 29.8. Drying cracks caused by Large-particle-size grog.

extrusion and selection of materials for the extruder. Thus ceramic cores will give greater life because of greater abrasion resistance than metals.

Particle-Size Distribution

Particle-size distribution is an important raw material variable. Nonplastic particles larger than 28 mesh encourage edge tearing, drying cracks (Figure 29.8), and transverse lamination cracking (Figure 29.9). Particle sizes of

 plastics are more effective than an equal quantity of larger-size particles in reducing plasticity and cohesion and working toward elimination of surface cracking.

The ideal particle-size distribution would be a somewhat uniform gradation of sizes with 30% nonplastics. Natural clays with good extrusion characteristics will approximate the foregoing suggestions for particle size and quantity of a nonplastic.

MACHINE VARIABLES THAT DETERMINE EXTRUSION

The Auger

 production, the cost of production, and the quality of the extrudate. The characteristics of the auger are explained in detail elsewhere. ${ }^{8-11}$ The significant design features of the auger are its pitch, diameter, hub diameter, taper, and number of wings.

Speed of Auger Rotation

 work of Goodson and Dodd" showed that the extrusion rate is a function of both the rate of rotation of the auger and the quantity of contained water. At any given water content there appears to be an optimum rpm that gives maximum output. Furthermore, the optimum shifts with changing water content.

The speed of rotation influences the friction developed between the barrel lining and the clay. The best speed to use depends on the type of clay. Insufficient speed will permit slipping and turning with the auger, while correct speed will hold the clay against twist of the auger. Insufficient speed will also produce heating of the material within the brick machine.
References
6. G. Caprix and A. Laratta, "Screw Extrusion of Bodies," Trans. Br. Ceram. Soc., 64 19-
7. A. J. Reed, "Auger Design," Amer. Ceram. Soc. Bull., 41 (9), 549 (1962). 8. W. J. Johnson, "Evaluation of NCPRC Research Auger," Amer. Ceram. Soc. Bull., 41 9. (9), 550-555 (1962).
9. H. H. Lund, S. A. Bortz, and A. J. Reed, "Auger Design for Clay Extrusion," Amer.
Ceram. Soc. Bull. 41 (9) 554-559. Ceram. Soc. Bull., 41 (9), 554-559.
10. J. R. Parks and M. J. Hill, "Design of Extrusion Augers and the Characteristic Equa-
tion of Ceramic Extrusion Machines," J. Amer. Ceram. Soc., 42 (1), 1-6 (1959). 11. F. J. Goodson and A: E. Dodd, Conf. Mixing Agitation Liquid Media July 1951,
Institute Chemical Engineers pp. 333-341, London. Institute Chemical Engineers pp. 333-341, London.

Extrusion Defects
obtained with a pump operating to, say, 24 in . of mercury vacuum, whereas large improvements are observed by increasing the vacuum from 25 to 29 in.

Although de-airing is universally accepted, it is sometimes inappropriate
to the particular material being extruded. Very plastic materials may give better performance with extrusion without evacuation instead of with de-airing.

The quality of the extrusion is influenced by the position of the die. The extent of separation between the tip of the auger and the die determines the tendency for one part of the column to deform forward with respect to the remainder of the column. A die position close to the auger tends to make the exterior of the column run faster than the interior. A lengthy separation between the auger tip and the die will cause the center to run fast. At a condition of balance, the column will move without a tendency for longitudinal displacements. The correct placement is a function of the material and also of the water in the material. A change in the quantity of water will change the correct die position. Incorrect placement of the die can produce column splitting or other defects in the extruded column.

Centering the die is also important to performance. An off-center die will encourage the column to twist in one direction or another and may introduce strains that will later appear as cracks. The die needs to be aligned with the center line of the auger and also with cores and bridgework. However, in some instances, cores are displaced to encourage flow of materials into sections of the die that are normally slow moving.

1. N. F. Astbury, H. R., Hodkinson, and F. Moore, "The Problem of the Clay Column," "The Mechanics of Extrusion," and "The Physics of Extrusion," papers presented at the 29th Annual Meeting of the Institute of Clay Technology, Sept. 29, 1962, Harrogate, England; Chambers Engineering News Letter No. 13.
2. G. C. Robinson, R. H. Kizer, Jr., and J. F. Duncan, "Raw Material Parameters Determining Extrudability," Am. Ceram. Soc. Bull., 47 (9), 822-832 (1968).
3. T. L. Eighmie, "The Influence of Die Parameters on the Extrusion of Structural Clay Products," Master of Science Thesis, Clemson University, 1970.
4. E. A. Hawk, "Handling the Difficult Extrusion Problem," Amer. Ceram. Soc. Bull., 33 (11), 326-327 (1956).
J. George Seanor and W. P. Schweltzer, "Basic Theoretical Factors in Extrusion
Augers," Amer. Ceram. Soc. Bull., 41 (9), $560-563$ (1962). Augers," Amer. Ceram. Soc. Bull., 41 (9), 560-563 (1962).
PART FIVE

AND
 APPLICATIONS

Tape casting is one of the latest ceramic processes practiced large commercial scale. The process is a major departure Because many details of methods of ceramic processing. published, a rather extensive treatment have not been widely is the subject of Chapter 30 . Two applications, thermal
illustrate the importance of powder characterization in these processes. In the final chapter, brief comments are provided by various members of a panel discussion on future directions in processing research.
The marriage of a more ancient art, slip casting, which is familiar to all ceramists, and doctor-blading took place within the past 25 years. Tape casting is more closely related to slip casting than to any other "traditional" ceramic-processing technique. Many of the tricks and problems in working with ceramic suspensions are common to both. The means for removing the liquid carrier or suspending agent during drying are different: tape casting involves evaporation, while slip casting utilizes absorption in a porous mold. Also the sizes and shapes of products, manufactured by the two processes differ considerably.
Use of tape casting to form ceramics apparently occurred first during World War II in the development of dielectric materials useful as substitutes for mica in high-quality capacitors. Glenn Howatt obtained a patent ${ }^{1}$ describing such a process and founded a company that is now part of Guiton Industries. Howatt's patent is for "forming ceramic materials into flat plates, especially useful in the electrical and radio fields." This is still the principal field of application today, although the present end uses are in many cases far beyond anything imagined in 1945.
The Howatt patent teaches a process that is a combination of slip casting and doctor-blading, since the slurry is spread on absorbent bats where the liquid vehicle is removed.
The limitations of the tape-casting process are in thickness and lack of "three-dimensional" capability. Dry pressing and extrusion seem to have the production edge when thicknesses of $y_{8} \mathrm{in}$. or more are desired in plates. Tapes can be made this thick, but pressing seems to be less of a problem. As noted earlier, tapes are essentially two dimensional, and the technique is not practical for pieces that have lips, ledges, tapered holes, and blind holes. in the electronics industry. Capacitor dielectrics, piezoelectrics, and thickand thin-film substrates are the major products. Other products include tape glazes and metallizing preparations.
There are numerous other references and patents relating to tape casting in the ceramics field. The most important of these are included in reference 2 .
This chapter covers binder-solvent selection, raw material characterization, dispersion of the ceramic powder, precasting treatments, casting process and apparatus, including precision casting, drying of the tape, punching to shape, and multilayer casting. We draw mostly on our experience in casting high-alumina ceramic substrates for the discussion and illustrative-examples. We have not been limited to this one material, however, and have experience in casting the following materials: lead

Binder-Solvent Selection

 ε anhanum (PLZT), barium titanate, steatite, forsterite, porcelains, glass,
 carbide varistor materials, and calcium-aluminum silicate compositions.

NOILDG7GS LNGATOS-\&GGNIG

There are two principal types of solvents, water and organic liquids. In ither case the binder should meet the following criteria: (1) form a tough
 \%; (2) volatilize to a gas leaving no residual carbon or ash during firing; (3) relatively inexpensive; and (5) be soluble inditions during storing: (4) be
 The binder, or plastic, is thus of the "film-forming"
formers usually are long-chain polymers that possess charace. These film
 dimensional linkages, which tend to be rather rigid. Just about every plastic
 poly(vinyl acetate), poly(vinyl chloride), poly(vinyl chloride-poly(vinyl acetate) copolymers, polystyrene, poly(vinylidene chloride), poly(vinyl alcohol) (water system), polymethacrylates of many types, and cellulose nitrates.

Some of the factors that must be considered in the selection of binder are: (1) thickness of tape to be made; (2) casting surface-glass, plastic, metal; and (3) solvent type desired. The extremely volatile solvents, such as acetone, are most suitable for the thinnest films, and the lower volatility solvents, such as toluene, seem best for the thicker films. When trying a new material in the laboratory we generally used a poly(vinyl chloridepoly(vinyl acetate) copolymer with MEK as the solvent for casting up to a
 ethylene as the solvent for thicker casts. Table 30.1 gives the typical binder-solvent-plasticizer systems for thick and thin casting trials.

Plasticizers are normally added to obtain sufficient flexibility of the film for easy handling. The plasticizer is often present in amounts greater than the binder itself. The list of plasticizers is much too long to include here, but binder manufacturers are in a position to recommend those suitable for use with their products. Milling of the slip (discussed in a later section) is best
 viscosity that results after their addition. After binders and so forth are added, the mill is run until all are thoroughly dissolved and mixed. In some

STARTING MATERIALS

For any ceramic process it is essential that the starting powders be well characterized. This is especially true for tape casting. The important parameters that should be monitored on all powder lots are average particle size and distribution, surface area, and trace-impurity level. ${ }^{2}$

At this point we draw upon the vast amount of information that was generated in developing a process for the manufacture of fine-grained alumina substrates by tape casting. The characterization and processing would be very similar for any ceramic material. Briefly, the process consists of nonaqueous wet ball milling, followed by tape casting on pastic film, punching, and firing. A flow diagram in shown in Figure 30.1.

Table 30.2 gives the starting materials. The major component is a dry-ball-milled Bayer-process alumina, either Alcoa-A-16 or Reynolds RC-172 DBM. This powder is essentially alpha alumina, with a medium particle size of 0.4μ, and a B.E.T. surface area of about $11 \mathrm{~m}^{2} / \mathrm{g}$. As received, the alumina is agglomerated, and nearly spherical clusters of particles are visible

 was done with Pt-carbon evaporated at a 23° angle without rotation of the sample. The length of the shadow indicates that the particles are not the flat platelets often observed ${ }^{3}$ in other types of alumina powder but are roughly as high as they are wide.

417

Dispersion of the Ceramic Powder

The binder used in this process is poly(vinyl butyral), and the plasticizers are poly(ethylene glycol) and octyl phthalate. The solvent is an azeotropic mixture of trichloroethylene and ethyl alcohol. Two liquids are used to make up the solvent, because the solubility of a polymer is generally greater Aptimized mixed-solvent systems than in any individual pure solvent.4 polyunsaturated ester mplier, the menhaden fish oil deflocculant contains ponification number of $185 .{ }^{\circ}$ It consists mostly number of 100 and a saacids, and 76% of the acid groups are unsaturated types, such as oleate atty linolenate. ${ }^{\circ}$

DISPERSION OF THE CERAMIC POWDER

Milling Procedure

As shown in Table 30.2, the milling is done in two stages, with and without binder and plasticizers. An 85% alumina porcelain is satisfactory for use in the mill lining and grinding media. If there is concern with mill impurity
 the process is to me use be weighed against the added cost, particularly if with the media, which are in large-scale production. The mill is half filled critical speed. The charge is added in proportion milling is done at 65% of
 can be scaled up or down depending on the size of the mill used. This charge

Figure 30.4 shows the effects of variations in the milling procedure. Black circles denote 24 hour, second-stage milling. Low densities resulted from
 the binder. The effects of excess milling are presently unexplained. The effects of insufficient milling are apparent from the discussion below.

Figure 30.4. Densities of fired substrates versus

Table 30.2. Materials and milling procedure

Process			Material

Figure 30.3. Transmission electron micrograph of alumina powder, spray dispersed and shadowed at 23° angle to the plane of the illustration. Length of shadow indicates that particles are not flat platelets.
possibilities for interparticle contact and adhesion, thus leading to porous, poorly packed agglomeration and low green density. However, good sinter-
 remarkable feature of the present process that a powder with a surface area of about $11 \mathrm{~m}^{2} / \mathrm{g}$, which is high for alpha alumina, can be effectively deagglomerated and deflocculated, resulting ultimately in good packing. Direct evidence of the deagglomeration produced by milling was obtained by sedimentation particle-size analysis. Slip of the composition given in
Table 30.2 was milled for 2 days, and the relative particle size was determined as follows: 7.56 g of slip was added to 40 cc of a $50 \mathrm{vol} \%$ solution of benzene in ethanol, but ultrasonic dispersion was not used before the sedimentation measurement. The measured median size was 0.4μ, but the absolute accuracy of this value was not trustworthy, because the density and viscosity of the solution were assumed to be the averages of the benzene and alcohol values. For relative comparison, however, the particle-size distribution of unmilled slip was determined after it was diluted in benzene-alcohol in the same manner and ultrasonically dispered for 20 minutes. The particle sizes were within 15% of those of the milled slip, showing that 2 days of milling is equivalent to the ultrasonic dispersion in breaking down agglomerates.
Milled slip was also diluted in benzene-alcohol and, in addition, it was ultrasonically treated for 20 minutes. These particle sizes were also within 15% of those of the unmilled but ultrasonically dispersed slip, showing that the hard particles are not significantly reduced in size by the wet milling.
Particle-size determinations of A-16 alumina dispersed by other means are consistent with the above. The diameters of the particles that were separable by smearing and spraying using a TEM and the centrifugal action of the MSA particle-size analyzer ${ }^{\text {a }}$ were generally in the same size range.
Unmilled slip of the composition shown in Table 30.2 consisted of A- 16 alu-
 air at $500^{\circ} \mathrm{C}$ for 2 hours to remove the organic constituents. The resulting material was white powder that adhered together only about as strongly as powder pressed between two fingers, and sintering was therefore not great. After a $300^{\circ} \mathrm{C}$ outgassing, the BET surface area was $10.8 \mathrm{~m}^{2} / \mathrm{g}$. Slip samples milled for 1,2 , and 7 days were treated in the same manner and yielded surface area that were $11.2,12.6$, and $11.8 \mathrm{~m}^{2} \mathrm{~g}$, respectively indicating a slight increase in surface area with milling, but this small increase might be due to impurities from the grinding media.

Impurity Pickup

During milling, Ca and Si from the mill lining and grinding media are added to the slip, as shown by emission spectrographic analysis of the milled and dried slip, expressed as element ppm by weight as follows:

$$
\text { Milled } 2 \text { days }
$$

300
1500
If the milling is done with high-purity lining and media $\left(99+\% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$, the resulting tape does not sinter adequately under the firing conditions used, and the substrate has open porosity and a density of $3.80 \mathrm{~g} / \mathrm{cc}$ or less. However, if talc is added to the higher-purity composition sufficient to provide the 1500 ppm of Si , the resulting tape sinters to $3.88 \mathrm{~g} / \mathrm{cc}$ and contains essentially zero open porosity. Polymethylphenylsiloxane silicon resin (SR-82, General Electric Company, Wa of dispersion of the impurities appears to be important, since equivalent additions of SiO_{2} powder (Quso, Type 30, Philadelphia Quartz Company, Philadelphia, Pennsylvania) yield low-density substrates. Also, low density results when Mg is not included in the starting materials as a grain-growth inhibitor.

Deagglomeration

The term "weak agglomerate" is used to mean a group of particles that are weakly bonded together, which is consistent with the definition in Chapter 5. The term "solid agglomerate" is defined operationally in this paper as a group of particles that cannot be separated by 40 kHz ultrasonic treatment at 100 watts for 20 minutes in an aqueous dispersion." ${ }^{0,7}$ The word "floc" is used as defined in Chapter 5.
As mentioned earlier, the as-received alumina powder is highly agglomerated. We have found that ultrasonic treatment at 40 kHz and above reduces the measured particle size of this material to a limiting value, at which the agglomerates originally present were broken down. Wet and dry sieve analyses ${ }^{8}$ and other studies have differentiated between some levels of bond strength in these agglomerates.

It is generally true that a large surface area tends to favor agglomeration. (For an example of this correlation, see the data on nine different alumina powders in Figure 30.5 of reference 9.) The large area appears to offer more

If trichloroethylene is substituted for the alcohol in the slip composition, the viscosity becomes excessive. The menhaden oil is very soluble in this liquid but less soluble in the alcoholic mixture and insoluble in pure ethanol. A hypothesis consistent with the above is that a certain minimum amount of menhaden oil is required in solution to drive the adsorption process by
mass action. Increasing the solubility decreases this effect. However, less than 5% of the oil is actually adsorbed.

The zeta potential of the alumina in trichloroethylene-alcohol in the
 a measured ${ }^{21}$ electrophoretic mobility of $0.5 \mu \mathrm{~m} \mathrm{~cm} / \mathrm{V}$ second. However, when the menhaden oil was omitted, the mobility was the same. This indicates that the deflocculant probably does not operate through charge repulsion, and the steric-hindrance model is likely to describe the system. It should be noted that the mobilities were measured on dilute, unmilled suspensions. It is known ${ }^{22}$ that the zero point of charge of alpha alumina concentrated, milled suspensions. Also, traces of water were probably present. However, if a strong charge-repulsion effect existed in this system, it would probably be detected here, even without milling.

The pH of water in contact with the standard milled slip is 8.0 ± 0.5.
Chemical Characterization. Using A-16 with a surface area of approximately $11 \mathrm{~m}^{2} / \mathrm{g}$, a series of compounds was substituted for fish oil in otherwise standard mill batches. The 2.3 gal mill jar was used in all cases and at least one standard mill using menhaden oil was made from each bag of A-16 alumina. The results are reported in Table 30.3. A measure of the viscosity during the first day of milling was estimated qualitatively by the loudness of the ball sound.

All the slips marked "thixo." in the table were pseudoplastic and thixotropic and appeared highly viscous when not being agitated. However, the viscosity of the slip when nearly at rest is evidently not an important consideration, as shown by the fact that these thixotropic slips were sufficiently fluid when agitated and were easily cast.

Mill batch 236 adhered to the cellulose acetate carrier film after casting and drying, and the surfaces of the forcibly peeled-off tape were rough. Therefore, the amine has a deleterious effect on the overall system, although it deflocculates. Batch 251 was prepared using 120 g of the B-98 Butvar

The Mechanism. If less than half the amount of menhaden oil indicated in Table 30.2 is used during milling, the slip viscosity becomes too high to allow grinding media motion when good milling action, in spite of the high solid-to-liquid ratio shown in Table 30.2 , and in spite of the high surface area of the solid material present. Two models that are commonly proposed ${ }^{10}$ to explain the action of deflocculants are charge repulsion and steric hindrance. Each assumes that the deflocculant is adsorbed onto the solid particles.

Generally the steric hindrance model is useful in explaining the stabilization on nonaqueous dispersions. ${ }^{12,12}$ However, traces of water were shown ${ }^{13}$ to influence the zeta potential and agglomerate size of TiO_{2} dispersed in nitrobenzene, and charge effects might therefore be important in some essentially nonaqueous systems. For example, charge repuls in xylene. ${ }^{14}$ of oleic acid versus stearic acid as In comparisons olumina in nonaqueous liquids, the presence of a carboncarbon double bond in the deflocculant has been reported ${ }^{14,18}$ to enhance the deflocculation effect. Also, infrared spectra of the adsorbed species have shown ${ }^{10}$ that the double bonds in oleic acid strongly influence the effective area covered by each molecule adsorbed on TiO_{2} dispersed in benzene.

The influence of the carbon-carbon chain length on deflocculation has also been reported ${ }^{17}$ for alumina in various nonaqueous liquids. The chainlength influence on adsorption has been reported for alumina in water ${ }^{18}$ and for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in heptane. ${ }^{19}$ Generally an optimum length has been found for each of these effects.

The adsorption of various esters onto alumina has been shown n^{20} to be increased when the ester is less soluble in the solvent (toluene, chloroform, etc.).
To estimate the degree of adsorption, a solution of menhaden oil in the trichloroethylene-alcohol mixture was filtered through the al and evaporated to determine the unadso wo cases wore inding little or no deflocculant precision of the experimen. Theridue was less than one-tenth of the usual amount of oil in the composition, showing that there was not sufficient oil-
 mask a significant adsorption of the menhaden oil. (These mixtures were

Table 30.3. Substitute deflocculants

Mill Batch Number	Material Replacing Menhaden Oil, 55 g	Chemical Functional Groups Present	Results			
			Molecular Weight	$\begin{gathered} \text { Slip } \\ \text { Viscosity } \end{gathered}$	Tape	Fired Substrate
	No Deflocculant	None	-	Solid		
$\begin{aligned} & 211 \\ & 185 \mathrm{~A} \end{aligned}$	Nujol	(Possible $\mathrm{C}=\mathrm{C}$ and high MW)		Solid		
252	Propylamine	Base		Thixo.	One half cracked	Rough
236	Octadecylamine	Base				surface
	Trichloroacetic acid	Acid	163	Solid		
191	Oleic acid	Acid, $\mathrm{C}=\mathrm{C}$	282	Solid		
209	Octadiene	$\mathrm{C}=\mathrm{C}$	110	Solid		
249	Glycerine	OH	278, ${ }^{92}$	Solid		
189	Phthalates and polyethylene glycol (plasticizers)	OH, COO	278, etc.	Solid		,
$\begin{aligned} & 182, \\ & 185 \end{aligned}$	Octyl and other phthalates	COO	27, etc.			
251	(plasticizer) Poly(vinyl butyral) (binder)	$\mathrm{COO}, \mathrm{OH},(\mathrm{C}=\mathrm{C})$	32,000	Fluid	Sticks to cellulose acetate	

207	Glyceryl tristearate	000		891	Solid		
210	Ethyl oleate	coo, $\mathrm{C}=\mathrm{C}$		310	Solid	One half cracked	
237	Glyceryl monooleate	coo, $\mathrm{C}=\mathrm{C}$		357	Thixo.		
239	Ditto, but 1413 cc alcohol, no TCE	$\mathrm{COO}, \mathrm{C}=\mathrm{C}$		357	Solid	Good	Good
$\begin{aligned} & 204, \\ & 208 \end{aligned}$	Glyceryl trioleate	$\mathrm{COO}, \mathrm{C}=\mathrm{C}$		885	Thixo.	Good	
250	Glyceryl trioleate plus octadecylamine	$\underset{\text { Base }}{\mathrm{COO}, \mathrm{C}=\mathrm{C}}$		885, 270	Thixo.		Good
$\begin{aligned} & 177, \\ & 253 \end{aligned}$	Corn Oil	$\underset{\text { sec Table } 30.4}{\mathrm{COO}, \mathrm{C}=\mathrm{C}}$		885; etc.	Fluid	Good	Good
296	Untreated menhaden oil (Haynie LCP)	$\underset{\text { see Table } 30.4}{\mathrm{COO}, \mathrm{C}=\mathrm{C}\left(\mathrm{NH}_{2}\right) ;}$		885, etc.	Fluid, slightly viscous		
215	Extra menhaden oil (110 g total)	$\underset{\text { see Table } 30.4}{\mathrm{COO}, \mathrm{C}=}=$		885, etc.	Fluid, slightly viscous		

Materia!	Iodine Number ${ }^{\text {a }}$	SaponificationNumbera	Weight Percent of Fatty Acid Groups ${ }^{\circ}$			
			Saturated		Unsaturated	
			Stearic	Other	Oleic	Other
Untreated menhaden ${ }^{\text {© }}$	170	191	1	23	0	$\begin{gathered} 76 \\ \text { (30\% linolenic) } \end{gathered}$
Air-treated menhaden ${ }^{4}$	100	185	-	-	-	(30\%
Untreated corn ${ }^{\circ}$	123	192	3	12	50	35
Glycery] trioleate (calculated)	86	190	0	0	100	0
Glyceryl tristearate (calculated)	0	190	100	0	0	0

${ }^{6}$ Defined in reference S, p. 793. The iodine number is a measure of unsaturation, and the saponification number is a measure of ester content
Percentage of total fatty acid groups only, not of total oil. Natural oils are reported in
reference S, p. 776 to be mostly glyceryl esters of fatty acids.

PRECASTING TREATMENTS AND CONTROLS

 chambers for de-airing. A vacuum is pulled on the slip using a roughing pump to a level below the boiling point, usually until agitation due to escaping air ceases. Some times the slip is actually permitted to boil for a few minutes at this point. One must be careful of excessive solvent loss if boiling is carried on for a long time.
For the alumina process, the slip is pumped into the casting machine through a series of two filters, one with $37 \mu \mathrm{~m}$ openings and one with $10 \mu \mathrm{~m}$ openings. A peristaltic-type finger pump is used with Tygon tubing. The filters, which are nylon, remove any large pieces of unground alumina or undissolved binder that may be present. Both of these can cause defects in the cast tape or fired product.
As in any slip-casting operation, the control of viscosity and specific gravity are important. Early in our development work it was standard practice to check these parameters on every batch of slip that was produced. Later we developed confidence in the process reproducibility and the "feel" of the operator and eliminated all but occasional checks on these

The odor of the menhaden oil indicates that an amine base might be present. Therefore, the composition of mill batch 250 was designed to duplicate the functional groups present in the menhaden oil (amines and double bonds, etc.), but with the use of only synthetic, characterizable materials. However, the viscosity was equally low in batches 204 and 208 using glyceryl trioleate alone as a deflocculant. The glyceryl trioleate results demonstrate that the goal of a synthetic deflocculant is achievable, at least experimentally.

Inspection of Table 30.3 indicates that a combination of a carbon-carbon double bond, an ester group, and a molecular weight of at least 357 was necessary in the series of deflocculants that were studied here. For example, the ethyl oleate molecule contains a double bond and an ester group, but its molecular weight is too low, and the deflocculation was unsatisfactory. Glyceryl monooleate, with the same functional groups and also a higher molecular weight gave sufficiently fluid slip for casting.

Glyceryl tristearate has ester groups and a high molecular weight but no double bonds, and it was unsatisfactory. For comparison again, glyceryl monooleate has double bonds in addition and was satisfactory.

Nujol is a refined mineral oil commonly used for dispersing powder samples for infrared analysis. It is used for this purpose because its infrared spectrum does not usually show COO group absorptions or components
 the probable presence of components with molecular weights on the order of a few hundred. This material, usually lacking COO groups, did not give effective deflocculation.

Corn oil is similar to menhaden oil in that it contains glyceryl esters of unsaturated fatty acids, as shown in Table 30.4, and therefore all three attributes mentioned above are present. This oil gave excellent results as a substitute for menhaden oil. The slip viscosity appeared slightly low, indicating excellent deflocculation.

Other complex materials, such as poly(vinyl butyral), evidently do deflocculate and might be worth futher study. Also, glyceryl monooleate might be improvable, with the use of extra plasticizer to decrease the cracking during drying. It is soluble in alcohol but requires the presence of trichloroethylene (TCE) for effective deflocculation (see batch 239 results).

A wider range of materials appears to deflocculate the slip when the alumina surface areas are $\leq 10.5 \mathrm{~m}^{2} / \mathrm{g}$, but we have not thoroughly evaluated these compositions.
 machine so that a single operator could process the tape. The Carrier Material
As mentioned above, many materials have been used as substrates or carrier films in the tape-casting process. One usually tries to use the material that
Figure 30.6. Laboratory model of the doctor-blade casting machine.

parameters. The normal operating viscosity of the slip in Table 30.2 was in the range of 2500 to $3500 \mathrm{cp}^{*}$ and the specific gravity was 1.9 to $2.0 \mathrm{~g} / \mathrm{cc}$
There are a great many variations of this simple device. Basically, however, one has some type of container, one side of which can be moved vertically to form an opening or gate through which the slip escapes. The gate height is controlled by micrometer screw adjustments, often with large dial indicators for convenient viewing. The assembly is customarily fixed in position with a carrier or substrate material drawn under the gate. The substrate is most often a metal belt or a plastic film made of Mylar, polyethylene, or the like, or in some cases individual glass plates. Many factors influence the thickness of the-wet cast film at a given gate opening, for example, the hydrodynamic head of the slip reservoir behind the blade, the viscosity of the slip, and the speed with which the film is cast. All these are susceptible to variation, and suitable controls must be instituted for uniform production.
The casting machine used in the alumina substrate work is shown in Figures 30.5 and 30.6. It is an enclosed chamber $4.75 \mathrm{in} . \times 12 \mathrm{in} . \times 25$. The floor of the machine is a smooth aluminum metal plate on of cellulose acetate film moves. The film is supplied continuously from a spool and enters the slip chamber through a slot in the end of the chamber. Electrostatic brushes can be mounted at this point to remove any dust part cles from the carrier film.
The doctor blade at the exit side of the chamber is adjusted by means of micrometer screws. To produce the desired final substrate thickness of 0.026 in., about a 0.063 in . gap between the blade and the carrier film is used. The layer of slip passes through the gap with its thickness controlled by the micrometer settings. The thickness of the freshly cast layer of slip (just beyond the doctor blade) is continuously monitored by a gamma-ray back-scatter or X-ray transmission instrument, and the gap between the doctor blade and carrier film is adjusted accordingly. This can be done automatically or manually.
The normal casting speed utilized in this work was $6 \mathrm{in} . / m i n u t e$. This rate is dependent on the length of the machine, the drying conditions, and whether the machine is to be operated in a continuous or batch mode.

CASTING PROCESS

The Casting Machine
\qquad
\qquad

Drying
The drying of slurries in general has been studied by other workers. A two-stage process is commonly observed with such materials, ${ }^{24}$ the first stage of drying proceeding at constant rate, and the second stage at a gradually decreasing rate. These are shown in Figure 30.7. In either stage of drying, the solvent must move through three consecutive steps of transport: (1) solvent flows vertically through the slip to the surface, (2) solvent then evaporates at the surface, and (3) solvent vapor is swept away at the surace. The overall rate is determined by whichever is the slowest step.
the first stage the slip is still fluid and solvent is easily transported through it (step 1) by liquid diffusion or capillary action. Step 2 is the slow step, being limited by the inflow of heat required to supply the latent heat of vaporization. In those cases involving very little air flow, step 3 can also be slow, causing a pileup of nearly saturated vapor at the surface and a consequent decrease in the evaporation rate. Therefore, the rate of total drying in this stage can be influenced by either temperature (step 2) or air flow (step 3). Neither of these is likely to be time dependent, and so a constant rate is usually observed for still-fluid slip. ${ }^{24}$
In the second stage the slip has become solid, and the solvent no longer flows by capillary action or fast diffusion. The solid is gel-like, and step I is limited by the slow diffusion of solvent through the gel. This would be the slowest step, and like many diffusion processes, it might be expected to follow the same sort of equations as radioactive decay, having a rate that decreases with time.
A solution ${ }^{25}$ to the well-known Fick's law diffusion equations, set up for the case of an initially uniform solvent distribution and evaporation from one surface of a slab, is given by
does the job for the lowest cost. In most cases the binder solvent system plays an important role in the selection of a carrier. A continuous stainless steel or chrome-plated steel belt may be the best carrier if the tape is to be stripped continuously at the end of the machine. The fine-grained alumina substrate process used a unique carrier material, cellulose triacetate (Kodacel TA401, Eastman Chemical Products, Inc., Kingsport, Tennessee). According to the supplier, this material, which is 0.015 in. thick, contains $\simeq 15 \mathrm{wt} \%$ of diethyl phthalate plasticizer (bp $290^{\circ} \mathrm{C}$), an organic liquid that is similar to one of the plasticizers given in Table 30.2. TGA and DTA studies of the film showed 16% weight loss in N_{2} between 100 and $320^{\circ} \mathrm{C}$ and an endothermic peak at $280^{\circ} \mathrm{C}$. After casting and drying, the cellulose acetate is 4.7% thicker and is an average of 3.3% narrower than as-received, probably because of absorption of solvent and/or exchange reactions among the plasticizers.

In our experiments thus far, substitute carrier-film materials that did not become narrowed did not yield satisfactory results, and the dry tape cracked and/or stuck to the film excessively or insufficiently. The cast material must stick to the carrier film sufficiently to prevent extreme curling during drying, but it must not stick so much as to prevent the film from being peeled away from the dry tape prior to firing.

The movie-grade cellulose triacetate also provided an extremely smooth and uniform casting surface, which we believe contributed to the smoothsurfaced, low-defect alumina substrates produced. Thicknesses down to 0.005 in . were used in the standard process with equivalent results.

DRYING

In the substrate process, the layer of slip dries slowly while it is carried through the machine on the moving plastic film. Filtered air is blown through the machine in a direction opposite to that of the moving slip. The air flow rate is $5 \mathrm{ft} /$ minute. This arrangement provides dry air at the exit end in contact with the almost dry tape. At the other end in contact with the freshly cast wet slip is air that has passed through the entire casting machine and is saturated with solvent vapor. The difference in solvent content between the slip and the air is slight at any point in the machine. This controls the rate of solvent evaporation, allowing the remaining solvent in the slip layer to redistribute itself with only a small vertical gradient of concentration. This small gradient of concentration tends to minimize curling and cracking of the slip as it dries. Heat increases the drying rate, but exceeded if controlled, bubble-free drying of the slip is to be achieved.

where W	$=$ weight
W_{0}	$=$ initial weight
D	$=$ diffusivity
t	$=$ time
d	$=$ thickness of slip.
At relatively long times, only the first term of the series is significant. A	

Diffusivities in solids tend to vary with temperature according to the Arrhenius activation energy equation:

(2)

A special apparatus was used to determine the drying rates of the slip at various temperatures and air flows. This is shown in Figure 30.8. Nearly laminar flow was achieved by filling the rectifier chamber with 10,000 parallel drinking straws, thus improving the reproducibility by minimizing random eddy currents. Slip was cast onto a glass sheet on the pan of the scale using a movable doctor blade. The weight of the slip was noted periodically. A thermocouple was imbedded into the slip sample.

Figure 30.9 shows a plot of experimental data obtained with the taminar flow apparatus. Two stages of drying are indicated (run 1), as illustrated by the constant rate (linear) portion of the curve, and the changing rate

$\frac{18}{1}-$

$\mathrm{dx}{ }^{\circ} \square=\square$ -

(curved) portion. The experiment was repeated, but this time there was an air flow of $75 \mathrm{I} /$ minute. These data indicate that the air flow has an effect on the first stage, as predicted by the model.

Figure 30.10 shows the same data replotted on semilog paper. The exponential relationship, second stages of drying confirm the predicted significant. Note that air flow does not only the first term of the series is ing that diffusion through the gel is probably the slocond stage slope, showtion or vapor removal. Also shown in Figure 30.10 are data taken evaporatemperature of $60^{\circ} \mathrm{C}$. The indication is a speedup of drying during both stages. This is consistent with the idea of a latent heat effect during the first

Drying
during the first stage of drying．Evidently the solvent is removed from the surface layer too fast for diffusion through the liquid to replenish the layer， even though this diffusion is fairly rapid．Once skin forms the first－stage

 of the final product．Therefore，the forced drying by increasing the air flow is limited to this level．
nichrome heating heat was applied to the drying slip by mounting were positioned to bring the slip temperature up rapidly during the first stage of drying．A temperature of 50 to $80^{\circ} \mathrm{C}$ was maintained in the drying Temperatures were measured by embedding the driest end of the tape．
 30．12．
sufficiently dry to strip from the carrier at the end of a 25 ft were machine．
stage and an activation energy effect during the second stage．The diffusion through the solid was speeded to the limiting point where it was no longer the slowest step．

Five drying experiments were run at different temperatures，with the weighings being made only after the solidification of the slip（second－stage drying）．A $\log W / W_{0}$ versus time plot for each experiment gave values of $\pi^{2} D / 4 d^{2}$ as the slopes．To obtain the Arrhenius activation energy，these five slopes were plotied against the reciprocal absolute temperature in Figure 30．11．The slope of this plot is $-E / R$ in the Arrhenius equation，and the activation energy E was thus obtained．The experimental value is $22 \mathrm{Kcal} /$ mole，which is a reasonable value for such polymer－solvent systemis．${ }^{26}$

Several means of increasing the drying speed during actual casting runs were demonstrated by this experiment．Increased air flow during the first
stage of drying is one method，and heat applied during either stage is another．

In the casting machine shown in Figure 30．6，it was found experimentally
that air flow above $110 \mathrm{ft}^{3} /$ hour（ $5 \mathrm{ft} /$ minute）resulted in skin formation

 contact between the thin carrier tape and the bed. The maximum height of the circle was located under the doctor blade so that the surface at this point would be horizontal in the longitudinal and the lateral direction, to doctor-blade construction the slip to flow under gravitational forces. The two blades was chosen to control the hydrodynamic and surtruction with

 tain a constant height of the casting poomic forces it is necessary to main-

 the cast on the respective sides of the heights between the casting pool and design satisfied these two conditions. By adjusting the relative he two-blade two blades and the speed of the carrier tape, a constant low-level casting pool height may be maintained for all but the initial and final few seconds of casting.

The other parameters that must be controlled to optimize casting thickness control include slip viscosity (function of percent solvent and temperaure), casting speed, doctor blade setting, and drying shrinkage of the tape.
Figure 30.13. Side view of precision tape-casting doctor-blade showing two-blade construction and optimized flow conditions.

PRECISION CASTING

 For some applications precise dimensional control of the final part and, therefore, of the as-cast tape is essential. This was the case in the development of a process for producing lead zirconate titanate tapes 1 to 12 mils thick with thickness tolerances of better than ± 0.3 mils over large areas. ${ }^{27}$ Briefly, the primary requirement was to improve existing tape-casting technology by providing a precise gap between the blade and the casting carrier tape of controlled thickness that would glide under the blade and over a supporting, laterally level bed with minimum friction. To provide these features we constructed a precision casting machine that had the following features:

[^14]where | W | $=$ weight of tape plus absorbed water at time t, |
| ---: | :--- |
| W_{m} | $=$ maximum value of weight reached by the tape at long times |
| k | $=$ empirical constant. |

To simplify the calculations substitution can be made: Replace $d W / d t$ $\left(W_{m}-W\right) / d t$. Then

$\frac{d\left(W_{m}-W\right)}{W_{m}-W}=-k d t$

$\frac{d\left(W_{m}-W\right)}{W_{m}-W}=-k d t$
$\log \left(W_{m}-W\right)=-k t$ This allows a linear plot to be obtained when $W_{m}-W$ is plotted versus t on semilog paper. Extrapolating back to zero time, one can obtain the initial weight of tape immersed in a buoyant fluid such as water before any swellcalculate the bulk tape density using the Archimedes' methoight, one can mental plot did yield a straight line, and the calculated density of the alumina tape was $2.63 \mathrm{~g} / \mathrm{cc}$.
An estimate of the apparent density can also be obtained by a variation of this method. W_{m} minus the initial (extrapolated) weight is the amount of water absorbed. The volume of this is roughly the volume of the open porosity, subject to a possible error due to swelling. This volume can be combined with the other data to calculate ${ }^{29}$ the apparent density. It was found to be $2.91 \mathrm{~g} / \mathrm{cc}$, which is in agreement with the other techniques tried. that the tape samples contain some kind densities given above indicates noted that the tape must be broken into small pieces for should be pycnometers or the porosimeter, and many cross-sections are thus exposed. Therefore, it is possible that the major surfaces of the tape are sealed by polymer and the pores are only accessible through the cross-sections.
Visible-light examination with a variety of lighting techniques at magnifications from 1 to $800 \times$ does not show evidence of porosity on any of the surfaces. However, SEM pictures of the surface at $10,000 \times$ show submicron-size pits. It could not be determined whether the bottoms of these pits were sealed with polymer. Also, microtomed cross sections appeared to show porosity, under the SEM, although these could have been an artifact of the microtoming operation.
Assuming that the tape is not significantly compressible, the mercury porosimeter pressure versus volume curves can be used to calculate pore
 pores are $<0.09 \mu$ in diameter. However, the tape is compressible, and this

With the machine described above and by close control of the casting

 with thickness tolerances better than $\pm 4 \%$ (e.g., 5.0 ± 0.2 mils).

TAPE CHARACTERIZATION

 important parameter for characterizing a tape-casting process. In experimental modifications of the tape, the green-density measurement can be useful in detecting poor packing of the powder or in detecting excessive polymeric binder content.

In the determination of bulk green density ${ }^{28}$ the volume measurement can be made with a flat-faced micrometer caliper, provided about 15 thickness measurements are taken and averaged (for a substrate area of about 20 in. ${ }^{2}$). The same volume can be obtained by extrapolating mercury
 tapes produced in our laboratory were 2.5 to $2.6 \mathrm{~g} / \mathrm{cc}$. Taking the organic materials into account, these bulk densities correspond to an alumina volume percent of 56 , which is a densely packed green body, considering that no pressing is involved and the alumina particles are small.

The volume for calculating the apparent density ${ }^{28}$ of the tape can be measured by a mercury porosimeter at $20,000 \mathrm{psi}$ or an air pycnometer at atmospheric pressure. In either case the measured apparent green density of the alumina substrate tape ranged from 2.9 to $3.0 \mathrm{~g} / \mathrm{cc}$.

A nother technique used for measuring the density of the tape was the Archimedes' method ${ }^{29}$ using water. A difficulty was encountered in that water immediately began to be absorbed into the tape as the immersed weighings were begun, causing changing weight values and preventing bulkdensity determinations by this means. Another approach ${ }^{29}$ to bulk density determination is to thoroughly soak the tape sample with water and then
 the water immediately began evaporating, again causing continuously changing values. Also the tape expanded when immersed in all the liquids that we tried.

A method for extrapolating the water absorption back to zero immersion time was developed. The method rests on the assumption that the more water absorbed into the tape pores, the slower the further absorption. The amount absorbed should asymptotically approach a maximum value. One would then expect the following relationships to be observed.

Bulk densities and the resulting fired densities are reported in Table 30.5 for various experimental tape compositions in which poor deflocculation and poor alumina packing probably occur. For comparison, data are also shown for standard tapes in which poor packing was not observed to occur. (It should be noted that good results have been reported when the other aluminas in Table 30.5 were used in other processes with increased firing temperatures.)
The packing factor in the tape can be calculated as follows: In 1 cc of
standard tape the total weight is about 2.53 g (bulk density). Of this, 12.0% is organic material. Weight-loss measurements during $750^{\circ} \mathrm{C}$ binder Table 30.5. Substitute aluminas

Alumina Powder	BET Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Bulk Green Density (Caliper), $(\mathrm{g} / \mathrm{cc})$	Bulk Fired Density (Archimedes), $(\mathrm{g} / \mathrm{cc})$
Standard	$11.3-12.4$	$2.51-2.57$	$3.88-3.90$
Linde A^{d}	8.3	2.09	3.8, Porous
Calcined $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{\mathrm{s}}{ }^{c}$	9.1	2.01	3.8, Porous
Kappa-theta ${ }^{d}$	16.6	1.97	3.8, Porous

[^15]The porosimeter operators reported some degree of permanent penetration of the tape by the mercury, proving that there is some open porosity. However, the weight gain due to Hg absorption cannot be used as a quantitative separation of porosity from compressibility because some mercury flows back out of elastic porous materials when the applied pressure is removed. The weight gain is only a qualitative test, but nevertheless it is a definite indication of unoccupied space in the original tape.
It should be noted that it is difficult to distinguish between open porosity versus a molecular level of penetration of the water and air into the polymer structure itself. The polymer might be especially permeable to these fluids if it were in a stretched state, having shrunk between the alumina particles during drying. The mercury might be a better test for macroporosity, but at 20,000 psi the mercury could conceivably force its way into the stretched polymer, thus creating discrete pores. Therefore, the original "pore" size might be as large as 0.09μ or as small as a molecule.
As an increasing amount of polymeric binder is added to the tape composition, more of the interstitial space between the alumina particles is probably filled with binder. It has been found that an excess of binder above a certain level (4 g of binder for each 100 g of the alumina) causes maldistribution effects in the tape and curling or cracking during firing. The apparent density measured with an air pyenometer should be sensitive to the amount of organic chemical material (binder, etc.) present in the interstitial space, and this is probably why it was found to be useful in diagnostically assessing new formulations. A plot of bulk and apparent density versus percentage organics is shown in Figure 30.14. It should be noted that, while the apparent densities are sensitive to the amounts of organic materials, the bulk densities are less sensitive.
Attempts to correlate curling and cracking with the apparent-density measurements have only been made with data obtained by the use of the air pycnometer and not with other types of measurements. It is therefore unknown whether all the apparent-density methods are equally sensitive to excess binder or whether there are significant differences in fluid permeability. At any rate, the other apparent-density methods are less convenient than the air pyenometers.
It is well known ${ }^{30}$ that the sinterability of a powder compact is dependent on the degree to which the powder particles are packed together. In the tape process, poor deflocculation might be expected to cause poor packing of the alumina particles and thus low fired density. The degree of alumina packing can indirectly be measured by determining the bulk density, provided the amount of other material (binder, etc.) is known.
there is essentially no closed porosity, at least as measurable by these methods. These calculations are for 1 cc of tape, of which 0.845 cc is occupied by the total solids. Therefore, the open porosity is $\simeq 15 \%$ by these methods.
the top and bottom of the tapernout TGA curves for thin sections cut from to slight warping during tape. The difference between the curves is related excellent characterization test, but it is satisfactorily small. This also is an of the solids and organics took place a tape uniformity. If segregation large difference in binder content from result of settling, there would be a observed is a good measure of the degree of defloce to side. The uniformity drying stage. This, we believe, combined with distribution, even during the leads to the excellent packing and relatively high bulk density particle sizes herking and relatively high bulk density achieved.
The as-cast sheets of ceramic tape are usually cut to the desired sizes and shapes with a simple punch and die set actuated by a rotary punch press. This operation is called blanking. The pieces are punched oversize to allow for firing shrinkage.
was taken case of the smooth-surfaced alumina substrate tapes, special care punching. Dust, punching selatively soft tape during handling and pressed into the tape by the punch face or thereign particles must not be punch with a recessed central area that or the ejector. A specially designed edges of the parts was used. In addition contacted the tape at the very cedures between punching operations were careful vacuum-cleaning pro-
If holes are required in the finished were instituted.
hed ceramic, they can often be punched than 0.020 in . in diameter. For larger holes especially if the holes are larger and no serious problems are involved holes the operation is almost trivial electronics industry, arrays of very small hut for many applications in the

 smaller the hole diameters, the more from one side to the other. The packed, and therefore the higher the scale of hybrid intemponents can be ing a complex integrated circuit. Punching is an inexpensive
ceramics, because hundreds of holes can be producing holes in tape-cast the punch into the die.

Alternative methods are available, such as laser drillings ${ }^{58}$ and diamond drilling the fired ceramic. If holes are to be located within 1 mil of nominal, these are the preferred techniques. Piazza and Steele ${ }^{34}$ have pointed out that multiple punching of unfired tapes can be utilized with reasonable yields if the tolerances on hole location are 8 mils or greater.

In determining whether punching will be less expensive for a given hole size, an important consideration is the expected life of the punch and die set. For holes of diameters greater than 0.020 in ., punches made of hard materials, such as tungsten carbide, can be expected to last through several hundred thousand punch operations. A new punch and die set ordinarily costs several thousand dollars, and this method is therefore suitably inexpensive for mass production. However, when hole diameters approach 0.010 in., the punches are fragile, and laser drilling becomes cost competitive in spite of its necessarily time-consuming step-and-repeat mode of operation.

If the improved techniques of punching smaller-diameter holes reported below are used, the punching of the tape before firing can be restored as a good candidate for the less-expensive method.

Figure 30.16 shows a schematic cross section of a punch and die, in the middle of the operational sequence. As shown in the diagram, the punch has pushed a cylindrical slug of tape into the die cavity. The next step is for the punch to retract upwards, while the metal "stripper plate" keeps the tape from moving. The plate then rises also, the tape is removed (to be inspected and fired), and the next piece of tape to be punched is placed over the die. Experiments in our laboratory, later confirmed at other facilities, have shown that 0.010 to 0.012 in. diameter punches tend to break or wear excessively during the first 20,000 operations unless the following design criteria are followed:
. The larger-diameter shank of the punch should be 8 to 10 times the diameter of the punch itself, to provide rigidity against excessive flexing. . The punch tip should move down to a point below the bottom of the upper die hole (Figure 30.16) to prevent the lape slags from remaining in compressively packed.
3. A partial vacuum should be applied to the larger-diameter die hole to aid in slug removal. This vacuum can conveniently be provided by a Bernoulli effect air jet in each die hole, emanating from a simple gallery of holes drilled at an angle down through the die block.
4. The punch-to-die clearance on each side is optimally about 0.0015 in . for alumina substrate tape. In other words, a punch diameter of 0.012 in . requires a die diameter of 0.015 in . Too small a clearance (0.0005 in . on
ciently hard for large-scale production usage, and their tips become rounded after about 10,000 operations with alumina substrate tape. The holes in the tape produced by round tips are irregular and unpredictably small, especially after firing.
With the use of carefully designed punches and dies, hundreds of small holes having excellent cylindrical shapes can be punched simultaneously. No visible wear is typically observed on 0.012 in . tungsten carbide punches after 20,000 operations.

MULTILAYER STRUCTURES

A specialized technology commonly used in electronic ceramics, especially for multilayer capacitors, piezoelectric devices, transistor packages, hybrid circuit modules, and small printed circuit boards, is multilayer processing. Since the processing before sintering is an important part of this technology we cover it briefly in this section. Lamination and screened multilayer formation are two major techniques used to produce the multiple-layer structures.

Lamination

Schwartz and Wilcox ${ }^{35}$ describe the lamination process as comprising the following steps: (1) tape casting thermoplastic sheets, (2) punching holes, (3) screen printing the metal electrode patterns, (4) laminating the sheets together, (5) punching the final shapes, and (6) sintering the monolithic structure.

Since we have described the processing steps before sintering with the exception of screen printing and laminating, we will concences is accomlatter aspects here. M. phished by for simultaneous metallization of Close properties (viscosity and
 must sinter compatibly with the ceramic material. Palladium, platinum, 'sןе! There are numerous patents and papers ${ }^{36-14}$ describing the different types of metallization used in multilayers.
 stacked green sheets at a suitable temperature to produce a monolithic
 several hundred degrees Fahrenheit. Temperature and pressure depend to a

Multilayer Casting

large degree on the type and amount of binder. A typical range of pressures
 lile part. Sufficient time must be allowed to permit the entire part to reach thermal equilibrium. A nother echnique described in the literature ${ }^{42}$ is continuous roll-to-roll lamination performed by passing two or more sheets of material between a set of nip emers a pressures ranging from 100 to 1000 psi . This is done at room temperature at a speed of $20 \mathrm{ft} /$ minute.
Screened Multilayer Structures

Recently a process has been reported ${ }^{43}$ that eliminates the need for costly
 structures. It is known as the Screened Multilayer Ceramic (SMC). In the printed process conductive layers and dielectric layers are alternately screen moly-mangane paste is used for the dielectrice used, and a special screenable alumina screened multilayer structure is cosintered the base tape is alumina. The atmosphere. The process avoids costs of alignment and punching the costs and time associated with tooling that are involved in lamination processes.

MULTILAYER CASTING

 literature. ${ }^{4,46}$ The technique is not used to produce ceramic packages with

 schematic of the triple doctor blade is shown in Figure 30.17. Details of the

Figure 30.17. Schematic drawing of a doctor-blade arrangement for multiple-layer casting.
D. W., Jr. Johnson, D. J. Nitti, and L. Berrin, "High Purity Reactive Alumina Powders: II, Particle Size and Agglomeration Study," Amer. Ceram. Soc. Bull. 51 (12), 864-900 (1972).
J. J. Burke, ed., Ulirafine-Grain Ceramics, Syracuse University Press, Syracuse, 1970,
10. G. D. Parfitt, Dispersion of Powders in Liquids, American Elsevier, New York, 1969,
V. T. Crowl and M. A. Malati, "Adsorption of Polymers and the Stability of Pigment D. H. Napper and A. Netschey, "Steric Stabilization of Colloidal Particles," J. Colloid Interface Sci.. 37 (3), 528-535 (1971).
F. J. Micale, Y, K. Lui, and A. C. Zettlemoyer, "Mechanism of Deaggregation and
Stability of Rutile Dispersion in Organic Liquids." Discuss. Faraday Soc., 42 pp. 238 247 (1966).
H. Koelmans and J. T. G. Overbeck, "Stability and Electrophoretic Deposition of Suspension in Nonaqueous Media, Discuss. Faraday Soc., 18, pp. 52-63 (1954).
A. E. Lewis, "Polar-Screen Theory for the Deflocculation of Suspensions," J. Amer. Ceram. Soc., 44 (5), 233-239 (1961).
A. F. Sherwood and S. M. Rybicka, "Surface Properties of Titanium Dioxide Pigments," J. Oil Colour Chem. Assoc.. 49 (8). $648-649$ (1966).
L. A., Romo, "Effect of C_{3}, C_{4}, and C_{1} Alcohols and Water on the Stability of Disper-
sions with Alumina and Aluminum Hydroxide," Discuss. Faraday Soc., 42, pp. 238-247
18. S. G. Dick, D. W. Fuerstenau, and T. W. Healy, "Adsorption of Alkylbenzene Sulfonate Surfactants at the Alumina-Water Interface," J. Colloid Interface Sci., 37 (3), 595-602 (1971).
T. Allen and R. M. Patel, "Adsorption of Long-Chain Fatty Acids on Finely Divided
 R. R. Stromberg. A. R. Quasius, S. D. Toner, and M. S. Parker, "Adsorption of
Polyesters on Glass, Silica. and Alumina." J. Res. Natl. Bur. Stand.. 62 (2), $71-77$ (1959).
Zeta-Meter, Inc., New York, unpublished work. Surface Reactions of Corundum,"' Trans. Faraday Soc., 52 (5). 229-236 (1956).
"Butvar," Technical Bulletin 6070, Monsanto Company, St. Louis, Missouri, p. 6. 1968, p. 19.
L. Slifkin, Encyclopedia of Physics, R. M. Besancon, ed., Reinhold, New York, 1966, p. ミ
31
Zinc Orthotitanate Powders
for Thermal-Control
Coatings
Y. Harada
D. W. Gates

[^16]27. R. B. Runk and M. J. Andrejco, "A Precision Tape Casting Machine 'tor Fabricating Thin, Organically Suspended Ceramic Tapes," Amer. Ceram. Soc. Bull., 54 (2) 199-200
(1975). Terminology used as defined in ASTM E 12-70. American Society for Testing and
"Buk Density Appa, Porosity and Apparent Specific Gravity of Fired Porous Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Porous
Whiteware Products," ASTM C373-56, Vol. 13. 1970. p. 326. W. D. Kingery, Introduction 10 Ceramics, Wiley New York, 1960, p. 40. J. B. Jr. Wachtman, National Bureau of Standards, private communication.

Alcoa Reactive Aluminas," Aluminum Company of America, Pittsburgh, Pennsylvania, 1967, p. 3.
J. Longfellow, "High Speed Drilling in Alumina Substrates with a CO_{2} Laser," Amer.
J. R. Piazza and T. G. Steele, "Positional Deviations of Preformed Holes in Substrates," Amer. Ceram. Soc. Bull., 51 (6), 516 -518 (1972). B. Schwartz and D. L. Wilcox, "Laminated Ceramics," Ceram. Age, 83 (6), 40-44 (1967).
H. W. Stetson, "Method of Making Multilayer Circuits," U.S. Patent 3.189.978 (June
37. B. M. Hargis, "Ceramic Metallic Composite Substrate," U.S. Patent 3,549,784 (Dec.
M. Bennett, W. E. Boyd, and J. E. Nobile, "Fabrication of Multilevel Ceramic, G. N. Howatt, "Method of Eliminating Voids in Ceramic Bodies," U.S. Patent R. A. Gardner and R. W. Nufer, "Properties of Multilayer Ceramic Green Sheets," Solid State Technol., 17 (5), 38-43 (1974).
41. D. L. Wilcox, "Ceramics for Packaging," Solid State Technol., 14 (2), 55-60 (1971). 42. J. Ettre, and G. R. Castels, "Pressure-Fusible Tapes for Multilayer Structures," Amer. Ceram. Soc. Bull., 51 (5), 482-485 (1972).
3. T. Ihochi, K. Otsuke, and H. Maejima, "Screened Multilayer Ceramics and the Automatic Fabrication Technology," Proc. Semiconductor/IC Processing Prod. Conf. New
York, 1972, p. 71.
44. R. E. Mistler, "High Strength Alumina Substrates Produced by a Multiple-Layer Cast-
R. E. Mistler, "Strengthening Alumina Substrates by Incorporating Grain Growth
Inhibitor in Surface and Promoter in Interior," U.S. Patent $3,652,378$ (March 28, Inhibitor in Surface and Promoter in Interior," U.S. Patent 3,652,378 (March 28 ,
1972).
"Marine Oils" (booklet), Haynie Products, Inc., Baltimore, Maryland.

Zinc Orthotitanate Powders for Thermal-Conti .. coatings
divided oxalate precursors obtained by a mixed precipitation. Final heat treatment for complete reaction was conducted a very rapidly so as to minimize particle sintering.

TECHNICAL BACKGROUND

The temperature control of statellites and spacecraft is one of the most challenging technical problems confronting spacecraft designers and materials engineers. The ultimate objective of thermal design is to ensure that the spacecraft operates within a prescribed temperature range defined
by the temperature limitations of the vehicle's materials and components. One of the primary passive methods used to achieve thermal control has been the use of coatings with high reflectance or low solar absorptance $\left(\alpha_{s}\right)$ that are resistant to discoloration in a vacuum-ultraviolet environment. The inorganic pigment that has been found to exhibit high reflectance and stability is $\mathrm{ZnO} .{ }^{1}$ Two coatings that have been used extensively on various spacecrafts are $\mathrm{Z}-93$ and $\mathrm{S}-13 \mathrm{G}$. Both incorporate ZnO as a pigment, the former using potassium silicate as a binder and the latter using a methyl silicone. ${ }^{1}$

However, ZnO is a strong absorber in the ultraviolet region, limiting its ability to reflect solar energy. Therefore, more recent work ${ }^{2}$ has been involved with the development of another pigment, zinc orthotitanate $\left(\mathrm{Zn}_{2} \mathrm{TiO}_{4}\right)$, which exhibits higher reflectance than ZnO in the near ultraviolet as shown in Figure 31.1.

Synthesis of $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ at elevated temperatures by a solid-solid reaction has been reported by several investigators. Bartram and Slepetys ${ }^{s}$ described its preparation from anatase titania and zinc oxide by reaction at 800 to $1000^{\circ} \mathrm{C}$ for 3 hours. Reaction times of 48 hours at $800^{\circ} \mathrm{C}$ to obtain $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ from a zinc oxide-titanic acid reaction has been reported. ${ }^{4} \mathrm{~A}$ phase diagram (Figure 31.2) for the $\mathrm{ZnO}-\mathrm{TiO}_{2}$ system proposed by Dulin and Rase^{4} shows the existence of a 1 Zn to 1 Ti compound, ZnTiO_{3}, as well as the orthotitanate. Both investigations showed the presence of secondary phases, such as $\mathrm{ZnTiO}_{3}, \mathrm{ZnO}$, and/or TiO_{2}, in their $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ products, indicating the need for accurate stoichiometry control to obtain a pure product. The presence of secondary phases has been found to be deleterious to the optical stability of $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$.

The use of decomposable salt precursors to enhance reaction or sinterability of oxides has been reported by several investigators. ${ }^{507}$ An example of this enhancement is that of a high-purity BaTiO_{3} produced from coprecipitated $\mathrm{BaTiO}\left(\mathrm{C}_{3} \mathrm{O}_{4}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{8}$

Figure 31.3. Solid-state process for forming $\mathrm{Zn}_{3} \mathrm{TiO}_{4}$.

would be desirable for larger-scale pigment production. The studies leading
to the process shown in Figure 31.4 are discussed in the following sections.
Precipitation Studies
Complete precipitation of the mixed zinc and titanium oxalates in the aqueous medium was found to require a 2 hour hold at $90^{\circ} \mathrm{C}$ under continued stirring. X-Ray powder pattern examination showed the presuggest orthorombic crystallinity $\mathrm{Z}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and a second phase whose lines
 not be found in the literature. This material, which is termed titanium oxa-
late in this paper, is presently being characterized. Scanning electron is presently being characterized.
lates and the mixed precipitate are shown photographs of the individual oxadifference in particle size between $\mathrm{ZnC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2$ to $10 \mu)$ and the The nium phase precipitate (submicron to 5μ) lead to a heterogeneous mixture in the mixed precipitate (Figure 31.7). Examination of different batches has shown uniform distribution of the two phases in each precipitation.

The present study was thus directed toward processing of the zinc- and titanium-source precursors so that rapid conversion to $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ under modest time/temperature requirements could be achieved. At the same time it was necessary to modify ultimate firing conditions to minimize sintering effects that are encouraged by such powder processing prior to firing. This paper describes the studies that were conducted in the areas of precipitation, decomposition, and firing, leading to the desired pigment material.

EXPERIMENTAL PROCEDURE

The zinc and titanium sources were reagent grade ZnCl_{2} and purified TiCl_{4}, and the oxalic acid was reagent grade. Zinc chloride and oxalic acid solutions were prepared by conventional dissolution of the crystals in distilled water at $40^{\circ} \mathrm{C}$. The TiCl_{4} solution was prepared by dropwise addition of the TiCl_{4} into distilled water, which was cooled in an ice bath to prevent formation of hydrolyzed titanium.

Precipitation of mixed oxalates was conducted by addition of a mixedchloride solution (having a $2.05: 1.00 \mathrm{Zn} / \mathrm{Ti}$ ratio) to oxalic acid at $40^{\circ} \mathrm{C}$. This was followed by heating of the system with stirring to $90^{\circ} \mathrm{C}$, where it was held from 1 to 4 hours, depending on the batch size.

Filtration was performed in a buchner-funnel system under slight vacuum. The precipitate was washed thoroughly with hot water until there was no evidence of acid in the filtrate.

Calcination and firing were performed in standard atmospheric Globar furnaces. Powders were contained in fused silica boats for firings up to $1300^{\circ} \mathrm{C}$ and in platinum crucibles at $1400^{\circ} \mathrm{C}$.

RESULTS AND DISCUSSION

The solid-state process used to synthesize $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ in earlier work ${ }^{2}$ is shown in Figure 31.3. The disadvantages of this oxide-oxide reaction are: (1) extensive grinding of the individual oxides and of the mixture prior to firing is necessary, (2) an extended period of 18 hours is required for complete reaction to form $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$, and (3) additional grinding is needed to obtain a particle size of about 1 to 5μ. The various comminution steps in this process present the danger of contamination from the milling media; the resulting impurities are a source of reflectance degradation and also can lower the stability to an ultraviolet-vacuum environment.

The precipitation process (Figure 31.4) was developed to minimize or eliminate such grinding and to decrease the processing times, both of which

aivivxo wninvil

Figure 31.6. SEM microstructural view of titanium oxalate.

COPRECIPITATED ZINC.TITANIUM OXALATE (LH-52)

Figure 31.7. SEM microstructural view of mixed oxalates.
Figure 31.\%.
...

OXALIC ACID	
PRECIPITATION $90^{\circ} \mathrm{C} / 4 \mathrm{HRS}$	
filtration	
OVEN DRIED $90^{\circ} \mathrm{C} / 4$ HRS	
$\begin{aligned} & \text { PRE-FIRED } \\ & 600^{\circ} \mathrm{C} / 2 \text { HRS } \end{aligned}$	
$\begin{gathered} \text { FIRED } \\ 1200^{\circ} \mathrm{C} / 2 \mathrm{HRS} \end{gathered}$	
$\begin{aligned} & \mathrm{Zn}_{2} \mathrm{TiO}_{4} \\ & \text { PIGMENT } \end{aligned}$	

E se səjeן:

Materials examined include the individual oxalates and the mixed precipitates. Samples were heated at temperatures from 120 to $700^{\circ} \mathrm{C}$ for 2 hours each, using direct insertion and removal from the furnace at temperature to minimize the effects of heat up and cool down.
The results of a gravimetric analysis (Figure 31.8) show that the titanium oxalate phase decomposes at a lower temperature than does the zinc oxalate. The weight-loss curve for the mixture lies between the curves for the individual components, reflecting the different rates of decomposition. The appearance of the powders after heat treatment and the results of Xray analysis using powder patterns are presented in Table 31.1. After the 400 and $500^{\circ} \mathrm{C}$ calcinations, the zinc oxalate material was gray and lumpy. The weight loss data show that this is the range where rapid decomposition occurs. D'Eye and Sellman ${ }^{0}$ in their work with thorium oxalate attribute this coloring to the presence of carbon from the dissociation of carbon monoxide.
The titanium oxalate materials showed a lesser departure from white and were all free flowing. The mixed oxalate samples calcined at the various temperatures were also quite fine in particle size and did not display the aggregation shown by zinc oxalate samples. Samples calcined at 600 and

IH9I3M TVILINI so LN33y3d

459

$00^{\circ} \mathrm{C}$ (Lh. $52(9)$)
8
\therefore
\therefore
Figure 31.10. SEM microstructural view of mixed oxalates calcined at $900^{\circ} \mathrm{C} / 2$ hours.
All materials were precalcined at $600^{\circ} \mathrm{C}$ for 2 hours prior to the high-
 decomposition. Flash calcination of the mixed precipiter

 the free ZnO . Gravimetric analysis showed the amounts to be from 2 to wt \% for various batches.
SEM studies showed that the $900^{\circ} \mathrm{C}$ material had a particle size range from submicron to about 2μ (Figure 31.10). The particles exhibited

 ing of particles was apparent from the necking behavior shown for the $1200^{\circ} \mathrm{C}$ material. Material heat treated at $1300^{\circ} \mathrm{C} / 2$ hours and $1400^{\circ} \mathrm{C} / 5$ minutes exhibited a similar morphology.
The final product at all heat-treatment conditions was a material that, although caked, could be reduced to a powder by manual crushing. Most importantly, the physical state of the $\mathrm{Zn}_{2} \mathrm{TiO}$, powder was amenable to direct incorporation into a silicone vehicle for use as a paint.
Thus the use of mixed-oxalate precursors to enhance the $\mathrm{ZnO}-\mathrm{TiO}_{\mathbf{2}}$ reac-

X-Ray analysis of the various products revealed complete pyrolysis for $\mathrm{Zn}_{2} \mathrm{TiO}$, at $500^{\circ} \mathrm{C}$, for titanium oxalate at $300^{\circ} \mathrm{C}$, and for the mixed $00^{\circ} \mathrm{C}$. lates at $500^{\circ} \mathrm{C}$. Formation of $\mathrm{Zn}_{2} \mathrm{TO}_{4}$ an extremely fine state of subdivision for the latter.

A SEM photograph of the $600^{\circ} \mathrm{C}$ material produced from mixed oxalates appears in Figure 31.9. A large range in particle size is evident for this partially reacted material, and the sharp edges of particle surfaces reflect the morphology of the as-precipitated material.

Heat-Treatment Studies

 to $1400^{\circ} \mathrm{C}$. Firing times of 2 hours were used up to $1300^{\circ} \mathrm{C}$; the $1400^{\circ} \mathrm{C}$ soak time was 5 minutes. To retain the material in unsintered form, samples were fired as loose powders using what may be termed "flash calcination."

 removed in a similar abrupt manner after the prescribed firing time.

$$
\begin{aligned}
& \text { References } \\
& \text { 3. S. R. Bartram and R. A. Slepetys, "Compound Formation and Crystal Structure in the } \\
& \text { System ZnO-TiO,"" J. Amer. Ceram. Soc., } 44 \text { (10), } 493-499 \text { (1961). } \\
& \text { 4. S. R. Dulin and D. E. Rase, "Phase Equilibria in the System ZnO-TiO," J. Amer. } \\
& \text { Ceram. Soc., } 43 \text { (3). } 125-131(1960) \text {. } \\
& \text { 5. D. T. Livey, B. M. Wanklyn, M. Hewitt, and P. Murray, Properties of MgO Powders } \\
& \text { Prepared by Decomposition of Mg(OH)," Trans. Br. Ceram. Soc., 56, (5), 217-236 } \\
& \text { (1957). } \\
& \text { 6. Y. Harada, Y. Baskin, and J. H. Handwerk, "Calcination and Sintering Study of } \\
& \text { Thoria," J. Amer. Ceram. Soc., 45, (6), 253-257 (1962). } \\
& \text { 7. R. E. Jaeger and T. J. Miller, "Preparation of Ceramic Powders by Liquid Drying," } \\
& \text { Amer. Ceram. Soc. Bull., 53 (12) 855-859 (1974). } \\
& \text { 8. W. S. Clabaugh, E. M. Swiggard, and R. Gilchrist, "Preparation of Barium Titanyl } \\
& \text { Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity," J. Res. Natl. } \\
& \text { Bur. Stand., S6 (5), 289-29I (1956). } \\
& \text { 9. R. W. M. D'Eye, and P. G. Sellman, "The Thermal Decomposition of Thorium Oxa. } \\
& \text { late," J. Inorg. Nucl. Chem., I (1/2), 143-148 (1955). }
\end{aligned}
$$

tion at lower temperatures, coupled with a rapid-heat-treatment technique, flash calcination, provides a more rapid method for obtaining a $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ powder suitable for use as a pigment. Elimination of grinding of the powder, necessary in the solid-solid state process, yields a purer product less susceptible to color degradation in a space environment.

[^17]
REFERENCES

1. G. A. Zerlaut, Y. Harada, and E. H. Tompkins, "Ultraviolet Irradiation in Vacuum of White Spacecraft Coatings," Symposium on Thermal Radiation of Solids, S. Katzoff,
ed., NASA SP-55, Washington, D.C., 1965 .
2. G. A. Zerlaut, J. E. Gilligan, and N. A. Ashford, "Space Radiation Environmental Effects in Reactively Encapsulated Zinc Orthotitanates and Their Paints," AIAA 6th Thermophysics Conference, April 1971, Paper No. 71-449.

ACKNOWLEDGMENT

Pt
Figure J1.1. SEM microstructural view ol mixed oxalales calcined at 1200 C/2 hours.

In thick-film applications, powders are utilized to prepare resistor and conductor pastes. These pastes or inks are screen printed on substrates. Resistors include printed patterns of resistive paste systems using metals, metal oxides, and glass-frit mixtures. Conductors are printed patterns of

 crossover and encapsulating layers, quite often are used on thick-film printed patterns but are covered in this chapter.
The capacitor industry uses powders for preparing a dielectric body and dielectric layers in multilayer capacitors, external or exposed electrodes for

Pastes for use in thick-film and capacitor applications are prepared grinding, blending, and dispersing powders in a liquid-vehicle system. Powder characterization is an important part of achieving the desired paste
powders in the paste, and some gel structure. Another common form of screenable pastes showing non-Newtonian behavior exhibits a phenomenon known as thixotropy. This behavior, represented in Figure 32.2, shows characteristic hysteresis believed to be due to the breaking up of the secondary bonds that form a gel structure, with increasing stress. The gel structure, however, can reform if the material is allowed to stand. This screenable pastes, since such behavior can be utilized to an advantage in screenable pastes, since such behavior can, to an extent, eliminate secon-
dary flow of screened pastes.

EFFECTS OF PARTICLE SIZE, SHAPE,
Increasing the percent solids in a paste system normally increases its viscosity. This relationship, however, is affected by a tendency of the fine
 in the paste. Particle shape and size asymmetry will promote nonNewtonian behavior in the pastes. For example, at reasonably high particles in produspherical particles are far more effective than spherical generally show high yield values. generally show high yield values.

Powder particles that tend to flocculate at even low concentration destroy
Newtonian behavior of suspensions. The strong surface forces of fine parti-

Characterization of Powders for Thick. Films ano capacitors
rheology, firing behavior, and final properties. This chapter discusses the rheology of pastes, the effects of particle characteristics on rheology, and how these factors affect performance.

PERFORMANCE CHARACTERISTICS

For a given choice of materials and process parameters (such as drying and firing), the final performance of a capacitor or thick-film component depends on a proper choice of physical characteristics of the powders and on the powder-preparation method used in the manufacture of dielectric bodies and electrode and resistor inks. The parameters on which performance testing is based are given below.

For capacitors the parameters include: (1) micro- and macrostructure of the dielectric body, (2) leaching and dewetting of electrode metallization during soldering, (3) bond strength and solderability, (4) screenability and area coverage of the paste system, (5) capacitance and dielectric constant, (6) dissipation factor, (7) insulation resistance, (8) temperature coefficient of capacitance, and (9) shorts and voltage failure.

For thick films the parameters include: (1) macrostructure of the film, (2) leaching and dewetting, (3) adhesion with the substrate and bondabil discharge, and (8) temperature coefficient of resistance.

PASTE SYSTEMS

The screenability of thick-film pastes depends on the rheology of the system, which in turn depends on the nature of the powders, vehicle system, surface active agents, and other modifiers present in the paste. The particlesize distribution of the powders plays a considerable role in controlling rheology and, therefore, viscosity of the paste.

Figure 32.1 shows the commonly found flow behavior of paste systems. A theoretically ideal paste would show a Newtonian behavior, in which case the flow response (shear rate) of the paste is linear with applied stress. This type of behavior may only be expected from low-viscosity liquid systems, and common thick-film pastes very seldom act this way. They do not usually respond to the applied stress linearly. This nonlinear or nonNewtonian behavior is represented by curves 3 through 5 in Figure 32.1 o this cat considerable interaction among organic vehicle systems and/or dispersed
cles bring the particles together, causing the paste system to gel. The smaller the particles, the larger the surface area and, therefore, the stronger the surface forces. In a paste system proper wetting of the particles by the reducpowder particles also require more vehicle to cover the surface, thus ing the effective amount of vehicle available

A real screening paste system rarely consists of only one type of powder and vehicle. A practical system may consist of the following: (1) a mixture of powders, (2) more than one type of solvent and/or vehicle, (3) modifiers
 control sensitivity of a paste to environment, temperature, drying, and firing.

EFFECTS OF POWDER PREPARATION AND POWDER CHARACTERISTICS ON PERFORMANCE

Experience has shown that in many instances more than one performance characteristic of a capacitor or thick-film component can be affected simultaneously by a choice of powder characteristic, such as a certain particle-size distribution or shape, and a processing parameter, such as longer time for mixing and dispersing of powder particles. An example is the poor and good macrostructures of two multilayer capacitor chips shown in Figure 32.3. A poor structure is represented by the discontinuity of the electrodes, and the voids and cracks in the dielectric body. These voids and discontinuities have been caused mainly by poor dispersion of organic binder in the dielectric body, which burns off during firing and leaves the poor structure. The essentially void-free structure obtained in the lower part of the figure by homogenizing dispersion of the binder system in a colloid mill simultaneously improved the capacitance, dissipation factor, insulation resistance, and temperature and voltage response of the capacitor chip.

Final quality and performance of a capacitor depends on both macroand microstructure. Microstructure refers to the size and structure of grains in the dielectric body. A grain size of $\sim 1 \mu$ is considered optimum for the most favorable combination of capacitance, loss, and dissipation factor. A homogenous mixture and controlled particle-size distribution are necessary to achieve the above requirements. With an excessive amount of fines, a homogeneous and better sintered body may be obtained, but extra fines may cause increased sintering and excessive grain growth. However, this can be restricted by small additions of grain-growth inhibitors. Again, increased amounts of blending and mixing are required for its homogeneous disper-
sion. It may be necessary to adjust firing time to permit and compensate for optimization of powder characteristics.

Microstructure of the dielectric body and macrostructure of the capacitor have already been covered above. In the rest of this section the electrode inks for capacitors are discussed separately as internal and external or endtermination electrodes.

Internal electrodes consist of metallization between the dielectric layers in multilayer capacitors. These normally do not use any glass frit and may normally be fired at high temperatures simultaneously with the dielectric body. In this case the area covered by printed electrode paste on a dielectric tape is of major importance.

Fine particle size and adequate mixing and dispersion of powders increase the possibility of uniformly sintered, continuous metallization, especially when mixtures of metal powders are used. Particle shape also influences processing and performance. A uniform, homogenous, and continuous layer of internal electrode provides a capacitor with high capacitance, low dissipation factor, fewer shorts, and fewer voltage failures.

In the case of external electrodes or end terminations, glass frit is normally used with a mixture of metals or alloys; these systems are fired at lower temperature. A densely sintered electrode is desired to resist leaching and dewetting in the solder melt.

Blisters, cracks, and voids on the surface can be minimized by increased mixing, proper choice of vehicle, and higher degree of powder dispersion in the paste system. If excessive fusion and flow of glass frit at the firing temperature can be avoided, finer glass-frit size gives a denser electrode layer with improved adhesion, as well as improved temperature and voltage response of capacitance.

Thick Films

A significant part of this area has been covered under the heading of paste systems, in reference to the screenability and rheology of pastes.

In thick films where the resistor systems have glass frit as an important ingredient, the conductor systems may use very little or may even be fritless. For example, two developments in recent years are fritless gold and fritless platinum/silver conductor systems.

For quality testing of thick-film components, the performance characteristics listed above, such as macrostructure, leaching and dewetting, adhesion with the substrate, bondability, screenability, and area

33

Future Directions in Processing Research
 Future Directions in Processing Research

This timely conference reflects progress during the last 10 to 15 years on the science of ceramic processing. While we are far from providing all the
 years ago we started talking about how it was necessary to Around 20 materials, characterize processes, how it was necessary to characterize tures of microstructure. To do that correlate character features with fea-
 have seen important applicis and microscopes makes the job possible. We
 scope is now being used again because features can the petrographic microscope that cannot be seen with the others. The major point is this micro-

This chapter we have been able to do so far.
conference. The subject of the panel was processing research needs. The speakers represented different branches of industry, including needs. The ceramics, technical ceramics, refractories, and materials for energy, and an

POWDER CHARACTERIZATION-A. G. PINCUS

Why characterize particulates? One reason is that characterization is needed at the transfer point between powder supplier and the plant because the vendor and buyer have to be able to talk to each other. They have to agree on a set of specifications if they are to do business with each other. Also, the characterization of particulates has even more significance because, unless you can properly characterize a particulate, you will not have the subsequent forming and firing steps under control. The character of the particulate is going to affect the processing and certainly affect the product all the way through until it is shipped out of the factory, and maybe even in service. We think maybe some of this character of the particulates is wiped out in firing, but it has a way of hanging on until it shows itself.

Several years ago we talked of it being completely wiped out if you make your crystalline ceramics by way of melting or vapor-deposition routes. This wipes out any surface-history effects and you are no longer dependent upon fabrication of particulates. I even predicted one time that forming as a
 processing that it is going to displace powder processing entirely. We've seen now that after more than 15 years of glass-ceramics being around, it hasn't happened. The attendance at this conference is an example of the fact that powder processing is very much alive. We will be staying with powder processing and we have to learn how to do the characterization job well all the way through, from the preparation of the powders themselves on through to the shipping of the material out of the factory.

The problem that man and plant face is a bewildering array of tools, techniques, and instruments to do a characterization job. Particle-size measurement again is a good example of this. We talk about characterization as if it just got invented in this era of the new ceramics, this whole post World War II development, which has seen technical ceramics move into so many new fields. I think if you go back into the history of ceramics there has always had to be an intuitive or even quantitative understanding of characterization. The new feature we face now is the explosion of instrumentation. There are more and more instruments to do the job and more and more data piling out needing to be interpreted and applied. When you hook the computer up to the rapid electronic measuring device, you really have problem. in not only how to characterize, but how much data to accumulate. An incident quoted by a colleague relates to this question. He

Traditional Ceramics-R. Russell, Jr.

 "Pe ceramist in charge, "What is all of this, what have you got in there?" size?"" and he said events," was the response. "Do you measure particle colleague asked what he did with the information once he gets it, and the
 how do you effectively use your characterization data.

Now if you shorten the time for making measurements from a day or

 tion must be faced. This leads us back to the kind of papers that have been Undersed at this meeting, where there is a real striving for understanding. well enough so that maybe just a few measuring the characterization controls that you need in large-scale manufacturing must be our prime objective.

TRADITIONAL CERAMICS-R. RUSSELL, JR

A little boy rushed excitedly into the house and said, "Wow! Our new neighbors have a new lawnmower that doesn't require gasoline or oil or
 to ceramic processing in that it does say that there may be some good ideas in old technology and progress can come through better understanding of old technology and its application. During this panel I am to deal with raditional ceramics which have old technologies. First, I identify tradiional ceramics as products such as triaxial porcelain and other whitewares for nonelectronic use; for example, dinnerware, sanitary ware, floor tiles, and various types of pottery. I also include structural clay products, enamels, abrasives, ceramic cements, etc.

It is a difficult challenge to say in a few minutes something relevant to such a wide product line. That is why I have chosen to talk, more or less, philosophically. My experience in production, research, education, and consulting has emphasized over and over the critical importance of ceramic processing. I'm not sure when I first fully recognized that a ceramic product represents a combination of many complex processes. But, the awakening came very early in my career and has been reconfirmed continually for some 40 years. I keep emphasizing this fact to my students, but
 ceramic production, development, quality, or characterization problems
confron in real-life situations.

When we set about some 12 years ago to define the criteria in ceramic engineering education, the significance of ceramic processing in justifying
 ing us from the metallurgical or polymer engineering people, for example. The resulting objective criteria in the ceramic engineering education report of the American Society for Engineering Education included considerable emphasis on ceramic processing. However, I've wondered if any modern curriculum is doing justice to this area; and I doubt that any of our
 overexposure to processing technology despite the sincere efforts of some of my peers. One has only to examine the ceramic literature in recent years, or for that matter, our Masters and Doctorate dissertations to gain some insight into the lack of emphasis on ceramic processing compared with basic and applied research on materials and their behavior. While processing is by no means ignored in our current literature, its coverage is hardly prolific or, in my opinion, adequate.

Now, rather than continuing to emphasize the negative, let us take the positive view. If we agree that ceramic processing is vital, why do we not understand it more fully, do it better, and publish more widely? I summarize a number of factors which I think are involved:

Institutional research and development is largely sponsored, with recent sponsorship being highly science and materials-properties oriented. 2. The processing research that is sponsored tends to relate overwhelmingly to modern or advanced materials needs, rather than traditional ceramics. 3. The processing of conventional ceramics tends to be traditionalized, and a natural resistance to change plus a resignation to the status quo is in effect all too often.
4. Lack of a general realization that a more thorough study of traditional ceramics and their processing has the potential rewards to justify an extensive effort.
5. Individual manufacturers, and in some cases groups of manufacturers, that study or develop processing technology often consider the information proprietary or just don't care to make it available publicly. (I've had some experience in that direction that I've thought was unfortunate.)
6. The demise of engineering experiment stations with ceramic-processing orientation and the greater science emphasis in such organizations as the National Bureau of Standards, the Bureau of Mines, and governmental and private research organizations tends to deemphasize traditional ceramic processing research.
7. Ceramic technical curricula are controlled by fewer and fewer
acterization of the alumina and silicon nitride powder end-members led to significant processing improvements. The petrographic microscope was found to be the most useful powder-characterization tool. Calcination of aluminum trihydroxide could be controlled to an optimum activity for the solid-solution-densification reaction by measuring the index of refraction.
 about 10^{-3} atm. By use of a two-stage pressure and temperature application
 compacts can be achieved.

avnalsyand 'm a-hoyvasjy jiwaay

 lot of the problems that end up in your end products result from various
 green bodies, and eventually the firing characteristics of the compacts. I thought there would be considerably more discussion on how do you actually characterize a particle and what kind of physical/chemical characteristics must be used for doing this. I once had a tour of Coors alumina plant and I noticed that a lot of their alumina products are made by filling molds with granules, yet only once did I hear some discussion about the effects of these granules. An area that certainly deserves study is what is the structure and size distribution of these granules, what do they do to the active behavior and flow characteristics in the die. I think one has to start right at the very beginning of particle preparation and work your way all the way along to sintering. I can see that some of the items briefly mentioned must tie very directly to the factors that control particle activity. One problem restricting progress in this field, as I see it, is that not one single professor of ceramics in this country devotes his entire professional interest to processing-someone who studies the preparation of particles. I've done a lot of work on grinding, but my interest in grinding is on the scale of boulders compared to what you people are dealing with. The kinds
 thing like 100 to 300 microns in size and the phenomenon that exists in grinding at this relatively coarse size is far different from that encountered when you are down in the micron size. I think there is a whole world of study in particle preparation followed by particle characterization or mixing

Future Directions in Processing alesearch

REFRACTORIES-R. A. ALLEIGRO

This conference did not cover the problems of the refractory industry in much detail. The papers mainly were associated with fine particles. Refractories are concerned with the other end of the spectrum. We start with rocks and try to find materials to put with them to get some degree of bondч! fine particulates and clays. These aggregates are not micron- or submicronsize particles, but range up to 3000μ in size (in some cases even larger). Yet when refractories are formed, the same consideration of particle size, shape, orientation, packing, and composition are important.

It has been mentioned (Chapter 23) that the examination of the fired product gives an indication of process character and control. In refractories we are continuously guided by those final results, with feedback to raw materials and processes involved in consolidation and firing. Examination of the fired product gives an indication of process character and control. This is essential before second-guessing the cause of rejects. Microstructural examination provides information on the amount and distribution of glassy phases bonding the coarse particles, the possible fractures in the bonding phases or in the large grain due to thermal shock, and the quality of adhesion.
 chemical variation. Some are dense, while others are quite open; others are rough or smooth. Some may be blocky or angular platelets. These characism beween the matix aggregate. Chemical variations, either intentional by mixing of two types or through impurities often affect the final product.

What we strive for is to determine the desired product characteristics and feed this back to specifcations which reflect a stancy and an acceptable rejection level. Characterization of raw materials must be tied to those critical attributes upon which performance is based.

I would like to focus on the processing and characterization of oxynitride powders, which have been neglected so far in this conference, but offer outstanding potential for achieving superior high-temperature performance. An important factor in the processing of sialons, a solid solution of alumina and silicon nitride, is a large volume expansion that occurs as the solid solution is formed. Consequently, continuous application of pressure in hot pressing is largely compensated by the volume change. However, char-

$$
\begin{aligned}
& \\
& \text { Abrasion, } 108 \\
& \text { Abrasive, } 9 \\
& \text { Abrasiveness, } 402 \\
& \text { Absorbed, } 71 \\
& \text { Absorptance, } 450 \\
& \text { Absorption, X-ray, } 41 \\
& \text { Academic research, } 477 \\
& \text { Acid, boric, } 86 \\
& \text { napthenic, } 14 \\
& \text { Acrylics, } 237 \\
& \text { Active Al, } \mathrm{O}_{3}, 167 \\
& \text { Activity, clay, } 15 \\
& \text { Additives, } 26,136 \\
& \text { Adhesion, } 386,399 \\
& \text { Adhesion forces, } 357 \\
& \text { Adsorption, } 55,111 \\
& \text { liquid-phase, } 48 \\
& \text { Agar, } 109 \\
& \text { Ageing, } 383 \\
& \text { Agglomerate, } 22,36,61,86,89,164,293, \\
& \text { 295, } 414,418 \\
& \text { characterization of, } 75 \\
& \text { formation, } 71 \\
& \text { pseudomorphic, } 87,90 \\
& \text { reactive, } 90 \\
& \text { shape, } 86,93 \\
& \text { strength, } 63,64,365 \\
& \text { weak, } 36 \\
& \text { Agglomeration, } 40,153,164,357,401,475 \\
& \text { Agglomeration factor, } 170 \\
& \text { Agglomeration kinetics, } 370 \\
& \text { Aggregate, } 37,337 \\
& \text { Aggregated, } 129 \\
& \text { Aggregation, } 110 \\
& \text { Aids, grinding, } 32 \\
& \text { mineral, } 14 \\
& \text { viscosity, } 32
\end{aligned}
$$

478
or formation of agglomerates, packing, and stresses that exist within packed powders. I imagine this is what contributes considerably to the nonuniformity and is worthy of basic studies without. worrying about the final product. I think this is a good opportunity for some person to set as his life's goal. This is really what I've done in the world of mineral processing. I'm not personally concerned with whether I am going to be able to make a from that grade of ore; but I've really devoted many years to understanding basics and intend to continue this effort.

INDEX
Capillary action, 429
Capillary pressure, 366
Carbide, sillcon, 9
Carbohydrate-derived binders, 237
Carbonates, 113
magnesium, 25
Carbon tetrachloride, 114
Carbowax 400,310
Carrier film, 427
Carrier-film materials, 428
Casting, slip, 9
Cast layer, thickness of, 426
Casting machine, 425
Casting rate, 218
Casting size, 282
Casting slips, 211
Cation-exchange capacity, 180,187
Cellulose acetate, 421
Cement, 278
Centrifugal force, 372
Centrifugal grinding, 111
Centrifuge, 8
Ceramics, electrical grade, 96
technical, 11
Ceramographic, 157
Chalcogenides, 135
Characterization, $31,35,39,86,156,340$,
414,477
chemical, 421
of layer silicates, 184
physical, 62
of powders, 463,472
of tape, 436
Chattopadhyay, 352
Chi, 86
China, 4
Chlorine, 86
Chlorite, 179
Chrysotile, 179,377
Classification of layer-silicate, 178
Clay, $13,63,213,377,391$
fine-grained, 377
kaolin, 85
native, 3
Clay bodies, drying of, 261 .
Clay minerals, 112
Clay "tempering," 272
Clay-water paste, 264
Clay-water systems, 193,379
Clintonite, 179
C
 burnout, 250
organic, 63,310
organic, $63,310,466$
potassium silicate, 450 potassium
Bingham, 203 plastic
Binns, 26 Biodegradation, 249 Biodegradation, 249
Birefringence, 93
Blaine Fineness Tester Bleininger, 7 Block, 112 Blunging, 12 Bo, et. al., 222
Boehmite, 154, 280 Bond, 77
diffusion, 61 Bonding mechanisms, 365 Bonding strength, 339 grain, 46 Bragg. 7 Bridge, 396
Bridgework des
Bridgework design, 396 Briquetting, 375
British Ceramic Society, 6 British Ceramic Society, 6
Brown, John A., 325 Bruch, 26 Brunauer, 186
Bulk density, 49, 62, 102, 438° Bulk density, 49, 62, 102,438
Bulk green density, 436 Bulk green density,
Burger's vector, 148
Burke Butylene glycol, 114

Cadmium carbonate, 113
 Calcination, $61,452,458$
Calcined, 91 Calcined, 91
Calcining, 86

Calcite, 112, 113 Calcium aluminate cement, 277 Calcium carbonate, 282
Calkins, 352

Capacitor, 463, 468 multilayer, 463
Capacitor dielectrics,
Cal Capillary, 359
Alum salt, 154
American Ceramic Society, 6
Alum salt, 154
American Ceramic Society, 6
Amesite, 180
Amesite, 180
Ammonia electrode, 187
Ammonia electrode, 238
Ammonium aqgatz, 112
Amorphous quarty
And
Analysisle-size, 88
particle-sin, 8 , 41
turbidimetric, 41
Andraeasen limit curves, 221
Angle of repose, 49
Angle of repose, 49
Anthracene, 458
Antigorite, 179,380
Antigorite, 179,380
Apparent density, 323,438
Aragonite, 113 Archimedes' method, 436
Archimedes' method, 43
surface, $39,63,79,88,95,108,111$, Armac $\mathrm{t}, 115$ Arrhenius activation energy, 432
Asbestos, 377, 383 Atmosphere, sintering, 28 Attritor ball mill, 111 Auger, 391,40

Auger rotation, speed of, 404 Autoclave studies, 280 Average partich 25

Balek, 170
Ball clay, 213 Ball milling, 14, 63, 95, 102, 149
Balshin, 350
Bal Balshin, 350
Bar, tensile, 12 Bar, tensice, 12,135 Bartlett, 14
Barlett, Helen, 13
$\mathrm{BaSnO}_{3}, 133,450$
Bayer process, 33, 85, 143, 154, 307
aluminas, 22, 311, 414
Beazley, 218 , 61
Bentonite, B, 614
Berg, M., 13, 101 Berg, M., 18 , 180
483 Galene， 113
Gallagher，P．K．， 125
Gallenkamp and Brookfield RVT rotational
viscometer， 216
Gamma， 86
Gamma alumina， 155
Gamma－ray back－scatter， 426
Garnierite， 180
Gas－desorption， 55
Gates，D．W．，449
Gel， 63,429
Gelation， 240,248
Gelationevaporation， 127
Gibstite，154， 280
Gitzen，Walter， 14
Glass， 377
Glass－ceramics， 472
GGass frit， 468 Glass spheres，229，349， 377 Glycerine， 422
 tristearate， 423
Gold， 358 Goodson， 404. Gormly， 352 Grain boundary behavior， 397
Grain boundary diffusion， 148 Grain boundary diffusion， 148 Grain－growth inhibitors， 466 Grain size，292，297， 315 Granulation，63，349
Granules， $36,63,79,243,357,477$ spray dried， 102 spray dried，
Graphite， 391,401 Gravimetric analysis， 456
Green， 6
Green， 6
Green body，321， 391
formation，289
Green density，25，26，62，98，144，313，每志

Griffith relationship， 105
 Grinding，22，101， 375 dry， 102,108

mechanisms of， 105
theory， 105
wet，102，108
Grinding aids，103，105， 114
INDEX
Extrusion，9，16，235，245，378， 412
Extrusion defects， 391 Extrusion defects， 391
Farris，R．E．， 277
Faulhaber， 371
＂Feather edging，
 Ferrites， 126 Ferromagnetics， 8品 Fick＇s law， 429 Fielder， 11246
Films，thick， 463
Fine particles， 357
Fine particles， 357
Firing，291，307， $394,458,466$ Flaws，308， 378 Flickering－cluster， 197 Floc，36， 418
Flocculation， 379 Flock，W．M．，16， 85
Floc structure， 216 Flotigam P， 115
Flowability， 49 Flow－pressure relationships， 392 Flow rate， 329
Fluid bed drying， 127
Fluid energy milling， 111
Fluorescent－die penetrants， 398 Fluorine， 86
Forces，interfacial， 36 Forming， 391
Forsterite， 28 N Fragment，glass， 377 Fragmentation， 110 Frank，196，198， 128 Freeze－dry， 398
Freezing， 395 Frenkel，365， 195 Fuerstenau，D．W．， 477 Furnas， 220

啚
是

$$
\begin{aligned}
& \text { Earthenware, } 3 \\
& \text { East, 205 } \\
& \text { Eaton, } 350 \\
& \text { Economics, } 32 \\
& \text { Effects, electrostatic, } 40 \\
& \text { Einstein, } 227 \\
& \text { Elastic deformation, } 370 \\
& \text { Elastic energy, } 106 \\
& \text { Electrode, } 466 \\
& \text { Electrode inks, } 468 \\
& \text { Electrolytes, } 249 \\
& \text { Electron diffraction, } 186 \\
& \text { Electronics, } 412 \\
& \text { Electron mictoprobe, } 112 \\
& \text { Electron microscopy, } 186,381 \\
& \text { Electrostatic, } 35,358 \\
& \text { Emulsion, } 235,243 \\
& \text { Emulsion drying, } 127 \\
& \text { Enamels, } 473 \\
& \text { Energy consumption, } 109 \\
& \text { Energy-related materials, } 476 \\
& \text { Entropy loss of water, } 198 \\
& \text { Entropy of solution of monatomic } \\
& \text { ions in water, } 202 \\
& \text { ERC-HP, } 97 \\
& \text { Ethyl cellulose, } 240 \\
& \text { Ethylene glycol, } 114 \\
& \text { Ethyl oleate, } 423 \\
& \text { Evans, 198 } \\
& \text { Evaporation, electron-beam, } 25 \\
& \text { Exner, } 26 \\
& \text { Expansion, } 396 \\
& \text { thermal, } 12 \\
& \text { Extruded, 12 } \\
& \hline
\end{aligned}
$$

482
Deflocculation，115，211， 420 Deformations， 261 DeHoff， 323 Delta， 86 Densification，21，141，146， 308
by vibration， 338 ． by vibration， 338
Densities，112， 309 bulk，49，62，102， 438 fired， 88 green， $25,26,62,98,144,313,436$
true， 63 Dextrins， 238 Diameter， 39
pore， 54 pore， 54
Stokes＇， 41 Diamond， 9 Dickite， 178 Die，393，405， 441 Dielectric body， 466 Dielectric body， 466 Differential thermal analysis， 185 Differential thermogravimetry， 185 Diffraction，X－ray，7， 15 Diffusion，21， 147

Diffusion－controlled state of drying， 433 Diffusivities， 430
thermal， 12 Dihedral angle， 303 Dilatometer， 308 Disco， T_{e} value， 12 Dislocations， 142

Dislocation density $\bar{y}, 148$
Dispersants， 378
Dispersion， $383,417,465,469$
Distributions，particle－size， $77,211,382$,
404，419
pore－size，63， 352
pore－size， 63,352
size， $24,63,107,1$ Divers， 41
＂Doctor blade，＂ 411 Dodd， 404
＂Dog teeth，＂ 395
Double－layer， 11
Dried clay mixture， 377

ジ

Microspheres, 128 Microstructural, 75,459 Microstructure, 62, 67, 101, 160, 289, 315, $377,466,471$ of extruded cylinders, 380	
Mill atmosphere, 113	
	$\begin{aligned} & \text { Milling, } 33,91,99,111,310,417 \\ & \text { on agglomerate size, } 168 \\ & \text { ball, } 14,63,95,102,199 \\ & \text { dry, } 63,311 \\ & \text { wet, } 71 \end{aligned}$
	Mineral, 183
Mineralogical analysis, 178	
Mineralogy, 277, 382	
Mineral wax, 243	
Ming Dynasty, 5	
Mistler, R. E., 411	
Mitzmager, 114	
Mixed binder systems, 250	
Mixedness of suspensions, 253	
Mixed-oxide precipitate, 134	
Mixing, 12, 132, 331, 466, 477	
Mixtures, 98	
Modulus of rupture, 377, 380	
Moisture distribution, 274	
Molding, hand, 3 hydrostatic, 17 injection, 13, 102, 235	
Mold lubricants, 349	
Molybdenum sulfide, 112	
Monohydrate, aluminum, 66	
Monooleate, 423	
Montmorillonite, 112, 179,383	
Moore, 218	
Morphology, 7	
Mossbauer spectroscopy, 186	
Mullite, 12	
Multilayer casting, 445	
Multilayer structures, 444 screened, 44S	
Nacrite, 178	
Naeser, 112	
$\mathrm{Na}_{2} \mathrm{O}, 88$	
Nepheline syenite, 379	
Newtonian behavior, 464	
Newtonian flow, 236	
Newtonian liquid, 392	
Nickel-zinc ferrites, 126	
	Nicol, 86

INDEX
Polymethylpheny！siloxane silicon resin，
418 418
Polymor

$$
\begin{aligned}
& \text { Porosimetry, mercury, } 63,348,436 \\
& \text { Porosity, 27, } 69,92,153,223,378
\end{aligned}
$$

$$
\begin{aligned}
& \text { open, } 438 \\
& \text { Pottery, } 4 \\
& \text { Power } 19 \text { 141.153 }
\end{aligned}
$$

Pyrophosphates， 113
Pyrophyllites， 179
Quartz，5，106，112， Quartz glass spheres，
Quartz grains， 384

Quartzite， 115
Quartz slips， 213
Quirk，John， 14
Ramsey， 25
Random mix， 254
Rase， 450
Rate，preciple 307
Rate control
O
RC－24， 91
RC－172，91， 98 Reactive powders，61， 12 Reactivity，${ }^{\text {Reflectance，} 450}$ Refractories， 476
insulating， 8 Refraction， 89 －rete， 277

Rerractory 115
Relative humidities， 370
Research，future directions， 471
Residual stresses， 269
Resins，thermosetting and thermoplastic， 13 Resistance，electrical， 43
Resistor， 463

Reynolds aluminum， 87 Rheological， 211
Rheological properties， 187

Rheology， 464 235 of organic binder Roberts，A．， 463

Robinson，G．C．，201， 391 Rod mill，1． Roll forming， 235
Rotary presses， 344 Rotary presses， 344
Rotary punch press， 441

Roy，
Rumpf， $\mathrm{H} ., 253,357$
active， 21
reactive， 61 ，

$$
\begin{aligned}
& \text { Pottery, } 4 \\
& \text { Powder, 19, 141, } 153 \\
& \text { active, 21, }
\end{aligned}
$$ Powder activity，475，477

Powder characterization，463， 472 Powder characterization，463， 472
Powder compatt， 321 Powder－compaction， 64 Powder mixing， 343 Powder puta，
Precipitates， 72,133 Precipitan 131 Precipitation－filtration， 131 Precipitation process， 43 Precision casting，
Preservative， 249 Preservative，
Pressing， 343,440
filter，102
leaf filter， 12
Process，Bayer，33，85，143，154， 307 Products，whireware，
Proof test，ceramic processing， 291 Propagation of cracks， 382 Properties，powder flow， 56
Proplylene glycol， 114 Proplylene glycol， 114
Propylamine， 422

Pseudoplastic，212 246 Pseudoplasticity，239， 246 す。

N
high， 98
ultrahigh， 99

卤

488
Runk, R. B., 411
Rupture, modulus of, 12
Russell, R., Jr., 13,473
Ryshkewitch, 22,64
Samoilov, 199
Sanitaryware, 213
Saturation, 366
Scanning electron
$\underset{453}{\text { Scanning electron microscopy, } 22,156,380,}$
Schubert, H., 357
Schwartzwalder, Karl, 11
Scott Volumeter, 325
Sedimentation rate, 41
Sedimentation-type, 77
Segregation, 329, 331, 338, 391, 396
difference on, 334
Segur, 6 .
Segregation, 329, 331, 338, 391, 396
difference on, 334
Segur, 6 .
Self-diffusi
SEM, 63, 437, 459
SEM, $63,437,459$
Semidry pressing, 343
Serpentine, 178
Shanefield, D. J., 141, 411
Shape, 39, 108
agglomerate, 86,93
particle, 24, 33, 49, 86, 177, 329, 339,
Shear strain r
Shear strain rate, 228
Shear stress rate, 228
Shear thickening, 212
Shear thinning, 212
Shock waves, 108
Shrinkage, $21,88,95,98,101,141$
fired, 98
Shulhof, William, 15 -
Sieve analyses, 418
Sieving, 40
Silica powder, 369
Silicate, 128 , 177
Silicones, 116
Sinterability, 72, 134, 146, 157, 315, 419,
Sintered, 77, 129, 307
Sintering, 21, 36,67, 153,141, 313, 321,

BRIEF ATTACHMENT E

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of
Applicants: Bednorz et al.
Serial No.: 08/479,810
Filed: June 7, 1995

Date: March 1, 2005
Docket: YO987-074BZ
Group Art Unit: 1751
Examiner: M. Kopec

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

FIRST SUPPLEMENTAL AMENDMENT

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

ATTACHMENT E

FRANCIS S.GALASSO
United Aircraft Research Laboratories

> Copyright © 1969
> Pergamon Press Inc. First edition 1969
Library of Congress Catalog Card No. 68-21881
Tted in Hongary
080127444 Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto 1 Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Strect, Pergamon Press S.A.R.L., 24 rue des Ecoles, Paris 50

CONTENTS

Prrpaos	ix
1. Introductios	1
2. Structuri of Prrotshitr-type Compotwds	
2.1. Ternary Oxides	
2.2. Complex Oxides	11
2.3. Madelung Energy	39
2.4. Tonit Radii	${ }^{41}$
3. X-ray Diffraotion and Electron Paramagnetto	
3.1. X-ray Diffraction	50
3.2. Electron Paramagnetic Resonance Studies	57
4. Condoctrity	60
4.1. Conductors	60
4.2. Superconduotors	${ }^{63}$
4.3. Semiconductors	64
4.4. Thermoelectricity	${ }^{73}$
4.5. Hall Effeot	76
5. Frrborizotruóty	79
5.1. Ternary Perovositos	80
5.2. Solid Solutions	90

Pergamon Press Litd., Headington Hill Hall, Oxford

10.2. Thin Films
10.3. Single Crystals
11. Other Perovsimite-type Compounds
11.1. Preparation of Perovskite-type Phases
11.2. Structure
11.3. Properties
Index
Other Titles in the Series

 억 암 141
 $\stackrel{\circ}{\square}$
10. Preparation of Perovseite-type Oxides
10.1. Powdres ..

8.4. Lasers

9.6. Density
9.7. Mechani
-
人 Stisuəd $9 \cdot 6$ 2.7. 9. Other Properties โвயхәчป ' 8 ' 6

0.3. Melting Points 8.3. Electro-optic Effect
PREFACE

SINCE 1945, when the ferroelectric properties of barium titanate were reported by von Hippel in the United States and
 extensively. These studies have resulted in the discovery of many now ferroelectric and piezoelectrio mounds has been the literature written on perovski
 In adding nernary perovskite compounds of all jears to prod studying their structures. By 1955 it appeared that most of the possible combinations of large A cations and smaller B ions needed to form perovskite-type compounds had been tried. At that time, as part of a thesis problem at the University of Connecticut, I found that new perovskitetype compounds could be prepared by introducing more than one element in the B position of the perovskite structure.
 (Pyle) Pinto, W. Darby and I continued this research by ini-

 different valence states, many combinations of elements and, therefore, the formation of many compounds were possible. These studies as well as research conducted.by other struc.

 рөмоч8 чЈчч

 өч7 8u!pnjou! 'se!pпұ

various methods of preparing powders, thin films and single crystals of perovskite-type compounds, the structure of these compounds and their properties. The properties covered are electrical conductivity, ferroelectricity, ferromagnetism, optical transmittance the electro-optical effect, catalytic properties, melting points, heats of formation, thermal expansion, densities and mechanical properties. Because of the growing number of applications for perovskite-type compounds, I felt that this information might prove valuable to applied researchers. In addition, structural data are included for scientists who are interested in correlating the structure and jīouperties of materials.

I am grateful to Professor Roland Ward and Professor Lewis Katz for introducing me to this field of research and to my previous fellow workers at the University of Connecticut for their studies on many unusual perovskite-type compounds. I must also acknowledge Professor Aaron Wold and Professor Rustum Roy for their discussions on perovskite compound preparations, Dr. Michael Kestigian and Professor A. Smakula for helpful advice on crystal growing, Dr. AlexanderWells and Professor Martin Buerger for pointing out the need for a compilation and discussion of structural data of the type presented herein, Dr. Fredrick Seitz for helpful discussions on ordering and to Dr. John Goodenough for information on the ferromagnetic properties and conductivity in perovskites. I would also like to thank Dr. V. Nicolai of O.N.R. Washington, D.C., for information on lasers, Dr. Charleton of Fort Monmouth, New Jersey, for discussions on dielectrics and Dr. Fredricks of Wright-Patterson A.F.B. for reports on microwave properties of perovskites. I am indebted to United Aircraft Research Laboratories, my colleagues
 and Professor P. Duwez, a member of the Advisory Committee for United Äircraft Corporation. I wish to thank Professor R. Smoluchowski, Dr. R. Graf, Professor A. Wold and Dr. M. Kestigian for helpful suggestions and for checking through the manuscript. Finally, I am grateful to my wife, Lois, Miss Kathy Donahue, Miss Joyce Hurlburt, Mrs. Jean
 in preparing this manuscript.

CHAPTER1

introduction

 preparation of perovskite-type compounds. Because of the growing number of applications for these compounds, information on their preparation is becoming more in demand. and the large room-temperature electro-optical effect in $\mathrm{K}\left(\mathrm{Ta}_{0.05} \mathrm{Nb}_{0.35}\right) \mathrm{O}_{3}$, for example, have caused considerable interest in obtaining these materials as optical quality sing ch. piezoelectric properties of perovskites have induced researchers to continue the effort to prepare them as larger and

 properties. One of the best ways of accomplishing this is to use the insight gained from structure-property relationships. An objective of this book is to point out some of these structure-property relationships as well as to provide the reader with enough data so that he can deduce some of his own.
In this book, the oxide phases have been divided into two types, the ternary ABO_{3} type and their solid solutions, where A is a large metal cation and B is a smaller metal oation and the newer complex $A\left(B_{x}^{\prime} B_{y}^{\prime \prime}\right) O_{3}$ type compounds where B^{\prime} and $B^{\prime \prime}$ are two different elements in different oxidation
 in a systematic manner for quick and easy reference. A chapter is included on the identification of ounds and of ordering su!gn spunoduroo ed Λ_{7}-ө7! y

compounty, feribe herein are electrical conductivity, ferrothism, optical, catalytic, melting points, erties. Then, the preparation of these compounds propders, thin films and single crystals are described. In addition, a chapter is included on other compounds besides oxides with the perovskite structure.
! --

INTRODUOTION

rhombic unit cell of $a=3.9714 A, b=5.6946 \AA$ and $c=5.7203 \AA$ where b and c equal approximately $\sqrt{ } 2 a$ or the length of face diagonals of the simple perovskite cell, and exhibits ferroelectric properties. The sodium niobate, NaNbO_{3}, structure also can be described by an orthorhombic unit cell but is

 cell. The structure of NaTaO_{3} is orthorhombic with the space group $\mathrm{Pc}_{1} n$ and all the atoms are placed in the unit cell in positions: ${ }^{(3)}$

(4a) $x y z ; \bar{x}, y+\frac{1}{2}, \bar{z} ; x+\frac{1}{2}, y+\frac{1}{2}, \frac{1}{2}-z ; \frac{1}{2}-x, y, z+\frac{1}{2}$

N
N
$\stackrel{N}{E}$

\rightarrow

н

| 3 | 0 | N |
| :--- | :---: | :---: | :---: |
| 1 | 0 | |
| 0 | 0 | |
| 0 | 0 | 0 |
| 1 | 1 | 0 |

受 틍 응

 ture. Single-crystal studies showed that KIO_{3} had a rhombohedral structure with unit cell parameters $a=4.410 \AA$,

 CsIO_{3} and RbIO_{3}, on the other hand, have been reported to be cubic.

$$
\text { Oxides of the } \mathrm{A}^{2+} \mathrm{B}^{4+} \mathrm{O}_{3} \text { Type }
$$

Probably the largest number of perovskite-type compounds are described by the general formula $A^{2+} B^{4+} O_{3}$, where the A cations are alkaline earth ions, cadmium or lead and the B^{4+} ions include $\mathrm{Ce}, \mathrm{Fe}, \mathrm{Pr}, \mathrm{Pu}, \mathrm{Sn}, \mathrm{Th}, \mathrm{Hf}, \mathrm{Ti}, \mathrm{Zr}$, Mo and U. The best known compounds of this type are the titanates because of the ferroelectric properties that the barium and lead compounds exhibit. Calcium titanate, as pre-
 with an "ideal" cubic perovskite structure, but it was later
have the simple cubic structure at room temperature, but many assume this ideal structure at higher temperatures. In the perovskite structure, the A cation is coordinated with twelve oxygen ions and the B cation with six. Thus, the A cation is normally found to be somewhat larger than the B cation. In order to have contact between the A, B, and O ions, $R_{A}+R_{0}$ should equal $\sqrt{ } 2\left(R_{B}+R_{0}\right)$, where R_{A}, R_{B} and R_{O} are the ionic radii. Goldschmidt ${ }^{(2)}$ has shown that the cubic perovskite structure is stable only if a tolerance factor, t defined by $R_{A}+R_{0}=t \sqrt{ } 2\left(R_{B}+R_{0}\right)$, has an approximate range of $0.8<t<0.9$, and a somewhat larger range for distorted perovakite structures. It should be noted that conflicting reports in the literature make it difficult to assign the correct unit cell dimensions for these distorted perovskite structurcs.

The ternary perovskite-type oxides described in this chapter will be divided into $A^{1+} B^{3}+O_{3}, A^{2+} B^{4}+O_{3}, \quad A^{3+} B^{3+} O_{3}$ types and oxygen- and cation-deficient phases. The oxygennnd cation-deficient pheses will be regarded as those which contain considerable vacancies and not those phases which are only 'slightly non-stoichiometric. Many of these contain B ions of one element in two valence states and should not be confused with the complex perovskite compounds which contain diffërent elements in different valence states.

The complex perovskite type compounds, $\mathrm{A}\left(\mathrm{B}_{x}^{\prime} \mathrm{B}_{y}^{\prime \prime}\right) \mathrm{O}_{3}$, will be divided into compounds which contain twice as much lower valence state element as higher valence state element, $\mathrm{A}\left(\mathrm{B}_{0.07}^{\prime} \mathrm{B}_{0,33}^{\prime \prime}\right) \mathrm{O}_{3}$, those which contain twice as much of the higher valence state element as the lower valence state element, $\mathrm{A}\left(\mathrm{B}_{0.33}^{\prime} \mathrm{B}_{0.67}^{\prime \prime}\right) \mathrm{O}_{3}$, those which contain the two B elements in equal amounts, $A\left(B_{0.5}^{\prime} B_{0.5}^{\prime \prime}\right) O_{3}$, and oxygen-deficient phases $A\left(B_{x}^{\prime} B_{y}^{\prime \prime}\right) O_{3-2}$.

 cause of their ferroelectric properties. Potassium niobate, KNbO_{3} has a structure which can be described by an ortho-
L

 and neutron diffraction studies.
The compound BaSnO_{3} also has been reported by Smith
 This selection of the unit cell was confirmed by Roth ${ }^{(5)}$ and Megaw ${ }^{(1)}$ independently.
Another interesting compound is CaUO_{3}, because although it has a tolerance factor of only 0.71 it still has the perovskite structure. Roth ${ }^{(5)}$ points out that a minimum tolerance factor of 0.77 was previously set for $\mathrm{A}^{2+} \mathrm{B}^{4+} \mathrm{O}_{3}$ type compounds, but because of this new information can be assumed to be -anqonxis cubic structure but was found to adopt the CaTiO_{3} structure.
Four O atoms at the same positions listed for $G d$ atoms, (ref. 3)
 the perovskite structure can be seen in Fig. 2.3. The unit
 $c=7.668 \AA$ contains four distorted perovskite units.
Looby and Katz ${ }^{(7)}$ thought they had found a new type

 ture are $\mathrm{EuAlO}_{3}, \mathrm{EuFeO}_{3}, \mathrm{GdAlO}_{3}, \mathrm{GdCrO}_{3}, \mathrm{GdVO}_{3}, \mathrm{LaAlO}_{3}$. $\mathrm{LaCrO}_{3}, \mathrm{LaGaO}_{3}, \mathrm{LaScO}_{3}, \mathrm{NdAlO}_{3}, \mathrm{NdCrO}_{3}, \mathrm{NdFeO}_{3}, \mathrm{NdVO}_{3}$,

 and GdScO_{3}. Two of these compounds, LaGaO_{8} and SmAlO_{3}

 have this rhombohedral structure which is probably quite similar to that of GdFeO_{3}.
Figure 2.4 presents a classification of $\mathrm{A}^{3+} \mathrm{B}^{3+} \mathrm{O}_{3}$ type compounds according to the constituent ionic radii. All of the - өq! type structures. Where both the A and B ions are small, the compounds have the corundum- or ilmenite-type structures. When both the A and B ions are large, the phases form $L_{a_{2}} \mathrm{O}_{3}$ type structures.

10

PREPARATION OF PEROVSKITE-TYPE COMTPOUNDS

 "ideal" cubic perovskite structure, the rhombohedral perov. skites such as LaAlO_{3} are only slightly distorted. The search for laser host materials with cubic crystallographio sites for Cr^{3+} substitution has produced considerable interest in these compounds. Lanthanum aluminum oxide, LaAlO_{3}, with However, the phase transition at 435° has presented consid. erable problems in trying to grow it in single crystal form.

Non-stoichiometric Ternary Oxides
Probably the best known non-stoichiometric ternary oxides are 'the tungsten bronzes. The phases $\mathrm{Na}_{x} \mathrm{WO}_{3}$ have been found to have the cubic perovskite structure in the range
 $<x<0.577^{(8)}$ The lattice constants of these materials vary increasing amounts of alkali metal ion. A smaller range of non-stoichiometry exists in the strontium niobium bronzes where the alkaline earth metal ion mole fraction Rooksby et al. ${ }^{(10)}$ reported the ${ }^{2} \mathrm{VO}_{3}$ where $0.66<x<1$. perovskite-type rare earth niobates and tantalates. The struc-

11 rhombic or monoclinio.
The existence of these cation deficient compounds is not surprising in view of the fact that ReO_{3} is stable without A ions. The deficiencies can be tolerated over ranges of composition without changes in structure. However, different amounts of A ion are necessary to stabilize the structure depending on which Bion is in the octahedrally coordinated sites. skite structure. Thies have also been observed in the perovbeen found to have phases SrBO_{3-x} where B is Ti or V have $0<x<0.5$ for the titanium phases and $0<x<0.25$ farge vanadium phases. Both $\mathrm{Sr} \mathrm{O}_{2.75}$ and $\mathrm{SrTiO}_{2.5}$ were found to have cubic structures. Similar phases have been reported in the $\mathrm{SrFeO}_{3-x}{ }^{(11-13)} \mathrm{CaMnO}_{3-x}{ }^{(13,14)}$ and $\mathrm{SrCoO}_{3-x}{ }^{(13)}$ systems although the oxygen deficiency is not as great.
Coates and McMillan showed that cubic perovskite structures could be obtained in calcium perovskites, which are normally distorted, by producing oxygen vacancies. The phases CaMnO_{3} and CaTiO_{3} become cubic with the introduction of deficiencies. As these authors point out, studies in
 standing of the effect of nonstoichiometry on the perovskite

2.2. Complex Oxides

 $\mathrm{Ba}\left(\mathrm{Sc}_{0.67} \mathrm{~W}_{0.33}\right) \mathrm{O}_{3}$, felt that it probably had an ordered perovskite structure described by Steward and Rooksby. ${ }^{(16)}$ In this structure the two different B ions alternate at the corners of the simple cubic unit cell of the perovskite structure so
 group is $F m 3 m$ and the atomic positions are:

> A: $\frac{1}{4} \frac{1}{4} \frac{1}{4} ; \frac{1}{4} \frac{3}{4} \frac{8}{4} ; \frac{3}{4} \frac{1}{4} \frac{3}{4} ; \frac{3}{4} \frac{3}{4} \frac{1}{4} ; \frac{3}{4} \frac{3}{4} \frac{3}{4} ; \frac{1}{4} \frac{1}{4} \frac{3}{4} ; \frac{1}{4} \frac{3}{4} \frac{1}{4} ;$

$\quad \frac{3}{4} \frac{1}{4}$
ture of these $\mathrm{A}_{0.33} \mathrm{BO}_{3}$ type compounds was tetragonal, orthostructure. to obtain $\mathrm{Sr}\left(\mathrm{Cr}_{0.67} \mathrm{Re}_{0.38}\right) \mathrm{O}_{3}$ no new phase appeared but the lattice expanded and the intensities of the superlattice lines in the X-ray patterns showed a marked decrease. However, no detailed structure studies have been conducted to determine the arrangement of atoms in these phases.
Oxides of the $\mathrm{A}^{2+}\left(\mathrm{B}_{0.33}^{2+} \mathrm{B}_{0.87}^{5+}\right) \mathrm{O}_{8}$ Type
 talum as one of the \mathbb{B} ions in perovakite structure and a divalent ion as the other B ion were prepared by Roy ${ }^{(10)}$ and independently by Galasso et al. ${ }^{(20)}$ Both workers originally could not account for the extra lines which most of the X-ray

 new ordered perovskite structure; subsequent studies showed that many of the $\mathrm{A}^{2+}\left(\mathrm{B}_{0.33}^{2+} \mathrm{B}_{0.87}^{8+}\right) \mathrm{O}_{3}$ adopted this structure.

 $\mathrm{Ba}_{1}: 000$
$\mathrm{Ba}_{2}: \frac{1}{3} \frac{2}{3} z ; \frac{2}{3} \frac{1}{2} \bar{z} ; z=\frac{2}{3}$
$\mathrm{Sr}: \quad 00 \frac{1}{2}$
$\mathrm{Ta}: \frac{1}{3} \frac{2}{3} z ; \frac{2}{3} \frac{1}{3} \bar{z} ; z=\frac{1}{6}$
$\mathrm{O}_{1}: \quad x, \bar{x}, z ; x, 2 x, z ; 2 \bar{x}$,

$\quad \bar{x}, x, \bar{z} ; \bar{x}, 2 \bar{x}, \bar{z} ; 2 x$,

$$
\begin{aligned}
& \bar{x}, x, \bar{z} ; \bar{x}, 2 \bar{x}, \bar{z} ; 2 x, x, \bar{z} ; x=\frac{1}{6}, z=\frac{1}{3} \\
& \mathrm{O}_{2} ; \\
& \frac{1}{2} 00 ; 0 \frac{1}{2} 0 ; \frac{1}{2} \frac{1}{2} 0
\end{aligned}
$$

The structure is shown in Figs. 2.6 and 2.7. Note that if the perovskite structure is described as close-packed layers of A and oxygen ions perpendicular to the [111] direction with small B ions in the octahedral holes between the layers,
 planes are parallel to the close-packed layers and, since there ұвөdөx өч7'suo! scheme is two layers of tantalum ions and one of strontium
 type compounds when observed in the same way in the [111]

PREPARATION OF PEROVSKITE-TYPE COMPOUNDS

$$
\mathrm{B}^{\prime \prime}: 000 ; \frac{1}{2} \frac{1}{2} 0 ; 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} 0 \frac{1}{2}
$$

$$
0: u 00 \text {; etc. (} 24 \text { positions) }
$$

Since the $\cdot \mathrm{B}^{\prime}$ and $\mathrm{B}^{\prime \prime}$ have to be present in equal amounts in this structure, $\mathrm{Ba}\left(\mathrm{Sc}_{0.87} \mathrm{~W}_{0.33}\right) \mathrm{O}_{3}$ should probably be written

Fig. 2.5. The $\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{8}$ struoture: cubio ordered perov46, 2738 (1924)). skite-type $\mathrm{A}\left(\mathrm{B}_{0.6}^{\prime} \mathrm{B}_{0.5}^{\prime \prime}\right) \mathrm{O}_{2}$ (after L. Pauling, J. Am. Chem. Soc. $\mathrm{Ba}\left[\mathrm{Sc}_{0.5}\left(\mathrm{Sc}_{0.17} \mathrm{~W}_{0.33}\right)\right] \mathrm{O}_{3}$ where three-quarters of the Sc ions are on the B^{\prime} sites and one-quarter of the Sc ions are randomly distributed with the W atoms on the $\mathrm{B}^{\prime \prime}$ sites. Sleight and Ward ${ }^{(17)}$ also found that it was necessary to use the doubled unit cell to index all observed lines in the X-ray patterns of $\mathrm{A}\left(\mathrm{B}_{0.87}^{\prime} \mathrm{U}_{0.83}\right) \mathrm{O}_{3}$ and $\mathrm{A}\left(\mathrm{B}_{0.87}^{\prime} \mathrm{Re}_{0.33}\right) \mathrm{O}_{8}{ }^{(18)}$ compounds. When

15

STRUCTURE OF PEROVSKITK－TYPE COMPOUNDS
direction，consists of alternating layers，one of which contain
B^{\prime} ions and the other $\mathrm{B}^{\prime \prime}$ ions．
A study of $\mathrm{Ba}\left(\mathrm{B}_{0.33}^{2+} \mathrm{Ta}_{0.67}^{5+}\right) \mathrm{O}_{3}$ compounds showed a de－

 the ordering lines if they could not be annealed at high tem－ peratures because of low melting points．

$$
\text { Oxides of the } \mathrm{A}^{2+}\left(\mathrm{B}_{0.5}^{3+} \mathrm{B}_{0.5}^{5+}\right) \mathrm{O}_{3}, \mathrm{~A}^{2+}\left(\mathrm{B}_{0.5}^{2+} \mathrm{B}_{0.5}^{6+}\right) \mathrm{O}_{3} \text {, }
$$

spunoduoo өdर7 ə7！
 ture of these compounds is ordered，and most of them are，

	00000
	がいいの

PREPARATION OF PEROVSKITE－TYPE COMPOUNDS

A study of $\mathrm{Ba}\left(\mathrm{M}_{0.5}^{3+} \mathrm{Nb}_{0.5}^{\delta}+\mathrm{O}_{3}{ }^{(24)}\right.$ type compounds indi-
cated that the critical percentage difference in ionic radij
 17%.

The first compounds with this ordered structure were reported by Steward and Rooksby, (18) who found that a number of alkaline earth tungstates and molybdates of the $A\left(A_{0.5} B_{0.5}^{\prime \prime}\right) O_{3}$ type where A is an alkaline earth ion and $B^{\prime \prime}$ is Mo or W have this structure. The structures of $\mathrm{Ba}\left(\mathrm{Ca}_{0.5} \mathrm{~W}_{0.8}\right) \mathrm{O}_{3}$ and $\mathrm{Ba}\left(\mathrm{Ca}_{0.5} \mathrm{MO}_{0.5}\right) \mathrm{O}_{3}$ were reported to be cubic at room temperature while the $\mathrm{Ba}\left(\mathrm{Sr}_{0.5} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$ structure was distorted and became cubic only after heating to $500^{\circ} \mathrm{C}$. Tresia et al. ${ }^{(15)}$ found that other ions such as $\mathrm{Zn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}$ and Ni^{2+} could be used as the B^{\prime} ion in the ordered perovskite structure without distortion. However, when compounds were prejared with strontium in the A position the structures were distorted. It should be noted at this point that some authors index the tetragonal and orthorhombic distortion of the cubic ordered unit cell by using the $\sim 8 \AA$ edges, while others use an $\sim 5.7 \AA$ face diagonal for two axes and $\sim 8 \AA$ edge for the third.

Sleight and Ward ${ }^{(17)}$ in a study of $A\left(B_{0,5}^{2+} U_{0,5}\right) O_{3}$ type perovslsites also found that all of the compounds containing strontium in the A position had distorted structures. The unit cells were pseudomonoclinic, but the powder patterns were indexed on a smaller orthorhombic unit cell. Using a tolerance factor

$t=\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{0} / \sqrt{ } 2\left[\left(\mathrm{R}_{\mathrm{B}}^{2+}+\mathrm{R}_{\mathrm{B}}^{5+}\right) / 2+\mathrm{R}_{0}\right]$

they calculated that a number of compounds containing barium in the A position should form the cubic ordered perovskite structure, and observed that they did form this struc. ture.

Some of the most interesting compounds were those containing $\mathrm{Mo}^{5+}, \mathrm{W}^{5+}$ or Re^{5+} as one of the B ions and another paramagnetic ion as the other because of the ferromagnetic properties they exhibited. These compounds will be discussed in detail in another section.

By adjustment of the oxidation state by valence compensation the compounds $13 a\left(\mathrm{Li}_{0.5} \mathrm{Os}_{0.5}\right) \mathrm{O}_{3}$ and $\mathrm{Ba}\left(\mathrm{Na}_{0.5} \mathrm{Os}_{0.5}\right) \mathrm{O}_{3}$

Table 2.2 (co	URE OF	$\underline{A^{\text {a }} \mathrm{B}^{3+} \mathrm{O}_{3} \text { (cont.) }}$			
Compound :	$a(A)$	b (A)	c (A)	Remarks	References
LaCoO_{8}	$\left.\begin{array}{l} 3.824 \\ 7.651 \end{array}\right\} \text { or }$			$\begin{aligned} & \alpha=90^{\circ} 42^{\prime} \text { rhom. } . \\ & \text { bohedral } \end{aligned}$	$\begin{aligned} & 13,63, \\ & 65,76, \\ & 77,78 \end{aligned}$
LaCrO_{3}	5.477	5.514	7.755	GdFeO_{3} structure	74
LaFeO_{3}	5.556	5.565	7.862	CdFeO_{3} struoture	5, 6
LaGaO_{3}	5.496	5.524	7.787	GdFeO_{3} structure	
LaInO_{3}	5.723 7.678	8.207	5.914		5, 64
LaNiO_{3}	7.678			$\begin{aligned} & \alpha=90^{\circ} 41^{\prime} \\ & \text { pseudocubic } \end{aligned}$	78, 79
$\mathrm{LaRhO}_{3} \mathrm{LaScO}_{3}$	3.94 5.678	5.787	8.098		76, 80
		6.787	8.098	$\underset{\text { struoture }}{\mathrm{GdFeO}_{3}}$	64, 74
LaTiO_{3}	3.92				81, 82
LaVO_{3}	$\left.\begin{array}{l} 3.99 \\ 7.842 \end{array}\right\} \text { or }$			cubic	$\begin{aligned} & 65,66, \\ & 83 \end{aligned}$
LaYO_{3}				orthorhombic	84
NdAlO_{3}	3.752			rhombohedral	$\begin{aligned} & 63,67 \text {, } \\ & 69 \end{aligned}$
NdCoO_{8}	3.777				65, 73
NdCrO_{3}	5.412	5.494	7.695	GdFeO_{3} struoture	74
NdFeO_{3}	5.441	5.573	7.753	GdFeO_{3} structure	6, 64
NdGaO_{3}	5.428	5.502	7.706	GdFeO_{3} struoture	
NdinO_{8}	5.627	8.121	5.891	orthorhombic	5,64
NdMnO_{8}	3.80				68
NdScO_{3}	5.574	5.771	7.998	GdFeO_{8} structure	64, 74
NdVOs	5.440	5.589	7.733	GdFeO_{8} structure	
PrAlO_{3}	$\left.\begin{array}{l} 3.757 \\ 5.31 \end{array}\right\} \text { or }$			$\begin{aligned} & \alpha=60^{\circ} 20^{\prime} \\ & \text { rhombohedral } \end{aligned}$	$\begin{aligned} & 48,63, \\ & 69 \end{aligned}$
PrCoO_{3}	3.787			$\begin{aligned} & \alpha=90^{\circ} 13^{\prime} \\ & \text { rhombohedral } \end{aligned}$	65, 73
PrCrO_{5}	5.444	5.484	7.710	GdFeO_{3} structure	74

20 PREPARATION OF PEROVSEITE-TYPE COMPOUNDS

23

22 PREPARATION OF PEROVSEITE-TYPE COMPOUNDS

$\mathrm{A}^{\mathrm{s}}+\mathrm{B}^{3+} \mathrm{O}$ (cont.)					
Compound	$a(A)$	$b(A)$	$c(A)$	Remarks	Refer. ences
PrFeO_{8}	5.496	5.578	7.810	GdFeO_{3} structure	74
PrGaO_{3}	5.465	5.495	7.729	GrFeO_{3} structure	74
PrMnO_{3}	3.82				68
PrScO_{3}	5.615	5.776	8.027	GdFeO_{3} structure	74
$\mathrm{Pr}_{\mathrm{FO}}^{3}$	5.477	5.545	7.759	GdFeO_{3} structure	74
PuAlO_{3}	5.33			$\begin{aligned} & \alpha=58^{\circ} 4^{\prime} \\ & \text { rhombohedral } \end{aligned}$	48
PuCrO_{3}	5.46	5.51	7.76	GdFeO_{2} structure	48
PuMnO_{3}	3.86			pseudocubio	48
$\mathrm{PuVO}_{\mathrm{a}}$	- 5.48	5.61	7.78	GdFeO_{3} structure	48
SmAlO_{3}	5.285	5.280	7.473	GdFeO_{8} structure	$\begin{aligned} & 64,63, \\ & 69,74 \end{aligned}$
SmCoO_{3}	3.747	3.803	3.728	orthorhombic	65, 73
SmCrO_{3}	5.372	5.502	7.650	GdFeO_{8} structure	74
SmFeO_{3}	6.394	5.592	7.711	GdFeO_{8} structure	6, 64
SmInO_{3} SmVO	6.689 3.89	8.082	5.886	orthorhombic	$\begin{aligned} & 5, \\ & 85 \end{aligned}$
YAlO3	5.179	5.329	7.370	CdFeO_{3} structure	6
YCrO_{3}	5.247	6.518	7.540	$\begin{aligned} & \mathrm{GdFeO}_{8} \\ & \text { struoture } \end{aligned}$	$\begin{aligned} & 6,7, \\ & 64,74 \end{aligned}$
YFeO_{3}	5.302	5.589	7.822	GdFeO_{3} structure	65
YSCO_{3}	5.431	5.712	7.894	GdFeO_{8} structure	74

$\mathrm{A}_{8} \mathrm{BO}_{3}$ and ABO_{8-} :

아윽
$\stackrel{\infty}{\infty} \stackrel{\infty}{\circ}$
$\underset{\sim}{\text { ®a }}$
かo io

25.

24 PREPARATION OF PEROVSEITE-TYPE COMPOUNDS

$\mathrm{A}^{2+\left(\mathrm{B}_{0.73}^{2+} \mathrm{B}_{0.7, ~}^{s}\right)} \mathrm{O}_{8}$ (cont.)					
Compound	$a(A)$	$b(A)$	$c(A)$	Remarks	References
$\begin{gathered} \mathrm{Sr}\left(\mathrm{Zn}_{0.88} \mathrm{Nb}_{0.07}\right) \mathrm{O}_{3} \\ \mathrm{Sr}\left(\mathrm{Zn}_{0.88} \mathrm{Ta}_{0.67}\right) \mathrm{O}_{3} \end{gathered}$	$\begin{aligned} & 5.66 \\ & 5.664 \end{aligned}$		$\begin{aligned} & 6.95 \\ & 6.951 \end{aligned}$		$\begin{aligned} & 20,23 \\ & 20,22 \end{aligned}$
$\mathrm{Ba}\left(\mathrm{Bi}_{0.5} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Ba}\left(\mathrm{Bi}_{0.8} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Ba}\left(\mathrm{Ce}_{0.5} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Ba}\left(\mathrm{Ce}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Ba}\left(\mathrm{Co}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{\mathrm{s}}$ $\mathrm{Ba}\left(\mathrm{Co}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Ba}\left(\mathrm{Cr}_{0.5} \mathrm{~W}_{0.6}\right) \mathrm{O}_{\mathrm{a}}$ $\mathrm{Ba}\left(\mathrm{Cu}_{0.5} \mathrm{~W}_{0.8}\right) \mathrm{O}_{\mathrm{a}}$ $\mathrm{Ba}\left(\mathrm{Dy}_{0.5} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{\mathrm{s}}$ $\mathrm{Ba}\left(\mathrm{Dy}_{0.8} \mathrm{~Pa}_{0 . \mathrm{s}}\right) \mathrm{O}_{\mathrm{s}}$ $\mathrm{Ba}\left(\mathrm{Dy}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$ $\mathrm{Ba}\left(\mathrm{Er}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Ba}\left(\mathrm{Er}_{0.3} \mathrm{~Pa}_{0.5}\right) \mathrm{O}_{\mathrm{s}}$ $\mathrm{Ba}\left(\mathrm{Er}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Ba}\left(\mathrm{Er}_{0.5} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Ba}\left(\mathrm{Er}_{0.5} \mathrm{U}_{0.5}\right) \mathrm{O}_{\mathrm{s}}$ $\mathrm{Ba}\left(\mathrm{Eu}_{0.5} \mathrm{Nb}_{0.6}\right) \mathrm{O}_{3}$ $\mathrm{Ba}\left(\mathrm{Eu}_{0.5} \mathrm{~Pa}_{0.5}\right) \mathrm{O}_{3}$	8.630 8.668 4.293 8.800 4.06 8.086 7.88 8.437 8.740 8.545 8.427 8.718 8.354 8.423 8.67 8.507 8.783		8.61	$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{8}$ structure $\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{0}$ structure $\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{6}$ structure ($\left.\mathrm{NH}_{4}\right)_{y} \mathrm{FeF}{ }_{8}$ structure ($\left.\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}$ 。 structure tetragonal ($\left.\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{6}$ structure $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$ structure ($\left.\mathrm{NH} \mathrm{H}_{4}\right)_{3} \mathrm{FeF}$ 。 structure structure ($\left.\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{6}$ structure (NH_{4}) FeFF_{8} structure $\left(\mathrm{NH}_{4}\right)_{9} \mathrm{FeF}_{6}$ structure ($\left.\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{0}$ structure $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$ structure $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}$ structure	101 101 102 103 94 18 104 94 25,102 103 105 25,102 103 18 105 104 25,102 103

26 prifaration of perovseite-type compounds

$\mathrm{TABLE} 2.2($ cont. $)$

$\mathrm{A}^{8+}\left(\mathrm{B}_{0.5}^{8} \mathrm{~B}_{0.5}^{\mathrm{s}+5}\right) \mathrm{O}_{3}$ (cont.)					
Compound	$a(A)$.	$b(A)$	$c(A)$	Remarks	References
$\begin{gathered} \mathrm{Ba}\left(\mathrm{Eu}_{0.6} \mathrm{Ta}_{0,6}\right) \mathrm{O}_{\mathrm{a}} \\ \mathrm{Ba}\left(\mathrm{Fo}_{0,6} \mathrm{MO}_{0,6}\right) \mathrm{O}_{\mathrm{s}} \end{gathered}$	8.506				105
$\mathrm{Ba}\left(\mathrm{Fe}_{0.8} \mathrm{~N}^{\mathrm{N}} \mathrm{D}_{0.8}\right) \mathrm{O}_{3}$	4.06			structure	28 20,25,
$\mathrm{Ba}\left(\mathrm{Fe}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	8.05			$\left.(\mathrm{NH})^{\prime}\right)_{2 \times} \mathrm{FeF}_{6}$	106
$\mathrm{Ba}\left(\mathrm{Fe}_{0.6} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	4.058			struoture	18 20,103
$\mathrm{Ba}\left(\mathrm{Gd}_{0.8} \mathrm{Nb}_{0.8}\right)^{3}$	8.496			$\underset{\text { Btructure }}{\left(\mathrm{NH}_{C}\right)_{3} \mathrm{FeF}_{6}}$	
$\mathrm{Ba}\left(\mathrm{Gd}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	8.774			$\begin{gathered} \text { (Ntructure } \\ \left(\mathrm{NH}_{4}\right)_{5} \mathrm{FFFF}_{6} \end{gathered}$	26,102 103
$\mathrm{Ba}\left(\mathrm{Gd}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{8}$	8.431			$\begin{gathered} \left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF} \\ \text { structure } \end{gathered}$	18
$\mathrm{Ba}\left(\mathrm{Gd}_{0.8} \mathrm{Sb}_{0.5}\right) \mathrm{O}_{3}$	8.44			$\left.(\mathrm{NH})_{2}\right)_{\mathrm{FeF}}^{0}$	18 94
$\mathrm{Ba}\left(\mathrm{Gd}_{0.8} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	8.487		8.513	tetragonal	105
$\mathrm{Ba}\left(\mathrm{Ho}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{0}$	8.434			$\left(\mathrm{NH}_{4}\right)_{5} \mathrm{FeF}_{0}$	25, 102
$\mathrm{Ba}\left(\mathrm{Ho}_{0.6} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	8.730			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}$ struature	103
$\mathrm{Ba}\left(\mathrm{Ho}_{0.5} \mathrm{Tem}_{0.8}\right) \mathrm{O}_{3}$	8.442			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF} \mathrm{F}_{6}$	
$\mathrm{Ba}\left(\mathrm{In}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	8.279			structure	105
				struoture	25, 107
$\mathrm{Ba}\left(\mathrm{In}_{0.8} \mathrm{Os}_{0.6}\right) \mathrm{O}_{3}$	8.224				18
$\mathrm{Ba}\left(\mathrm{In}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	8.596			$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{6}$	18
$\mathrm{Ba}\left(\mathrm{In}_{0.5} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	8.258			$\stackrel{\text { struoture }}{ }$	103
				structure	18
$\mathrm{Ba}\left(\mathrm{In}_{0.8} \mathrm{Sb}_{0.8}\right) \mathrm{O}_{8}$	8.269			$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF} \mathrm{F}_{0}$	
	8.280			${ }_{\text {struoture }}$	94, 108
				$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{6}$ structure	93
$\mathrm{Ba}\left(\mathrm{In}_{0.8} \mathrm{U}_{0.8}\right) \mathrm{O}_{8}$	8.52			$\left.(\mathrm{NH})^{4}\right)_{3} \mathrm{FeF}{ }^{\text {a }}$	
$\mathrm{Ba}\left(\mathrm{La}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{8}$	8.607		8.690	- struature	25, ${ }^{104}$
					106
$\mathrm{Ba}\left(\mathrm{La}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	8.885			($\left.\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{6}$ structure	103

Struoture of perovilite-type compounds - 31

TABLI 2.2 (cont.) $\mathrm{A}^{\text {s }}+\left(\mathrm{B}_{0.5}^{\mathrm{s}} \mathrm{s} \mathrm{B}_{0.5}^{s+}\right) \mathrm{O}_{3}$ (cont.)					
Compound	$a(\mathrm{~A})$	b (A)	$c(A)$	Remarks	References
$\mathrm{Ba}\left(\mathrm{Sc}_{0.8} \mathrm{U}_{0.8}\right) \mathrm{O}_{3}$. 8.49			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FPeFF}_{6}$	
$\mathrm{Ba}\left(\mathrm{Sm}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	8.518			${ }_{\text {structure }}$	104
				structure	25, 102,
$\mathrm{Ba}\left(\mathrm{Sm}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	8.792			($\left.\mathrm{NH}_{4}\right)_{\mathrm{g}} \mathrm{FeF}_{6}$	106
$\mathrm{Ba}\left(\mathrm{Sm}_{0.8} \mathrm{Ta}_{0,8}\right) \mathrm{O}_{3}$	8.519			structure	103
$\mathrm{Ba}\left(\mathrm{Tb}_{0.8} \mathrm{SNO}_{0.8} \mathrm{Na}_{0.8}\right) \mathrm{O}_{3}$	4.229				105, 106
$\mathrm{Ba}\left(\mathrm{Tb}_{0.5} \mathrm{~Pa}_{0.5} \mathrm{O}_{3}\right.$	8.753			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	
				structure	103
$\mathrm{Ba}\left(\mathrm{Tl}_{0.8} \mathrm{Ta}_{0,5}\right)^{\text {O }} \mathrm{O}$	8.42			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	
$\mathrm{Ba}\left(\mathrm{Tm}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	8.408			$\stackrel{\text { structure }}{ }$	108
				Btruature	25, 102
$\mathrm{Ba}\left(\mathrm{Tm}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	8.892			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	
$\mathrm{Ba}\left(\mathrm{Tm}_{0.8} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	8.406			${ }_{\left(\mathrm{NH}^{\text {structure }} \text {, }\right.}$	103
				struoture	105
$\mathrm{Ba}\left(\mathrm{Y}_{0.5}^{0.5} \mathrm{~Pa}_{0.5}\right) \mathrm{O}_{3}$	8.718				102, 106
				(NH)	
$\mathrm{Ba}\left(\mathrm{Y}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	8.372			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	103
				structure	18
$\mathrm{Ba}\left(\mathrm{Y}_{0.5} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	8.433			($\left.\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	
$\mathrm{Ba}\left(\mathrm{Y}_{0.8} \mathrm{U}_{0.8}\right) \mathrm{O}_{3}$	8.69			${ }^{\text {struature }}$	105, 108
				$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	104
$\mathrm{Ba}\left(\mathrm{Yb}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	8.374			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeFF}_{6}$	
				日tructure	25, 96,
$\mathrm{Ba}\left(\mathrm{Yb}_{0.8} \mathrm{~Pa}_{0.5}\right) \mathrm{O}_{3}$	8.678			$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeFF}_{8}$	
				structure	103
$\mathrm{Ba}\left(\mathrm{Yb}_{0.5} \mathrm{Ta}_{0.8} \mathrm{O}_{3}\right.$	8.390			($\left.\mathrm{NH}_{4}\right)_{\text {3 }} \mathrm{FeF}_{6}$	
$\mathrm{Ca}\left(\mathrm{Al}_{0.6} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{\mathrm{a}}$	3.81	3.80	3.81	$\beta \stackrel{\text { 日rructure }}{ }=80^{\circ} 15^{\prime}$	96, 105
				monoclinic	109
$\mathrm{Ca}\left(\mathrm{Al}_{0.5} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	3.81	3.80	3.81	$\beta=80^{\circ} 17^{\circ}$	
				monoolinio	09
	5.80	5.43	7.73	orthorhombic	94
$\mathrm{Ca}\left(\mathrm{Cr}_{0.6} \mathrm{Mo}_{0.8}\right) \mathrm{O}_{3}$	5.49	7.70	5.36	orthorhombic	28

34 PREPARATION OF PEROVSEITE-TYPE COMPOUNDS

36 PREPARATION OF PEROVSKITH -TYPE COMPOUNDS
TABLE 2.2 (cont.)
36

థ

$\mathrm{A}^{2+}\left(\mathrm{B}_{0.8 \mathrm{~s}}^{1+} \mathrm{B}_{0.75}^{8+}\right) \mathrm{O}_{3}^{\circ}$					
Compound	$a(A)$	$h(A)$	$c(A)$	Remariss	Refer. ences
$\begin{aligned} & \mathrm{Ba}\left(\mathrm{Na}_{0.28} \mathrm{Ta}_{0.78}\right) \mathrm{O}_{2} \\ & \mathrm{Sr}\left(\mathrm{Na}_{0.28} \mathrm{Ta}_{0.98}\right) \mathrm{O}_{8} \end{aligned}$	$\begin{aligned} & 4.137 \\ & 4.055 \end{aligned}$				27 27
$\mathrm{A}\left(\mathrm{B}_{0.5}^{8+} \mathrm{B}_{0.5}^{4}+\mathrm{O}_{2.75}\right.$					
$\mathrm{Ba}\left(\mathrm{In}_{0.8} \mathrm{U}_{0.8}\right) \mathrm{O}_{2.75}$	8.551			$\begin{gathered} \left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}_{0} \\ \text { structure } \end{gathered}$	104
$\mathrm{A}\left(\mathrm{B}_{0.5}^{2+} \mathrm{B}_{0.5}^{8+}\right) \mathrm{O}_{2.78}$					
$\mathrm{Ba}\left(\mathrm{Ba}_{0.8} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{2.78}$	8.69			$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF} \mathrm{F}_{6}$	
$\mathrm{Ba}\left(\mathrm{Fe}_{0.8} \mathrm{Mo}_{0.8}\right) \mathrm{O}_{2.75}$	8.08			structure $\left(\mathrm{NH}_{4}\right) \mathrm{FeF}_{3}$	
$\mathrm{Sr}\left(\mathrm{Sr}_{0.8} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{\mathbf{2 . 7 8}}$	8.34			$\begin{gathered} \text { structure } \\ \left(\mathrm{NH}_{4} \mathrm{~F}_{3} \mathrm{FeF}_{6}\right. \\ \text { structure } \end{gathered}$	28

2.3. Madelung Eneray

 energy of ionic crystals is that the solid can be considered as a system of positive and negative ions. In the NaCl struc-
 sodium ion is surrounded by $6 \mathrm{Cl}^{-}$ions at a distance L,
 all other ions is therefore,

$$
U_{M}=-\frac{e^{2}}{L}\left(\frac{6}{\sqrt{ } 1}-\frac{12}{\sqrt{ } 2}+\frac{8}{\sqrt{ } 3}-\frac{6}{\sqrt{ } 4}+\frac{24}{\sqrt{ } 5}\right)
$$

38
PREPARATION OF PEROVSEITE-TYPE COMPOUNDS TAbLe 2.2 (cont.)

Compound	$a(A)$	$b(A)$	$c(A)$	Remarks	Refer ences
$\mathrm{Ba}\left(\mathrm{Ag}_{0.8} \mathrm{I}_{0.8}\right) \mathrm{O}_{8}$	8.46			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF} \mathrm{F}_{6}$	
$\mathrm{Ba}\left(\mathrm{Li}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{3}$	8.100			(Ntructure	108
$\mathrm{Ba}\left(\mathrm{Li}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{8}$				$\left(\mathrm{NH}_{4} \mathrm{~s}_{3} \mathrm{FeF}\right.$ structure	18
	8.118			$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	18
$\mathrm{Ba}\left(\mathrm{Na}_{0.5} \mathrm{I}_{0.5}\right) \mathrm{O}_{3}$	8.33			structure $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	18
$\mathrm{Ba}\left(\mathrm{Na}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{3}$	8.291			structure	18, 108
	8.291			$\left(\mathrm{NH}_{6}\right)_{3} \mathrm{FeF}_{6}$	
$\mathrm{Ba}\left(\mathrm{Na}_{0.5} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	8.296			$\begin{aligned} & \text { structure } \\ & \left(\mathrm{NH}_{4}\right)_{8} \mathrm{Fe} \mathrm{~F}_{8} \end{aligned}$	18
$\mathrm{Ca}\left(\mathrm{Li}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{3}$	7.83			structure	18
	7.83			($\left.\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}$	
$\mathrm{Ca}\left(\mathrm{Li}_{0.8} \mathrm{Re} \theta_{0.8}\right) \mathrm{O}_{3}$	7.83			$\begin{gathered} \text { structure } \\ \left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF} \end{gathered}$	18
$\mathrm{Sr}\left(\mathrm{Li}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{8}$	7.86			structure	18
				$\left(\mathrm{NH}_{4}\right)_{8} \mathrm{FeF}$	
$\mathrm{Sr}\left(\mathrm{Li}_{0.6} \mathrm{Re}_{0.5}\right) \mathrm{O}_{8}$	7.87			$\begin{gathered} \text { structure } \\ \left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF} \end{gathered}$	18
$\mathrm{Sr}\left(\mathrm{Na}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{3}$	8.13			structure	18
$\mathrm{Sr}\left(\mathrm{Na}_{0.8} \mathrm{Re}_{0.8}\right)_{\mathrm{O}}^{8}$					18
	8.13			$\begin{gathered} \left(\mathrm{NH}_{f}\right)_{s} \mathrm{FeF} \\ \text { structure } \end{gathered}$	18

In a later study, Saltzman and Schor ${ }^{(123)}$ calculated the Madelung energy of tetragonal perovskite structure. Madelung
 gonal perovskite structures for axial ratios $\alpha=c / a$ varying from 0.90 to 1.10 . Least-squares fits expressing the Madelung constant as a function of $(1-\alpha)$ also were reported. The results are given in Table 2.4.

Compound	$\alpha=c / a$	Madelung constant	Madelung energy ordering	Total Madelung energy
$\mathrm{Ba}_{2} \mathrm{BaOsO}_{6}$	0.963	53.70	543	8235
$\mathrm{Ba}_{2} \mathrm{BaReO}_{0}$	0.963	53.70	544	8244
$\mathrm{Ba}_{2} \mathrm{SrReO}_{8}$	0.964	53.88	547	8289
$\mathrm{Ba}_{2} \mathrm{SrOsO}_{4}$	1.034	52.43	545	8260
$\mathrm{Sr}_{2} \mathrm{CoReO}$	1.013	52.78	687	8896
$\mathrm{Sr}_{2} \mathrm{FeReO}{ }^{\text {c }}$	1.004	52.84	590	8945
$\mathrm{Sr}_{2} \mathrm{MgOsO}_{6}$	1.008	52.87	588	8934
$\mathrm{Sr}_{3} \mathrm{MgReO}_{6}$	1.008	57.87	588	8911
$\mathrm{Sr}_{2} \mathrm{NiReO}_{6}$	1.009	52.85	590	8941
$\mathrm{Sr}_{8} \mathrm{SrOsO}_{8}$	0.978	53.45	563	8531
$\mathrm{Sr}_{2} \mathrm{SrReO}{ }_{6}$	0.867	53.62	559	8468
$\mathrm{Sr}_{2} \mathrm{ZnReO}{ }_{6}$	1.015	52.74	585	8878

2.4. Ionio Radit

The ionic radii of the ions as given by Ahrens and as calcu-

 pounds, while those of B^{\prime} and $\mathrm{B}^{\prime \prime}$ were obtained in complex perovskite compounds. There are a number of ions which appear to differ considerably in radius in the structure of perovskite-type compounds as compared with those of Ahrens. In addition, the ionic radii of W^{8+} and Os^{7+} were calculated for the first time.

STRUCTURE OF PEROVSKITE-TYPE COMPOUNDS

PREPARATION OF PEROVSKITE-TYPE COMPOUNDS

Preparation of perovskite-type compounds

A. F. Weils, Structural Inorganic Chemistry, Oxford UniversityW. W. Mainnofsty and H. Kefiesdy, J. Am. Ohem. Soc. 76, S. W Derbyshire A. C. Fraker and H. H. Stadelmaier, Acta Cryst. 14, 1293 (1961). 46. R. Werss, Compt. Rend. 246, 3073, (1958). 47. A. Hofrman, 2. Physik. Chem. 28, 65 (1953). M. Lano, F. P. Knodsen, C. L. Fillmori, R. S. Roth, NBS

NAray-Szabó, Naturwiss. 31, 466 (1943).
C. E. Curiss, L. M. Doney and J. R. Johnson, Oak Ridge Natl.
Lab. ORNL-1881 (1954).
R. Ward, B. Goshee, W. McCarroll and D. H. Ridoely, (1953).
78, 2909 (1956).
L. W. Coughanour, R. S. Roth, S. Marzullo and F. E. SenL. W. Covghanour, R. S. Roth, S. Marzullo and F. E. SifnJ. Brous, I. Fanko inen and E. Banks, Acta Cryst. 6, 67 (1953). B. Jafra, R. S. Roth and S. Marzulio, J. Research NBS,
J. J. RaNdall and R. Ward, J. Am. Chem. Soc. 81, 2629 (1958). F. Soasward and S. Imds, J. Phys. Soc. Japan 20, 1529 (1965). W. H. Zachariasen, Acta Cryst. \&, 388 (1948). 85 (1955).

 R. C. Vrozery and. A. Klann, J. Chem. Phys. 27, 1161 (1967).
S. Geller and V. B. Bala, Acta Cryst. 9, 1019 (1956). V. S. Filip'ev, N. P. Smolyaninov, E. G. Fesenko and I. N. Belyaev, Kristallografiya 5, 958 (1960).

103. C. Kelceir, J. Inorg. Nucl. Ohem	
108. V. S. Frupr'my and E. G. Feseneo, Sov. Phys., Oryst. 6, 616 (1962).	
107. L. Brixener, J. Phys. Chem. 64, 165 (1960).	
108. A. W. Sleight and R. Ward, Inorg. Ohem. 3	
109. V. S. Fimip'ev and E. G. Fesmineo, Sov. Phys., Oryst. 10, 243 (1985).	
112. I. G. Ismatuzadex, Sov. Phys. Crust. 4, 389 (1980).	
113. M. F. Kupriyanov and E. G. Frisenko, Sov. Phye. Cryst. 7,	
114. G. Blasse, Philips Research Reports 20, 327 (1965). 115. J. Lonao and R. Ward, J. Am. Chem. Soo. 83, 2816 (1961). 116. G. Bayer, J. Am. Ceram. Soc. 46, 604 (1963).	
117. I. N. Belyaet, L. I. Medtedeya, E. G. Fesenko and M. F. Kupriynnov, Izv. Akad. Nauk SSSR Neorgan. Materialy, 1 6, (1965).	
119. Yo. Ya. Tomashpol'sici and Yo. N. Venevtsev, Sou. Phys. Solid State 6, 2388 (1965).	
121. R. D. Rosemstens and R. Soror, J. Chem. Phys. 1, 789 (1983). 122. D. H. Templeton, J. Chem. Phys, 23, 1826 (1955).	

PREPARATION OF PEROVSKITE-TYPE OOMPOUNDS

A. I. Zastavsietr and A. G. Tutov, Dokl. Akad. Nait SSSR 135 2. S. A. Frdolov, Y. N. Venevteriv, G. S. ZHDanov and E. G. A. RJagiero and R. Ferro att 795 (1981). Olasse Sci. Fis. Mat. Nat. 17, 254 (1954). Sasse Sci. Fis. Mat. Nat. 17, 254 (1954). S. Geller, J. Ohem. Phys. 24, 6 (1956).
A. Word, B. Post and E. Banks, J. Am. Ohem. Soc. 79, 6365
F. Askina, I. Fankucien, and R. Ward, J. Am. Chem. Soc. 8. W. C. Koekler and E. O. Wollan, Phys. Ohem. Solids 2, 100
M. Foèx, A. Mancheron and M. Line, Oompt. Rend. 250, 3027 D. D. Khanolicar, Ourrent Sci. (India) 30, 52 (1961).
M. Kestiaian and R. Ward, J. Am. Ohem. Soo. 76, 6027 (1954).
M. Kifstigian, J. G. Diokinson and R. Ward, J. Am. Chem.
N. N., Padurow and C. Sohostertus, Ber. Deut. Keram. Ges.
L. Jahnberg, S. Andirisson and A. Magnéli, Acta Chem.
A. Magnelil and R. Nilsson, Acta Ohem. Scand 4, 398 (1950).
G. Magneli and R. Nilsson, Acta Ohem. Scand. 4, 398 (1950).
D. Vanag, Z. Physik. Chem. 29 B, 192 (1935). D. VAN DUXN, Rec. Trav. Ohim. 61, 689 (1942).
A. Magnext, Arkiv. Kemi. 1, 269 (1949).
E. O. Brima, J. C. Brantiey, J. H. Lorinez and M. H. JelliNex, J. Am. Chem. Soc. 78, 6427 (1951).
B. W. Brown and E. Banks, J. Am. Ohe
B. W. Brown and E. Banks, J. Am. Ohem. Soc., 76, 983 (1954).
M. Avoin and R. E. Rundre, J. Chem. Phys. 82,627 (1960).
F. Galasso, W. Darby and J. Pyie, prepared at the United

Aircraft Corporation Research Laboratories - not the United
G. Blasse, J. Inorg. Nucl. Ohem. 27, 993 (1965). not reported.
G. A. Smolemsein, A. I. Agrañovskays and V. A. Istpor, Sov.
Phys. Solid State 1, 907 (1959).

Phys. Solid State 1, 807 (1959).
A. I. Agranovskaya, Bulletin
Physics Series 84, 1271 (1980).
Physics Series 24, 1271 (1980).
F. Galasso and J. Pyle, J. Phys. Ohem. 67, 533
7. F. Galasso and J. Pyle, J. Phys. Ohem. 67, 533 (1963).
V. A. Bokov and I. E. Myi'nirova, Sov. Phys., Solid State 2, 9. 2428 (1981)
100. I. G. Ismailzade, Sov. Phys., Oryst. 5, 292 (1960).
A. S. Viskov, Yo. N. Venevtsev and G. S. ZhDanov, Sov. Phys.
102. L. Brixaner, J. Inorg. Nucl. Ohem. 15, 352 (1960).

앙
A．Ferretiti，D．B．Rogers and J．B．Góodinough，J．Phys．
Chem．Solids，26，（1965）．
A．R．Sweedler，C．J．Raub and B．T．Matthas，Phys．Letters 5， 108 （1956）．
F．Sohooney，W．R．Hosler and M．L．Cohen，Phys．Rev．Let．
． 12,474 （1964）． R．Sweedner，pris
Galasso and W．D．
F．Galasso and W．Darby，Inorg．Chem．1， 71 （1965）．
D．D．Glower and R．C．Heorman，J．Chem．Phys．41， 877 （1964）．
J．W．Vermey，P．W．Haniman，F．C．Romeyn and G．W．
H．Jonker and J．H．Van Santen，Physica 16， 337 （1950）．
roducing Semiconducting Materials，German Pat． 929,350 ，June
23 （1955）．
H．A．Sayer and S．S．Fiasomen，Proc．Electronic Components
Symp．，7th Washington D．C．，May， 41 （1956）．
Symp．，7th Washington D．C．，May， 41 （1956）．
G．G．Harman，Phys．Rev．106， 1358 （1957）．
O．Saburi，J．Phys．Soc．Japan 14， 1159 （1959）．
C．Saburi，J．Amponents
SABuri，J．Am．Ceram．Soc．44， 54 （1981）．

ザ
ค่ํㅜํ
่ ่

かiঞisicisi
33.
35.

 to discharge to $1 / e$ of the charging voltage．Time constants were measured for various grades of BaTiO_{3} and for BaTiO_{3} with different additives．The results are presented in Table 5．1．
Table 5．1．Measurements on BaTiO_{3} Compositions Fired 1 hr at

¢ ¢ ¢ 0 0	
$\begin{gathered} \text { 品 } \\ \text { 菏 } \\ \text { 要 } \end{gathered}$	

The results showed that the additives improved the time constant by several orders of magnitude．The compounds $\mathrm{Cr}_{2} \mathrm{O}_{3}$ and CaSnO_{3} improved $R C$ only at room temperature， but the solid fluoride additives showed the most promise． MacChesney et al．${ }^{(17)}$ improved the stability of the prop－ erties with respect to temperature by adding $\mathrm{La}_{2} \mathrm{O}_{3}$ ．The temperature coefficient of capacitance and dissipation factor was reduced to low values by adding 1 mole $\% \mathrm{La}_{2} \mathrm{O}_{3}$ ．

[^18]barium titanate above the Curie temperature even though no electric field was applied，（11）but in spite of these studies， there still appears to be considerable doubt as to the existence of the space－charge layer on the surface．

The tetragonal distortion in the structure of BaTiO_{3} re－ sulted in the formation of dipoles．Merz ${ }^{(12)}$ measured the di－ pole moment of BaTiO_{3} single crystals and found it to be 18×10^{-6} coulombs $/ \mathrm{cm}^{2}$ at $120^{\circ} \mathrm{C}$ and 26×10^{-6} at ambient temperature．In addition，he ${ }^{(13)}$ also measured the dielectric constant and found that it was much greater perpendicular to the c－axis than along it（see Fig．5．4）．

 found to be about 1500 ，which falls between the values ob－ tained along the c－axis and a－axis of the single crystal．The value decreases slowly with frequency to $10^{\circ} \mathrm{c} / \mathrm{s}$ ，and then decreases further to a value of 126 at $24 \times 10^{3} \mathrm{Mc}$ ．When the measurement is made under pressure，the dielectric constant increases ${ }^{(14)}$ and the Curie point shifts to lower tempera－ tures．${ }^{(18)}$

Because of this high dielectric constant，experimental stud－ ies have been conducted to improve the properties of ba－ rium titanate for energy converter and capacitor applica－ tions．${ }^{(10)}$ A figure of merit for capacitor applications is de－
dielectric constant. Resistivity and dielectric strength were high compared with ceramic materials.
Barium titanate also exhibits piezoelectric properties which means that electric polarization takes place when it is subjected to mechanical strain, and inversely the material mechanically deforms upon application of an electric field. This effect reverses in sign upon reversal of the electric field. This is in contrast to electrostriction exhibited by all dielectrics under an applied field.
Determination of the piezoelectric properties of singlecrystal BaTiO_{3} gave 950×10^{-8} statcoul/dyne for d_{33} and -310×10^{-8} statcoul/dyne for d_{31} where d_{33} is the proportionality between the charge developed on the two faces perpendicular to its c-axis and d_{31} is the proportionality between the charge on the same two faces and the force applied when the force is perpendicular to the c-axis. ${ }^{(21-24)}$
In order to obtain this effect in ceramic barium titanate, it must be first poled by d.c. voltages of $20-30 \mathrm{kV} / \mathrm{cm}$
 lites. The piezoelectric moduli measured for ceramics depend on the effectiveness of the poling operation.
Lead titanate is also a ferroelectric with a tetragonal distortion of the perovskite structure. Shirane and Pepinsky ${ }^{(25)}$ studied the structure with X-ray and neutron diffraction. The results indicated a shift of $0.30 \AA$ for the $T i$ ion along the c-axis and $0.47 \AA$ for the Pb ions which were much larger displacements than those found in barium titanate (see Fig. 5.5). At $490^{\circ} \mathrm{C}, \mathrm{PbTiO}_{3}$ changes from a tetragonal form to a cubic form (see Fig. 5.6). The energy absorption at this transformation temperature is $1150 \mathrm{cal} / \mathrm{mol} .{ }^{(28)}$
The dielectric constant of PbTiO_{3} is about 100 at room
 Studies on single crystals indicate that the Curie point is at
 reported to be essentially the same as that observed in BaTiO_{3}.
вəл! was found to be less than 30×10^{-12} coulombs/newton except for specimens containing 1 mole $\% \mathrm{CaF}_{2}$ which gave values as high as 130×10^{-12} coulombs/newton. (28)
taneous polarization was reported to be 3×10^{-6} coulomb/ cm^{2} and the remnant polarization 1×10^{-0} coulomb $/ \mathrm{cm}^{2}$. Calcium titanate has an orthorhombic structure at room temperature, the structure becomes tetragonal at $600^{\circ} \mathrm{C}$ and cubic at $1000^{\circ} \mathrm{C}$. ${ }^{(30)}$ It has a room-temperature dielectric constant of 100 , but it is not ferroelectric.

Niobates and Tantalates

 tion, $412^{\circ} \mathrm{C}$ for the tetragonal to cubic transformation and $-59^{\circ}, 200^{\circ}$ and $407^{\circ} \mathrm{C}$ on cooling (see Fig. 5.7). The loss tangent at these transitions is approximately $0.3 .{ }^{(31,}{ }^{32)}$ This
 of saturation polarization have been obtained from hystere. sis loops and found to be 0.9×10^{-0} coulombs $/ \mathrm{cm}^{2}$ at room temperature.
Sodium niobate is not ferroelectric and may be antiferroelectric, but ferroelectricity can be induced by the application of a strong field of the order of $10 \mathrm{kV} / \mathrm{cm}$. Once ferroelectricity is induced, the crystals remain ferroelectric from

∞

91

Lead titanate also forms complete solid solution with barium titanate. The addition of lead titanate lowers the room temperature dielectric constant, increases the curie temperature (see Fig. 5.13), ${ }^{(34)}$ decreases the d.c. resistivity and the
 ties of barium titanate. ${ }^{(44,15)}$
90
Lead hafnate transforms to a new structure at $160^{\circ} \mathrm{C}$ and transforms at $210^{\circ} \mathrm{C}$ to a cubic form. The two lower forms are antiferroelectric and the high-temperature form is paraelectric. ${ }^{(38)}$

5.2. SoLid SoLutions

One of the most widely studied solid solution systems is
that between BaTiO_{3} and SrTiO_{3}. There is complete solid
solution in this system, with the size of the unit cells decreas-
Fig. 5.11). The Curie point also decreases with increasing
93

95

95

Frg. 5.17. Phase diagram for the $\mathrm{PbTiO}_{8}-\mathrm{BaTiO}_{8}-\mathrm{PbO}: \mathrm{SnO}_{2}-$

 orthorhombic phase (after T. Ikeda, J. Phys. Soc. Japan $\mathrm{PbTiO}_{3}-\mathrm{KNbO}_{3}$
 dielectric properties of the solid solutions were determined

 presents this data for the $\mathrm{KNbO}_{3}-\mathrm{NaNbO}_{3}, \mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}$, $\mathrm{PbTiO}_{3}-\mathrm{BaTiO}_{3}, \mathrm{PbTiO}_{3}-\mathrm{NaNbO}_{3}$ and the $\mathrm{KNbO}_{3}-\mathrm{KTaO}_{3}$ systems. In the $\mathrm{PbTiO}_{3}-\mathrm{KNbO}_{3}$ system where no ions are

94 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS $$
\mathrm{BaTiO}_{3}-\mathrm{BaSnO}_{3}
$$

Dungan et al.(4) found that additions of BaSnO_{3} to BaTiO_{3}
Iowers the Curie temperature, and increases the unit cell size.
Figure 5.16 shows the variation in Curie temperature with
additions of BaSnO_{3}.

Fra. 5.16. Variation of Curie point of barium titanate with the addition of barium stannate (after Dungan et al.(47).

$\mathrm{BaTiO}_{3}-\mathrm{BaHfO}_{3}$

A study of the $\mathrm{BaTiO}_{3}-\mathrm{BaHfO}_{3}$ system by Fresenko and Prokopolo(48) showed that it was quite similar to those of $\mathrm{BaTiO}_{3}-\mathrm{BaZrO}_{3}$ and $\mathrm{BaTiO}_{3}-\mathrm{BaSnO}_{3}$. Payne and Tennery ${ }^{(40)}$ made dielectric measurements and X-ray diffraction studies in this system and found that the dielectric constant for each sample increased as the BaHfO_{3} concentration was increased to 16 mole $\% \mathrm{BaHfO}_{3}$ and then decreased with further BaHfO_{3} additions. They suggest that the ferroelectric-paraclectric transition for the composition containing 16 mole $\% \mathrm{BaHfO}_{3}$ was of second order and occurred between a ferroelectric rhombohedral phase and a paraelectric cubic phase.
FERRORLEOTRIOITY 97

 boundaries exist between ferroelectric phases of slightly differ-

$\mathrm{PbTiO}_{3}-55 \% \mathrm{PbZrO}_{3}$ has a Curie temperature of $340^{\circ} \mathrm{C}$ and a radial coupling coefficient of 0.3 at $275^{\circ} \mathrm{C}$ which is twice that of barium titanate. Another containing $47.25 \% \mathrm{PbTiO}_{3}$, $22.75 \% \mathrm{PbZrO}_{3}$ and $30 \% \mathrm{PbO}: \mathrm{SnO}_{2}$ had the highest piezoelectric coefficient $\left(d_{31}\right)$ of all compositions studied-74 $\times 10^{-12}$ coulomb/newton.
Ikeda(53) reported that the addition of LaFeO_{3} to $\mathrm{Pb}(\mathrm{Ti}$,
$\mathrm{Zr}) \mathrm{O}_{3}$ ceramics near the phase boundary improved the piezo-
 that improved piezoelectric ceramics were obtained when

common the preparation of homogeneous specimens proved to be difficult. Tien et al. feel that the minimum that exists common for all systems which involve ferroelectric or antiferroelectric compounds not containing a common ion, point-

2. 3女n 1v\&3dW31 3iצnכ Fia. 5.18. Curie temperatures in perovskite systems: (1)
 ing out that this is true of the $\mathrm{BaTiO}_{8}-\mathrm{PbZrO}_{3}, \mathrm{NaNbO}_{3}-$ $\mathrm{PbZrO}_{3}, \mathrm{NaNbO}_{3}-\mathrm{PbTiO}_{3}$ as well as the $\mathrm{PbTiO}_{3}-\mathrm{KNbO}$ system.

Addition of barium, strontium and titanium ions destroys
the antiferroelectric properties of PbZrO_{3}. Figure 5.19 shows a phase diagram of the $\mathrm{PbZrO}_{8}-\mathrm{PbTiO}_{3}$ system. The addition of lead titanate to lead zirconate appears to lower the dielec-
8

FERROELECTRICITY

$\left.\mathrm{Nb}_{0.5}\right) \mathrm{O}_{8}, \mathrm{Ba}\left(\mathrm{Bi}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}, \mathrm{Ba}\left(\mathrm{Bi}_{0.5} \mathrm{U}_{0.8}\right) \mathrm{O}_{3}, \mathrm{Ba}\left(\mathrm{Bi}_{0.67} \mathrm{~W}_{0.59}\right) \mathrm{O}_{3}$ and $\mathrm{Ba}\left(\mathrm{Bi}_{0,5} \mathrm{Mo}_{0,5}\right) \mathrm{O}_{3}$ had distorted unit cells and high di-

taining $\mathrm{Nb}, \mathrm{Ta}, \mathrm{V}, \mathrm{W}$ and Mo , respectively, and felt that the first three were ferroelectric and the last two antiferroelectric. However, evidence for this assumption was lacking.
Smolenskii et al. ${ }^{(57)}$ found from studies on powder compacts that $\mathrm{Pb}\left(\mathrm{Fe}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ and $\mathrm{Pb}\left(\mathrm{Yb}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ might be ferroelectrics with Curie temperatures of $112^{\circ} \mathrm{C}$ and $280^{\circ} \mathrm{C}$, respectively. The temperature dependence of permittivity and loss tangent for these compounds aro shown in Fig. .21 The compound $\mathrm{Pb}\left(\mathrm{Fe}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ exhibited a hysteresis loop, but $\mathrm{Pb}\left(\mathrm{Yb}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ only showed a maximum in its permittivity and therefore may be antiferroelectric.
 \title{

98
 \title{ \section*{98

 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS

 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS
 Cr). Dielectric constants above 1500 and radial coupling coefficients above 0.6 were obtained with $\mathrm{Na}+$ and Sb^{5+} substi- tution. $$
\mathrm{PbZrO}_{3}-\mathrm{BaZrO}_{3}
$$ When barium replaces lead in PbZrO_{3}, the dielectric maxi- mum of lead zirconate is shifted to lower temperatures. ${ }^{(55)}$ In addition, the maximum dielectric constant becomes great-

Fig. 5.20. Dielectrio oonstant of ($\mathrm{Ba}, \mathrm{Pb})_{\mathrm{ZrO}_{8}} 00 \mathrm{mpositions}$
at varying temperatures (after $\mathrm{Roberts}^{(88)}$).
er and the high values are maintained over a broader range of temperature (see Fig. 5.20). The largest value is obtained
 percentages of barium are substituted, the dielectric maximum is lowered, but the temperature range of high dielectric
 $\mathrm{Ba}_{0.35} \mathrm{~Pb}_{0.05} \mathrm{ZrO}_{3}$ stays above 6000 from room temperature up to $60^{\circ} \mathrm{C}$ making it useful for capacitor application.

Single crystals of $\mathrm{Pb}\left(\mathrm{Ni}_{0.33} \mathrm{Nb}_{0.67}\right) \mathrm{O}_{3}$ were prepared by
Myl'nikova and Bokov and reported to be ferroelectric. A maximum was observed in a plot of its dielectric constant versus temperature, and a hysteresis loop was observed at a temperature of $-196^{\circ} \mathrm{C} .{ }^{(62)}$
Smolenskii and Agranovskaya ${ }^{\text {(03) }}$ studied a large number of perovskite-type compounds and found two new ferroelectric materials, $\mathrm{Pb}\left(\mathrm{Mg}_{0.33} \mathrm{Nb}_{0.67}\right) \mathrm{O}_{3}$ and $\mathrm{Pb}\left(\mathrm{Ni}_{0.33} \mathrm{Nb}_{0.07}\right) \mathrm{O}_{3}$.

$E_{\max }=38 \mathrm{kV} / \mathrm{cm}$, at $t=20^{\circ} \mathrm{C}$, for $\mathrm{Pb}\left(\mathrm{Mg}_{0.33} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}, E_{\max }$ $=45 \mathrm{kV} / \mathrm{cm}$, at $t=182^{\circ} \mathrm{C}$, for $\mathrm{Pb}\left(\mathrm{Co}_{0}, \mathrm{Ta}_{07}\right) \mathrm{O}_{3}, E_{\max }=$ $70 \mathrm{kV} / \mathrm{cm}$, at $t=-196^{\circ} \mathrm{C}$, and for $\mathrm{Pb}\left(\mathrm{Ni}_{0.93} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}$, $E_{\max }=150 \mathrm{kV} / \mathrm{cm}$, at $t=-196^{\circ} \mathrm{C}$. The Curie temperatures of compounds $\mathrm{Pb}\left(\mathrm{Mg}_{0.33} \mathrm{Nb}_{0.87}\right) \mathrm{O}_{3}, \mathrm{~Pb}\left(\mathrm{Mg}_{0.33} \mathrm{Ta}_{0.07}\right) \mathrm{O}_{3}$, $\mathrm{Pb}\left(\mathrm{Co}_{0.33} \mathrm{Nb}_{0.67}\right) \mathrm{O}_{3}, \quad \mathrm{~Pb}\left(\mathrm{Co}_{0.33} \mathrm{Ta}_{0.67}\right) \mathrm{O}_{3}, \quad \mathrm{~Pb}\left(\mathrm{Ni}_{0.33} \mathrm{Nb}_{0.67}\right) \mathrm{O}_{3}$, $\mathrm{Pb}\left(\mathrm{Ni}_{0.33} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}$ and $\mathrm{Pb}\left(\mathrm{Zn}_{0.33} \mathrm{Nb}_{0.87}\right) \mathrm{O}_{3}$ are $-12^{\circ} \mathrm{C}$, $-98^{\circ} \mathrm{C},-70^{\circ} \mathrm{C},-140^{\circ} \mathrm{C},-120^{\circ} \mathrm{C},-180^{\circ} \mathrm{C}$ and $140^{\circ} \mathrm{C}$, re-

Fig. 5.25. The temperature dependence of ε and tan δ of
single crystal $\mathrm{Pb}\left(\mathrm{Zn}_{0.38} \mathrm{Nb}_{0.87}\right) \mathrm{O}_{\mathrm{s}}(1 \mathrm{kc})$ (after Bokov et al. (004).
Johnson et al. ${ }^{(85)}$ conducted an extensive study of complex

 increased as ϕ increased. In addition, the Curie points decreased in value as Ti was replaced by Zr and Zr by Hf. A complete list of ferroelectric compounds, Curie points and polarization values are given in Table 5.2.

5.4. Effect of Nuclear Irradiation

 materials. In one study, Glower and Hester ${ }^{(00)}$ found that
104 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS

$\begin{aligned} & \bar{O} \\ & 0 \\ & E_{1} \\ & \stackrel{4}{6} \\ & \stackrel{\infty}{\infty} \end{aligned}$	
$\begin{aligned} & 0 \\ & 0 \\ & \text { H } \end{aligned}$	
-	

nuclear reactor irradiation of single crystal of BaTiO_{3} produced increases in the coercive field $\left(E_{c}\right)$ and a decrease in the remnant polarization $\left(P_{r}\right)$. Crystals in the polarized state during irradiation were more resistant to radiation damage than were virgin crystals and the radiation damage rate was only slightly dependent upon orystal thickness. In their conclusions, they interpreted the changes in E_{c} and P_{r} in terms of a radiation model involving a build-up of a space charge due to the trapping of ionized carriers in the domain walls of the crystals.
Hilczer ${ }^{(67)}$ reported that irradiation of barium titanate with 10^{19} neutrons $/ \mathrm{cm}^{2}$ reduced the dielectric constant by up to 40%. Doses of $10^{14}-10^{19}$ neutrons $/ \mathrm{cm}^{2}$ of (a) pile neutrons containing 10% fast neutrons; and (b) fast neutrons only that had passed through a $0.4-\mathrm{mm}$ Cd foil gave the same effect, implying that fast neutrons produced the damage.

Schenk ${ }^{\text {(88) }}$ found that tetragonal BaTiO_{3} when irradiated

 2.26% for a and 1.17% for c.

5.5. Applications of Ferroslectrio Materials

The high dielectric constants and ferroelectric behavior of perovskite-type compounds are probably the most important properties they exhibit.

Materials such as barium titanate cannot be used as capacitors in tuned circuits or filters where high-frequency stabilsu!
 path to an alternating current above a certain frequenoy.

 mic capacitors have been used at low voltages as by-pass capacitors.

In addition, the hysteresis loop of ferroelectric single crystals makes them of potential use for information storage in electronic computors. Ferroelectrics also have been used as dielectric amplifiers. These are analogous to magnetic amplifiers, which require magnetic materials with narrow rectangular hysteresis loops.

The International Telephone and Telegraph Corporation recently reported a new use for ferroelectrics. This method for producing high-voltage a.c. or d.c. power was based on the fact that the dielectric constant of a ferroeleotrio is sensitive to temperature at the Curie point. The capacitor is held at the Curie point and then heated, lowering the dielectric constant. Since the charge cannot decrease because of a diode in the circuit, there must be a rise in capacitor voltage. This increased voltage also means an increase of electrical energy, thus there is a conversion of heat energy into elec-
Fra. 5.2B. Piezoelectric oeramics-basic actions (after Bulle-
 applied field or the short circuit charge density to the applied stress. The constant g is the ratio of the open circuit field

 age production and a high g constant for high voltage pro-

 quency.

106
PREPARATION OF PEROVSKITE-TYPE COMPOUNDS
trical energy. This scheme has been proposed for use in a
space vehicle which spins so it alternately faces toward and
away from the sun.
Use of Piezoelectric Properties

 there is a current leakage with time, they have best been used for measuring dynamic pressures, in blast gauges and accelerometers. Recently, the Spark Pump, the heart of which is two lead zirconate-lead titanate piezoelectric elements, was introduced by Clevite as an ignition source for gasoline
 of 20,000 volts when mechanical pressure was applied.

Anothor use of piezoelectrics is the phonograph pick-up
 graph needle to an electrical signal. One of the methods of
 su!̣ueq of peq0e!qns s! чотчщ чэ!мриъs в очи! peutquоо forces.

Piezoelectric, transducers have also been used for sound

 frequency.

In a wave filter application, the impedance property of a crystal near a resonance point is used to allow passage of an electric signal which falls within a prescribed band of frequencies, while other frequencies are not passed.

The selection of materials for these applications depends on their piezoelectric constant. Some constants are listed in Fig. 5.26 and the units in Table 5.3 for perovskite-type ceramics. Note that the k, electromechanical coupling coefficient, values show the relationship between the mechanical energy stored and the electrical energy applied or the electrical energy stored and the mechanical energy applied. A high coupling coefficient, that is the ability to convert from one form of energy to another, is desirable in most of the applications.
The subscripts 1,2 and 3 indicate the $x-, y$ - and z-axes, respectively, and the subscripts 4,5 and 6 represent a double subscript which stands for a plane. For example, 4 represents the $y z$-plane, 5 represents the $x z$-plane and 6 represents the
 field, the second the direction of the strain. For K the sub-
script p means planar coupling. script p means planar coupling.
In the constant Y, the first subscript refers to the direction subscript for the dielectric constant refers only to the field. Table 5.4 presents the elastic, piezoelectric and dielectric properties of several ceramic compositions. The PZT materials
 titanate solid solutions. Using this data, the best matorials for a particular application can be selected.
5.6. Theories of Ferroelectricity
Because of the importance of perovakite-type compounds
 proposed to explain the phenomena associated with this property is presented. For more details, the original papers or the excellent treatment of this subject by Jona and Shirane in a book entitled Ferroelectric Crystals, published by Macmillan Company of New York, can be consulted.
Devonshire proposed a phenomenological theory for considered to be a strained cubic BaTiO_{3} in all forms can be which can be expressed as a function of temperature, stress and polarization. If the stress is initially taken as zero, an equation can be written as a series involving powers of the polarization P. The coefficients are functions of the stressfree condition and have subscripts X. Devonshire gives the equation with separate terms and coefficients for the components of polarization in the axial directions x, y, z. The equation is:

$G_{1}-G_{10}=\frac{1}{2} A^{X}\left(P_{x}^{2}+P_{y}^{2}+P_{z}^{2}\right)+\frac{1}{4} \mathrm{~B}^{x}\left(P_{x}^{4}+P_{y}^{4}+P_{z}^{4}\right)$ $+\frac{1}{8} C^{X}\left(P_{x}^{6}+P_{y}^{6}+P_{s}^{6}\right)+\frac{1}{2} D\left(P_{y}^{2} P_{z}^{2}+P_{z}^{2} P_{x}^{2}+P_{x}^{2} P_{y}^{2}\right)$,

FERROELECTRIGITY
$P_{x}=P_{y}=P_{x}=0 ;$
$P_{x}=P_{y}=0, \quad P_{z} \neq 0$
$P_{z}=0, \quad P_{x}=P_{y} \neq 0$
$P_{x}=P_{y}=P_{z} \neq 0$ These represent
 clinic axes) and the rhombohedral forms respectively. The relative depths of the minima of the free energy function change with the coefficient A^{x}. If this decreases steadily and
constant values are chosen for the coefficients, the temperaconstant values are chosen for the coefficients, the tempera-
tures at which the transitions occur are those actually observed.

On determining the constants, Devonshire drew theoretical curves for the spontaneous polarization, the free energy and the dielectric constants, over a range of temperatures. Qualitative agreement between calculated and experimental data was quite good.

 the free crystal is of the first order.

Using Devonshire's approach of determining the coeffi-
 ing them to predict others, a number of quantities were calculated. For example, the entropy change at the transition
 ment with experimental data.

Using a model approach, Mason and Matthias ${ }^{(78)}$ suggest
 is not at the center of the oxygen octahedra. Instead it is at any of the six positions which correspond to slight displacemonts from the conter toward tho oxygen ions. When tho Ti^{4+} ion was in any of these positions the unit cell would
 correct, a number of polar liquids would be ferroelectrics which is not the case. In addition, with this theory it is not
Table 5.4. Elastic, Piezoelectric and Dielectric Properties of Several Ceramic Compositions (after D. Berlincourt, B. Jaft H. Jaffe

————

	$\begin{gathered} 95 \mathrm{w} \% \\ \mathrm{BaTiO}_{8} \\ 6 \mathrm{w} \% \\ \mathrm{CaTiO}_{8} \end{gathered}$	PZT-4	PZT-6
Coupling coefficients			
k_{33}	0.49	0.64	0.675
k_{p}	0.325	0.52	0.54
k_{31}	0.19	0.31	0.32
${ }_{\text {Piezoelectric }}{ }^{k_{15}}$	0.495	0.65	0.655
Piez.oelectric constants			
d_{33}	150	258	320
d_{31}	-58	-111	-140
$\underset{\text { Free dielectric }}{\substack{d_{28} \\ \text { die }}}$	257	450	495
constants			
K_{1}	1280	1360	1285
$K_{\text {a }}$	1200	1200	1500
Frequency constants			
N_{1}	2290	1650	1500
N_{3}	2840	2000	1880
Elastic constants			
$1 / s_{11}^{\mathrm{E}}=Y_{11}^{\mathrm{E}}$	11.6	8.15	
$1 / s_{3}^{E T}=Y_{33}^{B}$	11.1	8.15 8.7	6.75 5.85
$1 / s_{44}^{2}=Y_{44}^{2}$	4.4	2.6	2.0
Density	5.5	7.5	7.5
Mechanical Q	500	800	75
Curie point	$115^{\circ} \mathrm{C}$	$340^{\circ} \mathrm{C}$	$360^{\circ} \mathrm{C}$

where G_{10} is the value of G_{1} for the unpolarized, unstressed crystal and the last term indicates that there is an interaction between the components of polarization along the $x-, y$ - and
From the equation given above, four sets of solutions which may correspond to minima in free energy can be obtained:
L．Khodarov，Sov．Phys．，Solid State 2， 1904 （1960）．
L．Binnton and R．Havele，Cer．Bull．，Part II，41， 762 （1962）．
Herczog，J．Am．Ceram．Soc．47， 107 （1964）．

Sawaguchi and T．Akioka，J．Phys．Soc．Japan 4， 117 （1949）． Nomura and S．Sawada，J．Phys．Soc．Japan 5， 227 （1950）．
Shirane and E．Sawaguchi，Phys．Rev，81， 458 （1951）．

H．F．Kay，Rpt．Brit．Elec．Res．Assoc．，Ref．L／T， 257 （1951）．
－（\＄96T）Z19＇86＇に29
S．TruEbwasser，Phys．Rev．101， 998 （1956）．
P．Vousden，Acta Cryst．4， $545(1951)$ ．
M．H．Francomber，Acta Cryst．0，256（1954）．
M．H．Francomber，Acta Cryst．0， 256 （1954）．
B．T．Mattrias，Phys．Rev．75， 1771 （1949）．
J．K．Hulm，B．T．Matthias and A．Lona，Phys．Rev．79， 885
G．A．Smolenseit et al．，Dokl．Akad．Nauk SSSR，76， 519 （1851）． D．F．Rusfman and M．A．Strivens，Trans．Faraday Soc．42A，
G．Durst，m．Grotenhurs and A．G．Bariow，J．Am．Ceram． Soc．38， 133 （1950）． H．Imayanagr，J．Phys．Soc．Japan 8， 525 （1953）： E．J．Brajer，H．Jafree and F．Kolcsir，J．Acoust．Soc．Am． D．A．Berlincourt and F．Kolcsir，J．Acoust．Soc．Am．24， 709 （1952）．
R．G．Graf，Ceram．Age 58， 16 （1951）．
R．H．Dungan，D．F．Kane and L．R．Brokrord，J．Am．Ceram．
Soc． $\mathbf{9 5}, 318$（1952）． E．G．Fesento and O．I．Proxoporo，Sov．Phys．，Cryst．6， 373 W．H．Payne and V．J．Tennery，J．Am．Ceram．Soc．48， 413 $\dot{\circ}$
$\stackrel{\circ}{\circ}$
$=0$
 ભ્ల ஜ્ల が
「～か
웅
 45.守守 $\stackrel{\infty}{\square}$ \＄
 lations．

Jaynes proposed a model in which oxygen ions are dis－
placed rather than titanium ions ${ }^{(79)}$ and also a theory which does not require the attribution of dipole moments to atomic displacement．${ }^{(80)}$ Only the electronic states of the TiO_{6} octahedra are considered．The theory was adequate for deter－ mining the entropy change，but it predicts an infrared ab－ sorption line at $\sim 10 \mu$ ，which was not detected．

Devonshire＇s model theory considers the dipole of an atom vibrating in the field of the neighbors．The dipole moment is not fixed in magnitude，but depends on the displacement from the equilibrium position．

Slater＇s theory ${ }^{(81)}$ is similar to Devonshire＇s model theory． However，in addition，he assumes that each atom has an electronic polarization and titanium also has an ionic polar－ ization．It predicts that the direction of spontaneous polari－ zation is along the z－axis，but this is a disadvantage when it is applied to some structures．

In a structural approach，ferroelectricity and antiferro－ electricity are associated with the off－center position of a high－ valency cation in an octahedron．Mega．${ }^{\text {（82，} 83)}$ added the emphasis on the covalent bond character in the occurrence of ferroelectricity．The problem with Megaw＇s theory is that the origin of ferroelectricity is sought in abrupt changes in the character of the bonds at each transition．Like all of the theo－ ries described above，the structural approach has its limi－ tation．

References

[^19]
6

 The phase transitions in perovskite-type compounds are of

 with the absorption or liberation of heat along with discon-

 ity, in the coefficient of thermal expansion and in compressibility. A list of perovskite-type compounds with transition temperatures and references is given in Table 6.1.

6.1. Ternary Perovskites

The phase transitions in barium titanate are probably the best characterized. The cubic phase is stable down to $120^{\circ} \mathrm{C}$,
 appears, and remains stable to about $5^{\circ} \mathrm{C}$. Below $5^{\circ} \mathrm{C}$ a new phase is formed, which has a unit cell with orthorhombic symmetry and still is ferroelectric with the direction of spontaneous polarization being parallel to one of the original cubic $\langle 110\rangle$ directions. At $-90^{\circ} \mathrm{C}$ another transition occurs and the symmetry of the structure becomes rhombohedral. The polar axis lies along one of the original cubic $\langle 111\rangle$ directions. The thermal expansion of the cell parameters in each

T. Y. TIEN, E.
45, 672 (1962).
50. T. Y. Tien, e. C. Subbarao and H. Hrizo, '̇. Am. Oeram. Soc.

Ph. F. K
189 (1985).
V. A. Bokov, S. A. Kızharew, I. E. Myr'nimova and A. G. Tutov,
Sov. Phys., Solid State 6, 2419 (1985).
61. G. A. Smolensiin, A. I. Agranovskaya and V. A. Istpov, Sou. Phys., Solid Slate 1, 907 (1959).

V. A. Bokof and I. E. MYi'Nikova, Sov. Phys., Solid State 2, 2428 (1961).
65. V. J. Johnson, M. W. Valenta, J. E. Dodaherty, R. M. Dojg-
66. D. D. Glower and D. L. Hester, J. Appl. Phys. 86, 2175 (1965). 67. B. Hirczer, Phys. Status Solidi 5, 113 (1964). 68. M. Schens, Phys. Status Solidi 4, 25 (1964).
A. von Hippel, R. G. Breformaridage, F. C. Chesiey and L.
G. Shirane, S. Hoshino and K. Suzukt, Phys. Rev. 80, 1105 (1950).
H. L. E. Cross and B. J. Nictolson, Phil. Mag., Ser. 7, 46,

72. G. A. Smolensiit, Dokl. Akad. Nauk SSSR 70, 405 (1950). 74, A. I. Aaranovsizaya, Bull. Acad. Sciences, U.S.S.R., Phys. Sciences 24, 1271 (1960).
G. A. Smolenskit, A. I. Aqranovbikaya, S. N.' Popot and V. A. Isupory, Sov. Phys. Tech. Phys. 8, 1981 (1960).
A. F. Devonshire, Phil. Mag. 40, 1040 (1949).
A. F. Devonshire, Phil. Mag. Suppl. 8, 85 (1954).
W. P.'Mason and B. T. Mattitise, Phys. Rev. 74, 1622 (1948). . T. Jaynes, Ferroelectricity, Princeton University Press, (1953). J. G. Slater, Phys. Rev. 78, 748 (1950).
H. D. Megaw, Acta Cryst. 5, 739 (1952). H. D. Megaw, Acta Cryst. 7, 187 (1954). 75.

 vestigate the domain pattern.
Studies on tetragonal barium titanate using a polarizing microscope have shown that it is possible for domains to be

 the domain is called an " a " domain. These domains are easily observed under polarized light, and their appearance or disappearance indicates the cubic to tetragonal or tetragonal to cubic transition.
If domains are polarized antiparallel to each other, they are called 180° domains and a field must be applied perpendicular to the polar axis to make them visible.
Considering phase transitions involving other $\mathrm{A}^{2+} \mathrm{B}^{4+} \mathrm{O}_{3}$ type compounds, the structure of strontium titanate becomes cubic at $-220^{\circ} \mathrm{C}$ and that of calcium titanate changes to cubic at $1260^{\circ} \mathrm{C}$. Lead titanate has a transition from a tetragonal ferroelectric phase to a cubic phase at $490^{\circ} \mathrm{C}$, Fig. 5.6, the pseudotetragonal antiferroelectric PbZrO_{3} phase undergoes a first-order phase transition to cubic at $230^{\circ} \mathrm{C}$ (Fig. 5.9) with a heat of transition of $440 \mathrm{cal} / \mathrm{mole}$ and PbHfO_{3} shows transitions at $163^{\circ} \mathrm{C}$ and $215^{\circ} \mathrm{C}$. The transition for PbHfO_{3} at $215^{\circ} \mathrm{C}$ is probably an antiferroelectric transformation to cubic symmetry.
The phase transitions at $435^{\circ} \mathrm{C}, 225^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ in KNbO_{3} are quite similar to those found for BaTiO_{3} except that the spontaneous strain in KNbO_{3} is larger in all three phases. The transition energies are 190,85 and 32 cal/mole, see Fig. 5.7, and the c / a for the unit cell of tetragonal KNbO_{3} is 1.017 compared with the value of 1.010 for that of BaTiO_{3}. All of the phase changes are first order and exhibit temperature hysteresis. The structure of KTaO_{3} changes to cubic symmetry at $-260^{\circ} \mathrm{C}$.
The structure of NaNbO_{3} is monoclinic below $-200^{\circ} \mathrm{C}$ and is ferroelectric. Above this temperature the structure of NaNbO_{3} has orthorhombic symmetry. This antiferroelectric phase changes to a nonpolar pseudotetragonal phase at

118 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS
$354^{\circ} \mathrm{C}$. At $562^{\circ} \mathrm{C}$ the structure of NaNbO_{3} becomes tetragonal, and cubic at $640^{\circ} \mathrm{C}$. At room temperature; a polar structure can be induced by the application of a field and a double hysteresis loop can be observed.

A transition at 480° to cubic symmetry was found for $\mathrm{NaTa} \mathrm{O}_{3}$; however, no anomaly in the dielectric constant has been detected.

X-ray studies on AgNbO_{3} indicate that the structure transforms from orthorhombic symmetry to tetragonal symmetry at $325^{\circ} \mathrm{C}$ and from tetragonal to cubic symmetry at $550^{\circ} \mathrm{C}$. AgTaO_{3} shows similar phase transitions at $370^{\circ} \mathrm{C}$ and $485^{\circ} \mathrm{C}$.
6.2. Complex Pierovskite-type Compounds
The onset of ferroelectricity in the complex perov
 phase transitions. However, very few such transitions have
$\stackrel{0}{\circ}$

∞
$\mathbf{\infty}$
$\mathbf{0}$
$\mathbf{0}$

 skaya et al. ${ }^{(16)}$).
been reported with the ferroelectric data. In some cases, the
 to prove that small distortions existed in the ferroelectric phases.

Phase transitions for a few complex perovskite compounds
 has been found to exist up to $100^{\circ} \mathrm{C}$, at which temperature becomes cubic (see Fig. 6.1). The cubic form has the ordered

perovskite structure with a unit cell of " a " approximately equal to $8 \AA$. The authors feel that the monoclinic form of $\mathrm{Pb}\left(\mathrm{Cd}_{0.5} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$ below $100^{\circ} \mathrm{C}$ is antiferroelectric.

The phase transformation of $\operatorname{Sr}\left(\mathrm{Fe}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ involves a

 transition was reported for $\operatorname{Sr}\left(\mathrm{Fe}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$.

The compound $\operatorname{Sr}\left(\mathrm{Y}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$ was found to transform from a rhombohedral form to a cubic form at $640^{\circ} \mathrm{C}$, similar to that in $\operatorname{Sr}\left(\mathrm{Y}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ (see Fig. 6.3).

Tetragonal to cubic phase transformations have been reported for $\operatorname{Sr}\left(\mathrm{Ni}_{0.5} W_{0.5}\right) \mathrm{O}_{3}, \operatorname{Sr}\left(\mathrm{Co}_{0.5} W_{0.5}\right) \mathrm{O}_{3}, \mathrm{Sr}\left(\mathrm{Zn}_{0.5} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$, ($\left.\mathrm{Ni}_{0.5} \mathrm{MO}_{0.5}\right) \mathrm{O}_{3}, \operatorname{Sr}\left(\mathrm{Co}_{0.5} \mathrm{Mo}_{0.5}\right) \mathrm{O}_{3}$ and $\operatorname{Sr}\left(\mathrm{Zn}_{0.5} \mathrm{Mo}_{0.5}\right) \mathrm{O}_{3}$ at temperatures of $300^{\circ}, 400^{\circ}, 430^{\circ}, 230^{\circ}, 320^{\circ}$ and $420^{\circ} \mathrm{C}$, re-
stant was seen at the phase transition，indicating that the compound was ferro－or antiferroelectric．

Antiferroelectric phase transitions from monoclinic to cubic symmetry were reported for the compounds $\mathrm{Pb}\left(\mathrm{Lu}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ ， $\mathrm{Pb}\left(\mathrm{Lu}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$ and $\mathrm{Pb}\left(\mathrm{Yb}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ at $280^{\circ} \mathrm{C}$ ．However， the transition temperature does not coincide with the temper－ atures at which the peak in the dielectric constants ocourred for these compounds．

1．M．H．Francombe and B．Lewis，Acta Cryst．11， 175 （1958）． Shimane，H．Danner，A．Pavlovis and R．Pepinsiry，Phys． 93， 672 （1954）．A．Paviona and $凡$ ．Pmpinsiry，Phys．

B．T．Matienas，Phys．Rev．75， 1771 （1949）．
G．Shirane，R．Newnham and R．Pepinsyy，Phys．Rev．96， 581
（1954）．
M．H．Francombe，Acta Cryst．9， 256 （1956）．
G．A．Smolensiem，Zhur．Tekh．Fiz．20， 137 （1
G．A．Smolenskit，Zhur．Tekh．Fiz．20， 137 （1950）．
G．Shirane and R．Preinsky，Phys．Rev．91， 812 （1953）．

G．Shirane，E．Sawaguohi and Y．Takagi，Phys．Rev．84， 476畣

12．G．A．Smolensici，Dokl．Akad．Nauk SSSR 70， 405 （1950）．
13．G．A．Smonenseir，Izvest．Akad．Nauk SSSSR Ser．Fiz．20， 166
14．Y．Tomashion＇skir and Y．N．Venevtsev，Sov．Phys．，Solid State

16．V．A．Boikov，S．A．Kizhaet，I．E．Myi＇nimova and A．G．Tutov， 16．Y．E．Rogrnskaya and Y．N．Venevtsev，Sov．Phys．Cryst．10， F．Kupriyanov and E．G．Fesenko，Sov，Phys Gria 10
 G．A．Smolenskif，A．I．Agranovsicaya，S．W．Popov and V．A． Isupov，Sov．Phys．Techn．Phys．3， 1981 （1958）． 19．M．F．Kupriyanot and E．G．Fesenko，Sov．Phys．，Cryst．7， 358
寝
宮
fREYARATION OF PEROVSKITE－TYPE COMPOUNDS
spectively．The X－ray diffraction dataindicates ordering of the
 that of the simple perovskite structure．This figure shows the variation in cell size with temperature．

Fig．6．4．Parameters of $\mathrm{Sr}\left(\mathrm{CO}_{0.8} \mathrm{~W}_{0.8}\right) \mathrm{O}_{8}$ as a function of tem－ perature（after Kupriyanov et al．${ }^{(18)}$ ）．

Filipev and Fesenko studied the phase transition in $\mathrm{Pb}\left(\mathrm{Co}_{0.5} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$ ．and found that it involved a change in sym－ metry from orthorhombic to cubic at $25^{\circ} \mathrm{C}$ ．Superstructure was observed in both phases．A peak in the dielectric con－
found between $\mathrm{Mn}^{3+}-\mathrm{Mn}^{3+}$ and $\mathrm{Mn}^{3+}-\mathrm{Cr}^{3+}$ pairs at low temperatures. The saturation magnetization increased up to a composition of $30 \% \mathrm{LaCrO}_{3}$ and then the increasing number of $\mathrm{Cr}^{3+}-\mathrm{Cr}^{3+}$ strong negative interactions lowered the saturation magnetization. The maximum was found in the region of the transition point from a monoclinic to a pseudocubic structure. ${ }^{(3)}$

In a similar study of the $(\mathrm{La}, \mathrm{Ba})\left(\mathrm{Mn}^{3+}, \mathrm{Ti}^{4}+\right) \mathrm{O}_{3}$ system,
Jonker found that a maximum in the saturation magnetiza-
 from a monoclinic to a cubio structure. Since the titanum ion is diamagnetic the positive interaction between Mn^{3+} ions is the only one possible in these phases.

Goodenough et al. ${ }^{(4,5)}$ investigated the $\mathrm{La}\left(\mathrm{Mn}_{1-x} \mathrm{Co}_{x}\right) \mathrm{O}_{3}$
 tion varied nearly linearly between $x=0.20$ and $x=0.70$. This was attributed to a positive interaction between Mn ions, with Co ions being in the diamagnetic low spin state. However, the similarity between the ferromagnetic satura-

THE common exchange energy in magnetic oxides is of the
 neighboring metal ions in perovskite-type structures is often found to be negative so that antiparallel alignment has the lowest energy. It has been proposed that this alignment is caused by mutual interaction of the metal ions with the oxygen ion which is situated between them.

The magnetic oxides with the perovskite structure,
$\mathrm{La}^{3+} \mathrm{Mn}^{3+} \mathrm{O}_{3}-\mathrm{Ba}^{2}+\mathrm{Mn}^{4}+\mathrm{O}_{3}, \mathrm{La}^{3+} \mathrm{Mn}^{3+} \mathrm{O}_{3}-\mathrm{Sr}^{2+} \mathrm{Mn}^{4+}$ $\mathrm{La}^{3+} \mathrm{Mn}^{3}+\mathrm{O}_{3}-\mathrm{Ca}^{2}+\mathrm{Mn}^{4}+\mathrm{O}_{3}$ and $\mathrm{La}^{3}+\mathrm{Co}^{3+} \mathrm{O}_{3}-\mathrm{Sr}^{2+} \mathrm{Co}^{4+} \mathrm{O}_{3}$ studied by Jonker and van Santen appear to be exceptions. ${ }^{(1)}$ These studies indicated that a weak magnetic interaction between Mn^{3+} ions, a negative interaction between Mn^{4+} ions and strong positive interaction between Mn^{3+} and Mn^{4+} ions existed in the manganites. It was found that in the solid solu-
 $\mathrm{Ba})$ the magnetic saturation values agreed with the sum of the moments of Mn^{3+} and Mn^{4+} ions and the highest values of the Curie temperatures occurred in this region. The saturation magnetization at $90^{\circ} \mathrm{K}$ is given in Fig. 7.1 for mixed crystals of (La, Ca) MnO_{3}. A corresponding situation was found for compounds containing Co^{3+} and Co^{4+} ions, but not for compounds containing Cr^{3+} and Cr^{4+}, or with Fe^{3+};iand Fe^{4+}, as the B ions were found to be antiferromagnetio ${ }^{(2)}$. All of these phases with the B metal ions in two valence states were highly conducting.

In order to avoid the high conductivity, Jonker studied $\mathrm{La}\left(\mathrm{Mn}_{1}^{3+}{ }_{x} \mathrm{Cr}_{x}^{3+}\right) \mathrm{O}_{3}$ solid solutions which contained B ions of different elements with the same electronic configuration as the Mn^{3+} and Mn^{4+} ions. Positive magnetic interactions were
In the magnetic-ordered perovskite-type compounds with the general formula $\mathrm{A}\left(\mathrm{B}_{0.5}^{\prime} \mathrm{B}_{0.5}^{\prime \prime}\right) \mathrm{O}_{3}$ where B^{\prime} is $\mathrm{W}^{s+}, \mathrm{Mo}^{5+}$, or
 that a negative interaction between the B^{\prime} and $B^{\prime \prime}$ exists. ${ }^{(0)}$ The ordered arrangement of the two B cations is shown in Fig. 7.2. The compounds $\mathrm{Ba}\left(\mathrm{Fe}_{0.5} \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}, \mathrm{Sr}\left(\mathrm{Fe}_{0.5} \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}$ and $\mathrm{Ca}\left(\mathrm{Fe}_{0.5} \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}$ were found to have Curie temperatures

 magnetic properties of these compounds, an increase in Curie temperature with decreasing A cation size might have been anticipated for compounds containing W^{5+} and Mo^{5+} as the

 for Ca^{2+} compounds. ${ }^{(10)}$ In fact, for the phases in the system

 approximately 3.95 A. (11)
tion versus composition curve for the $\mathrm{La}\left(\mathrm{Mn}_{1-x}^{3+} \mathrm{Cr}_{x}^{3+}\right) \mathrm{O}_{3}$ and $\mathrm{La}\left(\mathrm{Mn}_{1-x} \mathrm{Co}_{x}\right) \mathrm{O}_{3}$ series led Jonker to believe that there might be another explanation for the magnetic behavior of the former series. ${ }^{(0)}$ His studies indicated that there was a rather strong positive interaction between the Co and Mn ions as well as the positive interaction between Mn^{3+} ions suggested by Goodenough. In addition, the results suggested that neighboring pairs of Co and Mn ions were present in the divalent

FIG. 7.2. Magnetic ordering in $\mathrm{Ba}\left(\mathrm{B}_{0.8}^{\prime} \mathrm{B}_{0.6}^{\prime \prime}\right) \mathrm{O}_{3}$ type compounds (after Longo and $\operatorname{Ward}^{(\theta)}$).
and tetravalent valence states respectively in the solid solutions.
Wold et al. ${ }^{(7)}$ reported ferromagnetism in the $\mathrm{La}\left(\mathrm{Mn}_{1-x} \mathrm{Ni}_{x}\right) \mathrm{O}_{3}$ system. This may be caused by $\mathrm{Ni}^{3+}-\mathrm{Mn}^{3+}$ and $\mathrm{Ni}^{3+}-\mathrm{Ni}^{3+}$ interactions. However, it is possible that the Mn^{4+} and Ni^{2+} may be present in some sites and also could interact.
Sugawara and Tida ${ }^{(8)}$ prepared BiMnO_{3} at 40 kbar and $700^{\circ} \mathrm{C}$. The compound was found to be ferromagnetic at $130^{\circ} \mathrm{K}$.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \begin{tabular}{l}
Fia. 7.4. Reoip of \\
(rocksalt structu structure). See T
\end{tabular} \& \begin{tabular}{l}
ocal susceptibili \({ }_{7}\left(\mathrm{Co}_{0.8} \mathrm{~W}_{0.8}\right) \mathrm{O}_{8}\) \\
re) and KB able 7.2.
\end{tabular} \& y per gra after Blas \(\mathrm{F}_{3} \quad \mathrm{com}\) \& \begin{tabular}{l}
vs. temp \({ }^{(16)}\)). \\
ounds
\end{tabular} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
(rocksalt structure) and \(\mathrm{KB}^{\prime} \mathrm{F}_{3}\) compounds structure). See Table 7.2. \\
Table 7.2. Magnetic Properties of Compounds \(\mathrm{Sr}\left(\mathrm{B}_{0.5}^{\prime} \mathrm{W}_{0.5}\right) \mathrm{O}_{3}, \mathrm{~B}^{\prime} \mathrm{O}\) and \(\mathrm{KB}^{\prime} \mathrm{F}_{3}\) (after Blasse \({ }^{(14)}\))
\end{tabular}} \\
\hline B' \& \[
\underset{T_{\mathrm{N}}\left({ }^{\circ} \mathrm{K}\right)}{\mathrm{Sr}\left(\mathrm{~B}_{0}^{\prime} \mathrm{B}_{0.8}\right) \mathrm{O}_{\mathbf{3}}}
\] \& \[
\begin{gathered}
\mathrm{B}^{\prime} \mathrm{O} \\
T_{\mathrm{N}}\left({ }^{\circ} \mathrm{K}\right)
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{KB}^{\prime} \mathrm{F}_{\mathbf{3}} \\
\& T_{\mathrm{N}}\left({ }^{\circ} \mathrm{K}\right)
\end{aligned}
\] \\
\hline Mn

Me^{++}
Fe^{2+}
Co^{2+}
Ni^{2+}
Cu^{2+} \& 10
16
22
54 \& 116
186
292
523 \& 88
113
114
275
243

\hline
\end{tabular}

[^20]\[

$$
\begin{aligned}
& \text { OPTICAL PROPERTIES } \\
& \text { Merz }{ }^{(1)} \text { studied the optical properties of single-domain crys- }
\end{aligned}
$$
\]

of the crystal was nearly a constant value of ~ 2.4 from 20°
(see Fig. 8.1). At the transition temperature a sudden change
in n is observed (see Fig. 8.2).
Lawless and $\mathrm{DeVries}{ }^{(2)}$ also measured the index of refrac-
tion of BaTiO_{3} at 5893 A in the range of $20-160^{\circ}$. A con-
above thex of 2.368 was obtained from 20° to $105^{\circ} \mathrm{C}$ and
remained constant to the index increased 1.3% to 2.398 and
The single crystal of $\mathrm{BaTiO}_{3}, 0.25 \mathrm{~mm}$ thick, was found to
transmit from 0.5μ to 6μ. Complete absorption was found

index \vec{n} as a function of temperature
(after $\mathrm{Merz}^{(1)}$).
$\mathrm{Sr}\left(\mathrm{Fe}_{0.5} \mathrm{Sb}_{0.5}\right) \mathrm{O}_{3}$, Blasse found that the magnetic interactions became stronger for shorter distances, $T_{\mathrm{N}}\left({ }^{\circ} \mathrm{K}\right)=31$ and 21 , respectively. If incomplete ordering exists, such as is found in $\mathrm{Sr}\left(\mathrm{Mn}_{0.5} \mathrm{Sb}_{0.5}\right) \mathrm{O}_{3}$, a strongly positive $\mathrm{Mn}^{3+}-0-\mathrm{Mn}^{3+}$ interaction can be present.

Parasitic ferromagnetism has also been observed in perovskites. It was reported in GdFeO_{3}, for temperatures between 78° and $295^{\circ} \mathrm{K}$, ${ }^{\text {(15) }}$ the magnetization varied for high fields ($H>6000$ oe) according to the expression $\sigma=\sigma^{0}+\chi H$,
 1% of the $\sigma(\mathrm{Fe})$ available. It was attributed to imperfectly compensated antiferromagnetism of the Fe^{3+} ion sublattice. Wold ${ }^{(16)}$ has prepared samples of LaFeO_{3} with reduced parasitic ferromagnetism by careful control of sample stoichiometry, ooncluding that the use of careful preparation conditions should be a requirement before measurements are made on ferromagnetic materials.

Refrerencies

. van Santen, Physica 16, 337 (1950).

 VAN SANTEN,VAN SANTEN, Physica 19, 120 (1953).
20, 707 (1966). Landolr-Bornstern, Eigenschaften der
atszustanden 9, 2. Springer-Verlag, Berlin aterie in ihren Aggregatszustanden 9, 2. Springer-Verlag, Berlin
B. Goodenough, A. Wold, R. J. Arnott and M. Menyuk, hys. Rev. 124, 373 (1961).
H. Jonier, J. Appl. Phys. 37, 1424 (1966).
, 387 (1958).
Suqawara and S. Inda, J. Phys. Soc. Japan, 20, 1529 (1965).
Lonao and R. Ward, J. Am. Chem. Soc. 83,2816 (1961). . K. Patterson, C. W. Moeller and R. Ward, Inorg. Chem. 2,

F. Gayasso, F. Dovalas and R. Kasper, J. Chem. Phys. 44,

BLAsse, J. Phys. Ohem. Sol. 26, 1969 (1965).
Blasse, Proc. Int. Conf. Magnetism, Nottingham, 350 (1964). Blasse, Phil. Res. Rpt. 20, 327 (1965). A. Gilieo, J. Chem. Phys. 24, 1239 (1956).
W. Sleight, J. Longo, and R. Ward, Inorg. Chem. 1, 245

130 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS
for wavelengths greater than 11μ and a feeble absorption band existed near 8μ (see Fig. 8.3).
The optical properties of strontlum titanate single crysto 17μ in wavelength (see Fig. 8.4). Transmission of better than 70% was measured from 0.55μ to 5μ. The index of

${ }_{0}^{0} \frac{1}{0.5} \frac{1}{0.7} \frac{1}{1.0}$ Fig. 8.3. Transmission spectrum of barium titanate single crystal, $d=0.26 \mathrm{~mm}$ Phys. 3, 2257 (1957)). and the deviation at 657 A can be attributed to the difficulty in the measuring technique at that wavelength.
BaTiO_{3} and SrTiO_{3} have been considered for high-temperature infrared windows. Typical materials which are presently
 useful in the same wavelength range as silica and $\mathrm{Al}_{2} \mathrm{O}_{3}$. In addition, strontium titanate is considered as an excellent material for use with optically immersed infrared detectors.

 to $-187^{\circ} \mathrm{C}$ showing that there was no decrease in the transmittance of strontium titanate down to $-187^{\circ} \mathrm{C}$.

8.2. Colorajition by Light

 by impurities.

8.3. Elegtro-optic Effect

The electro-optic properties of $\mathrm{KTaO}_{3}, \mathrm{~K}\left(\mathrm{Ta}_{0.65} \mathrm{Nb}_{0.95}\right) \mathrm{O}_{3}$
 measured by Geusic et al. ${ }^{(7)}$ The electro-optic coefficients of
 from material to material when the distortions of the optical indicatrix are expressed in terms of the induced polarization. ${ }^{(7)}$ Thus, the coefficients might be fundamental properties of the perovskite lattice. These studies also showed that KTN has a large room-temperature electro-optic effect, low electrical losses and a large saturation polarization. An induced birefringence of 0.0057 has been reported with an applied field of $13,000 \mathrm{~V} / \mathrm{cm}$, which corresponds to a retardation of 180 half-waves per cm of light path length and voltfor polarization of amplitude modid transistor circuitry. The large value of Δn also should make possible a light-scan-

In selecting perovskite laser host materials a great deal can be learned from an examination of these systems.

The ion Nd^{3+} appears to be the most popular for introduction into relatively large crystallographic sites. However, except when LaF_{3} is used as a host, compensating ions are required in these substitutions. Divalent Tm^{2+} and Dy^{2+} can be substituted in CaF_{2} without compensating ions but these divalent rare earth ions are relatively unstable. For $\mathrm{Al}_{2} \mathrm{O}_{3}$ whose structure contains octahedrally coordinated crystallographic sites for the $\mathrm{Al}^{3+}, \mathrm{Cr}^{3+}$ proved to be ideal for substitution. Other small ions which have been used to produce laser action are Fe^{3+} and Mn^{4+}, but these ions have not been employed to the extent Cr^{3+} has.

The perovskite structure should be a promising one since
ning system using a prism or a partially electroded cube which can scan over 500 resolvable beam diámeters.

Cohen and Gordon ${ }^{(8)}$ described experiments which involve propagating an electromagnetic wave through an electroувөд в ч power of a few hundred watts at 9.5 GC, 5% of the light in the zero-order beam was transferred to the higher orders
 at 45° to the direction of the microwave electric field, it should be possible to extinguish the zero-order beam and pass 75% of the deflected benm.
I.'P. Kaminow ${ }^{(8)}$ described experiments in which ferroelectric barium titanate was used at 70 MC as an optical phase modulator. Focused fundamental gaussian mode passed through the edge of a crystal plate with both the higher order "donut" mode of a $0.633-\mu \mathrm{He}-\mathrm{Ne}$ maser and the fundamental mode maintaining their identity.

Borrelli et al. ${ }^{(10)}$ observed the electro-optic effect of ferroelectric microcrystals in a glass matrix. Crystals of NaNbO_{3} containing small amounts of cadmium were formed by controlled crystallization of a glass with a high silica glass remaining as a matrix. The cadmium was used to make antiferro-
 from 50 to $500 \AA$ (less than the wavelength of light) and the

 tallite sizes had the higher dielectric constants. In these
 as a function of electric field. No electro-optical activity was

 In addition, the materials with the higher dielectric constants produce the largest index differences, see Fig. 8.8.

8.4. Lasers

 materials to be used for laser application. The operating laser systems are listed in Table 8.1.
OPTICAL PROPERTIES LS'
compensating ions. The compound LaAlO_{3}, however, has a

 time has been attributed to the nearly cubic symmetry of $7^{8}{ }^{8}$ OTV'

 prepared. ${ }^{(12)}$ The measurements showed the fluorescence line at $7356 \AA$ which is characteristic of Cr^{3+}.

3วกэวร3ษกกาง

Murphy et al. ${ }^{(11)}$ reported on energy transfer between Cr^{3+} and Nd^{3+} in LaAlO ${ }_{3}$. These studies were conducted on powder samples. The fluorescence spectrum of $\mathrm{La}_{\mathrm{AlO}}^{3}$: Cr , Nd is presented in Fig. 8.9. The line at $7358 \AA$ is due to Cr^{3+} and the remaining two groups are associated with the fluorescence of Nd^{8+}. Lifetimes of Nd^{3+} and Cr^{3+} were found to be 0.46 and 4.6 msec , respectively, at room temperature. Their studies indicated that energy transfer existed between the ${ }^{4} \mathrm{~T}_{2}$ level of Cr^{3+} and the D levels of Nd^{3+}.

Ohlmann and Mazelsky ${ }^{(13)}$ also found transfer of excitation radiation from Cr^{3+} to Nd^{8+} ions in GdAlO_{3}. The purpose
 usual 2% or less. The low efficiency was attributed to the poor

136 PREPAKATION OF PEROVSKITE-TYPE COMPOUNDS

Lager	Output (μ)	Operating temp. (${ }^{\circ} \mathrm{K}$)
1. $\mathrm{Al}_{3} \mathrm{O}_{3}\left(\mathrm{Cr}^{3+}\right)$	0.6944	$\begin{gathered} 300 \text { (Cont.) } \\ 77 \end{gathered}$
2. $\mathrm{CaF}_{2}\left(\mathrm{U}^{9+}\right)$	2.556	77 (Cont.)
3. $\mathrm{SrF}_{8}\left(\mathrm{U}^{8+}\right)$	2.407	77
4. $\mathrm{BaF}_{8}\left(\mathrm{U}^{8+}\right)$	2.566	77
6. Glass (Nd^{8+})	1.06	300
6. CaWO. Nd^{3+})	1.0646	300 (Cont.)
7. $\mathrm{SrMoO}_{4}\left(\mathrm{Nd}^{\mathrm{s}+}\right)$	1.0643	300
	1.064	77 (Cont.)
8. $\mathrm{CaMOO}_{4}\left(\mathrm{Nd}^{3+}\right)$	1.067	300
9. $\mathrm{PbMoO}_{4}\left(\mathrm{Nd}^{9+}\right)$	1.0586	300
10. $\mathrm{NaLaMoO}_{4}$ (Nd^{3+})	1.0586	300
11. $\mathrm{CaF}_{8}\left(\mathrm{Nd}^{3+}\right)$	1.046	300
12. $\mathrm{SrF}_{2}\left(\mathrm{Nd}^{3+}\right)$	1.06	300
13. $\mathrm{BaF}_{8}\left(\mathrm{Nd}^{3+}\right)$	1.06	300
14. $\mathrm{LaF}_{3}\left(\mathrm{Nd}^{3+}\right)$	1.06	300
15. $\mathrm{CaWO}\left(\mathrm{HO}^{3+}\right)$	2.046	77
18. $\mathrm{CaF}_{2}\left(\mathrm{Ho}^{3+}\right)$	2.05	77
17. $\mathrm{CaWO}\left(\mathrm{Tm}^{8+}\right)$	1.116	77
18. $\mathrm{SrF}_{2}\left(\mathrm{Tm}^{3+}\right)$	1.91	300
19. $\mathrm{CaWO}\left(\mathrm{Fe}^{3+}\right)$	1.612	77
20. $\mathrm{CaWO}\left(\mathrm{Pr}^{3+}\right)$	1.05	77
21. Glass (Yb^{3+})	1.01	77
22. Glass (Sm^{3+})	0.71	77
23. Glass (Gd ${ }^{++}$)	0.31	
24. $\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{18}\left(\mathrm{Nd}^{8+}\right)$		300 (Cont.)
25. $\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{18}$ $\left(\mathrm{Nd}^{3+}, \mathrm{Cr}^{8+}\right)$		300 (Cont.)
26. $\mathrm{CaF}_{2}\left(\mathrm{Sm}^{2+}\right)$	0.7082	77
27. $\mathrm{CaF}_{2}\left(\mathrm{Tm}^{2+}\right)$	1.116	4
28. $\mathrm{CaF}_{2}\left(\mathrm{Dy}^{2+}\right)$	2.36	77 (Cont.)

it contains a large A site suitable for Nd^{3+} and smaller B site for Cr^{3+}. In the ideal structure these sites are cubic and centrosymmetric, a condition theoreticians feel should be necessary for obtaining long fluorescence lifetimes for activator ions. However, as was pointed out previously no simple cubic perovskite-type compounds exist which will accept trivalent activator ions without producing defects or require charge
Table 8.2. Fluorescent Lifetime Data (after Galasso et al.(14))

[^21]spectral mismatch between the broad bands of the pump lamps and the relatively narrow absorption bands of the pa-
 broad absorption bands which could transfer the energy it absorbed to the Nd^{3+} ion. The fluorescence spectrum showed two groups occurring around 0.9μ and 1.07μ from Nd^{3+} and fluorescence at 0.727μ due to chromium. When the Cr^{3+} levels were excited, the fluorescence of neodymium showed an intensity increase of several times in the doubly doped samples over the singly doped samples. The lifetimes of Nd^{3+} and Cr^{3+} in GdAlO_{3} were 0.130 msec and 15 msec , respectively. Other simple perovakite compounds considered for laser host materials were $\mathrm{SrTiO}_{3}, \mathrm{SrSnO}_{3}, \mathrm{BaSnO}_{3}$ and BaZrO_{3}. However, divalent or tetravalent laser activating ions would be required for substitution so that the symmetry would not be destroyed by compensating jons. The activating ions in these valence states are not particularly stable.

Because of the enhancement of lifetimes observed for Cr^{3+} in LaAlO_{3} and GdAlO_{3} as compared with its lifetime in $\mathrm{Al}_{2} \mathrm{O}_{3}$, a search was made by Galasso et al. ${ }^{(14)}$ for cubic perovskite compounds which would accept trivalent rare earth ions. They found that compounds of the $\mathrm{Ba}\left(\mathrm{B}_{0.5}^{3+} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$ had an ordered structure in which the B ions alternate so that the symmetry about the B site is retained. Barium was selected since compounds of this type containing barium are usually least distorted, and Ta^{5+} is one of the B ions because of its resistance to reduction and the other B ion should not produce energy levels which would interfere with those of the doping ions. The fluorescence lifetimes of powders of these

 $\mathrm{Ba}\left(\mathrm{Lu}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$ and 800 msec in Nd^{3+} in $\mathrm{Ba}\left(\mathrm{Gd}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$, indicate that there may be some enhancement in lifetimes due
 өш! is not influenced as much by environment as that of Cr^{3+}.
 $\mathrm{Ba}\left(\mathrm{Gd}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$ host confirmed the fact that a center of symmetry existed at the B site in the structure of these cubic complex oxides. ${ }^{(15)}$
trodes in fuel cells. Dickens and Whittingham ${ }^{(2)}$ studied the

 sharply to a maximum at $x=0.55$. Above $x=0.25$ the conductivity of the bronzes is metallic. Thus, the catalytic activities of the tungsten bronzes appear to be closely related to the electronic properties of the bronzes.

Heterogeneous Catalysis
 rangement of ferroelectric materials at their transition temper-

 on KNbO_{3}, he concluded that the change in the rate of cata-

being rate determining for the catalytic oxidation of CO .

9.2. THERMLAL CONDUOTIVITY

 barium titanate being lower than that of strontium titanate and calcium titanate at $50^{\circ} \mathrm{C}$.

9.3. Melting Points

The melting points of many of the ternary oxides have been determined, but none of complex perovskite type compounds (see Table 9.1). It should be realized that in many cases these are only approximate values; however, they do serve as guides for crystal growth experiments, for example, note that zirconates are extremely high melting-point materials along with hafnates and thorates, the titanates have

intermediate melting points, and the niobates and tantalates are relatively low melting.

> 9.4. Heats of Formation
Only the heats of formation of the titanates have been measured. These values shown in Table 9.1 are quite similar for barium, strontium and calcium titanate.

was also calculated to obtain a^{\prime}, the unit cell edge of a cubic cell which represents the same volume allowed in the true unit cell for a molecule of a perovskite-type cómpound. This permits a comparison to be made between the ionic radii of the ions in these compounds even when they are indexed on cells with different symmetry. Table 9.2 presents the molecular weight, a^{\prime}, and the density of the perovskite compounds.
9.7. Mechanicat Properties
-โ̣иячоөш өч7 ио өโqв cal properties of perovakites (see Table 9.1). The modulus of barium titanate has been measured to be $16 \times 10^{6} \mathrm{psi}$.

The modulus of SrZrO_{3} has been found to be $12 \times 10^{6} \mathrm{psi}$, the bend strength 13×10^{3} psi and the compressive strength $5 \times 10^{3} \mathrm{psi}$. Strontium zirconate has an interesting stressstrain curve as shown in Fig. 9.1. ${ }^{(4)}$ The small yield observed was attributed to domain motion or crystal twinning similar to that which takes place in ferroelectric BaTiO_{3} under an electric stress.

Compound	Formula woight	Volume	Z	a^{\prime}, A	Density
$\mathrm{A}^{2+} \mathrm{B}^{6+} \mathrm{O}_{3}$ (cont.)					
PbCeO_{3}	395.308	442.451	8	3.810	11.865
PbHfO_{8}	433.678	-	-	-	-
PbSnO_{5}	373.878	502.268	8	3.974	9.885
PbTiO^{0}	303.088	62.780	1	3.974	8.014
PbZrO_{3}	346.408	799.179	8	4.640	5.758
SrCeO_{3}	275.738	312.783	4	4.276	5.854
SrCoO_{3}	194.551	460.994	8	3.862	5.605
SrFeO_{8}	191.465	57.916	1	3.869	5.488
SrHfO_{3}	314.108	67.369	1	4.069	7.740
SrMoO_{3}	231.658	62.812	1	3.975	6.120
SrPbO_{3}	342.808	290.801	4	4.174	7.828
SrRuO_{3}	236.888	-	-	-	-
SrSnO_{3}	254.308	65.617	1	4.033	6.434
SrThO_{3}	367.658	890.807	8	4.4.20	7.068
SrTiO_{8}	183.518	59.502	1	3.904	5.120
SrUO_{3}	373.648	318.903	4	4.304	7.780
SrZrO_{3}	226.838	275.952	4	4:101	5.458

总 容 A		反o ஸ்
$\begin{aligned} & 4 \\ & i 0 \end{aligned}$		
N	$\infty \times \infty$	
$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$		 엉 우엉言
	． 	 4
$\begin{aligned} & \text { d } \\ & \text { 号 } \\ & \text { 呙 } \\ & 0 \end{aligned}$		

Tablin 9.2 （cont．）

菷	هロ
－	
N	
号	 ○
	 ¢
$\begin{aligned} & \text { T } \\ & \text { 另 } \\ & \text { 另 } \end{aligned}$	

－	 （1）
N	
吕	덩 0品
	＋ ๔
$\begin{aligned} & \text { a } \\ & \text { 号 } \\ & \text { a } \\ & 0 \end{aligned}$	

Compound	Formula weight	Volume	Z	a^{\prime}, A	Density
$\mathrm{A}\left(\mathrm{B}_{0.5}^{3+} \mathrm{B}_{0.5}^{s+}\right) \mathrm{O}_{3}$（cont．）					
$\mathrm{Ba}\left(\mathrm{Sc}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$	254.269	69.985	1	4.121	6.031
$13 \mathrm{a}\left(\mathrm{SC}_{0.8} \mathrm{O}_{0.8}\right)^{\text {a }} \mathrm{O}_{8}$	302.916	541.742	8	4.076	7.426
$\mathrm{Ba}\left(\mathrm{Sc}_{0,5} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	323.318	624.807	8	4.274	6.872
$\mathrm{Bu}\left(\mathrm{Sc}_{0.6} \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}$	300.916	543.838	8	4.081	7.347
$\mathrm{Ba}\left(\mathrm{Sc}_{0.5} \mathrm{Sb}_{0.8}\right) \mathrm{O}_{3}$	268.691	550.763	8	4.098	6.479
$\mathrm{Ba}\left(\mathrm{Sc}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$	298.290	555.818	8	4.111	7.127
$\mathrm{Ba}\left(\mathrm{Sc}_{0.5} \mathrm{U}_{0.5}\right) \mathrm{O}_{3}$	326.831	611.960	8	4.245	7.092
$\mathrm{Ba}\left(\mathrm{Sm}_{0.5} \mathrm{Nb}_{0.5}\right)^{\text {O}}$	306.966	618.035	8	4.259	6.596
$\mathrm{Ba}\left(\mathrm{Sm}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	376.013	679.615	8	4.396	7.347
$\mathrm{Ba}\left(\mathrm{Sm}_{0.8} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	350.987	618.252	8	4.259	7.538
$\mathrm{Ba}\left(\mathrm{Tb}_{0.5} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	311.253	75.633	1	4.229	6.831
$\mathrm{Ba}\left(\mathrm{Tb}_{0.5} \mathrm{~Pa}_{0.5}\right) \mathrm{O}_{3}$	380.300	670.611	8	4.376	7.531
$\mathrm{Ba}\left(\mathrm{Tl}_{0.5} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{9}$	377.997	696.948	8	4.210	8.409
$\mathrm{Ba}\left(\mathrm{Tm}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{1}$	318.258	694．398	8	4.204	7.086
$\mathrm{Ba}\left(\mathrm{Tm}_{0.8} \mathrm{~Pa}_{0.8}\right) \mathrm{O}_{3}$	385.305	656.688	8	4.348	7.782
$\mathrm{Ba}\left(\mathrm{Tm}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$	360.279	593.975	8	4.203	8.055
$\mathrm{Ba}\left(\mathrm{Y}_{0.6} \mathrm{Nb}_{0.6}\right) \mathrm{O}_{3}$	276.244	74.088	1	4.200	6.189
$\mathrm{Ba}\left(\mathrm{Y}_{0.5} \mathrm{Pe}_{0.5}\right) \mathrm{O}$,	345.291	662.589	8	4.359	6.820
$\mathrm{Ba}\left(\mathrm{Y}_{0.6} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	322.891	588.707	8	4.186	7.307
$\mathrm{Ba}\left(\mathrm{Y}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{5}$	320.265	599.717	8	4.216	7.092
$\mathrm{Ba}\left(\mathrm{Y}_{0.5} \mathrm{U}_{0.5}\right) \mathrm{O}_{5}$	348.806	656.235	8	4.345	7.059
$\mathrm{Ba}\left(\mathrm{Yb}_{0.8} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	318.311	587.217	8	4.187	7.199
$\mathrm{Ba}\left(\mathrm{Yb}_{0.8} \mathrm{~Pa}_{0.5}\right) \mathrm{O}_{3}$	387.358	853.620	8	4.339	7.871
$\mathrm{Ba}\left(\mathrm{Yb}_{0.6} \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	362.332	590.590	8	4.195	8.147
$\mathrm{Ca}\left(\mathrm{Al}_{0.5} \mathrm{Nh}_{0, s}\right) \mathrm{O}_{3}$	148.022	55.161	1	3.807	4.455
$\mathrm{Ca}\left(\mathrm{Al}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$	192.043	55.181	1	3.807	5.779
$\mathrm{Ca}\left(\mathrm{Co}_{0.8} \mathrm{~W}_{0.8}\right) \mathrm{O}_{3}$	209.470	235.054	4	3.888	5.917
$\mathrm{Ca}\left(\mathrm{Cr}_{0.8} \mathrm{Mo}_{0.5}\right) \mathrm{O}_{3}$	162.046	226.583	4	3.841	4.749
$\mathrm{Ca}\left(\mathrm{Cr}_{0.5} \mathrm{Nb}_{0.8}\right) \mathrm{O}_{3}$	160.529	57.081	1	3.850	4.670
$\mathrm{Ca}\left(\mathrm{Cr}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{3}$	209.176	225.423	4	3.834	6.161
$\mathrm{Ca}\left(\mathrm{Cr}_{0.8} \mathrm{Re}_{0.5}\right) \mathrm{O}_{0}$	207.176	225.717	4	3.836	6.085
$\mathrm{Ca}\left(\mathrm{Cr}_{0.8} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$	204.550	57.082	1	3.850	5.951
$\mathrm{Ca}\left(\mathrm{Cr}_{0.8} \mathrm{Wr}_{0.8}\right) \mathrm{O}_{3}$	200.001	225.337	4	3.833	6.070
$\mathrm{Ca}\left(\mathrm{Dy}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$	215.781	65.392	1	4.029	5.478
$\mathrm{Ca}\left(\mathrm{Dyo}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$	259.802	65.393	1	4.029	6.595
$\mathrm{Ca}\left(\mathrm{Er}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$	218.161	64.756	1	4.016	5.592
$\mathrm{Ca}\left(\mathrm{Er}_{0.8} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$	262.182	64.757	1	4.016	6.721
$\mathrm{Ca}\left(\mathrm{Fe}_{0.8} \mathrm{Mo}_{0.8}\right) \mathrm{O}_{3}$	183.972	231.688	4	3.869	4.699
$\mathrm{Ca}\left(\mathrm{Fe}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$	162.455	58.703	1	3.886	4.594
$\mathrm{Ca}\left(\mathrm{Fe}_{0.8} \mathrm{Sb}_{0.8}\right) \mathrm{O}_{9}$	176.877	234.651	4	3.885	5.007
$\mathrm{Ca}\left(\mathrm{Fe}_{0.8} . \mathrm{Ta}_{0.8}\right) \mathrm{O}_{3}$	206.476	58.701	1	3.886	5.839
$\mathrm{Ca}\left(\mathrm{Gd}_{0.5} \mathrm{Nb}_{0.5}\right) \mathrm{O}_{3}$	213.156	65.540	1	4.032	5.389

Compound	Formula weight	Volume	z	a^{\prime}, \AA	Density

 が

\qquad
x^{2}

－		
N		$\infty \infty \infty \times \infty$
		 ロ \qquad
	 	${ }^{+}{ }^{+} \infty \infty \sim \infty \infty \infty \infty \infty \infty \infty \infty \infty$ 《 ぶゥ
$\begin{aligned} & \vec{J} \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		

Compound	Formula weight	Volume	z	a^{\prime}, A	Density
$\mathrm{A}\left(\mathrm{B}_{0.5}^{2+} \mathrm{B}_{0.5}^{6+}\right) \mathrm{O}_{3}$ (cont.)					
$\mathrm{Pb}\left(\mathrm{Ca}_{0.5} \mathrm{~W}_{0.8}\right) \mathrm{O}_{3}$	387.153			-	
$\mathrm{Pb}\left(\mathrm{Cd}_{0.6} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$	403.313	70.620	1	4.133	9.480
$\left.\mathrm{Pb}^{\mathrm{Pb}(\mathrm{Mo}} \mathrm{M}_{0.5} \mathrm{~W}_{0.8}\right) \mathrm{O}_{3}$	378.580	-			
$\mathrm{Pb}^{\mathrm{Pb}\left(\mathrm{Mg}_{0.8} \mathrm{MW}_{0.8} \mathrm{~W}_{0.8} \mathrm{O}_{3}\right.}$	331.144	510.082	8	3.895	8.621
${ }^{\mathrm{Sb}} \mathrm{Sr}\left(\mathrm{Ca}_{0.8} \mathrm{Mo}_{0.5} \mathrm{Mo}_{0.5} \mathrm{O}_{3}\right.$	303.268 208	64.000	1	4.000	8.319
$\mathrm{Sr}\left(\mathrm{Ca}_{0.5} \mathrm{Os}_{0.8}\right) \mathrm{O}_{3}$	250.758	553.388	8	4.105	6.018
$\mathrm{Sr}\left(\mathrm{Ca}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	248.758	276.644	4	4.105 4.105	6.018 5.971
$\mathrm{Sr}\left(\mathrm{Ca}_{0.5} \mathrm{U}_{0.5}\right) \mathrm{O}_{3}$	274.673	304.017	4	4.236	6.971 5.989
$\mathrm{Sr}\left(\mathrm{Ca}_{0.5} \mathrm{~W}_{0.8}\right) \mathrm{O}_{3}$	247.583	551.368	8	4.100	5.989
${ }_{.} \mathrm{Sr}\left(\mathrm{Cd}_{0.5} \mathrm{Re}_{0.8} \mathrm{Re}_{0.5} \mathrm{O}_{3}\right.$	284.9182	271.657	4	4.080	6.964
	310.833	300.066	4	4.21 .7	6.878
$\mathrm{Sr}\left(\mathrm{Co}_{0.8} \mathrm{Mo}_{0.8}\right) \mathrm{O}_{3}$. $\mathrm{Sr}\left(\mathrm{Co}_{0.8} \mathrm{Os}_{0.8}\right) \mathrm{O}_{9}$	213.055	61.025	1	3.950	6.839
	260.185	489.294	8	3.940	7.062
	258.185	495.513	8	3.957	8.919
$\mathrm{Sr}\left(\mathrm{Co}_{0.8} \mathrm{U}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{CO}_{0.8} \mathrm{~W}_{0.8} \mathrm{O}_{3}\right.$	284.100	549.353	8	4.095	6.868
$\mathrm{Sr}\left(\mathrm{Co}_{0.8} \mathrm{~W}_{0.8}\right)^{\text {a }}$ $\mathrm{Sr}\left(\mathrm{Cr}_{0.5} \mathrm{U}_{0.8} \mathrm{O}_{3}\right.$	257.010	496.772	8	3.960	8.871
$\mathrm{Sr}\left(\mathrm{Cr}_{0.5} \mathrm{U}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Cu}_{0.8} \mathrm{~W}_{0.5} \mathrm{O}_{8}\right.$	280.631	529.475	8	4.045	7.039
$\mathrm{Sr}\left(\mathrm{Cu}_{0.8} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Fe}_{0.8} \mathrm{OB}_{0.8} \mathrm{O}_{3}\right.$	259.313	492.875	8	3.950	6.987
$\mathrm{Sr}\left(\mathrm{Fe} e_{0.6} \mathrm{Re}_{0.5} \mathrm{Re}_{0.8} \mathrm{O}_{3}\right.$	268.642 258.642	483.737 487.441	8	3.925	7.100
$\mathrm{Sr}\left(\mathrm{Fe}_{0.6} \mathrm{U}_{0.5}\right) \mathrm{O}_{3}{ }^{\text {a }}$	282.557	487.441 533.412	8	3.935 4.055	6.992
$\mathrm{Sr}\left(\mathrm{Fe}_{0.5} \mathrm{~W}_{0.8}^{\prime}\right) \mathrm{O}_{3}$	255.467	633.412 504.358	8	4.055 3.980	7.035 6.727
$\mathrm{Sr}\left(\mathrm{Mg}_{0.5} \mathrm{Mo}_{0 . \mathrm{E}}\right) \mathrm{O}_{3}$	105.744	504.358	8	3.980	6.727
$\mathrm{Sr}\left(\mathrm{Mg}_{0.6} \mathrm{O} \mathrm{Os}_{0.8}\right) \mathrm{O}_{8}$	242.874	489.294	8	3.940	6.592
$\mathrm{Sr}\left(\mathrm{Mg}_{0.5} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	240.874	493.030	8	3.950	8.488
$\left.\mathrm{Sr}_{\mathrm{Sr}} \mathrm{Mg} \mathrm{Mg}_{0.5} \mathrm{Te}_{0.5}\right) \mathrm{O}_{3}$	211.574	500.566	8	3.970	6.488 5.813
	266.789	548.353	8	4.095	6.449
	239.699	493.039	8	3.950	6.450
$\mathrm{Sr}\left(\mathrm{Mn}_{0.5} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Mn}_{0.5} \mathrm{U}_{0.5}\right) \mathrm{O}_{3}$	256.187	513.922	8	4.005	6.620
$\mathrm{Sr}\left(\mathrm{Mn}_{0.5} \mathrm{U}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Mn}_{0.5} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$	282.102	567.664	8	4.140	6.600
$\mathrm{Sr}\left(\mathrm{Mn}_{0.5} \mathrm{~W}_{0,5}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Ni}_{0.5} \mathrm{Mo}_{0,5}\right) \mathrm{O}_{3}$	255.012	513.922	8	4.005	6.590
	212.943	60.772	1	3.832	5.817
${ }^{\mathrm{Sr}\left(\mathrm{Ni}_{0} .8 \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}}{ }^{\text {Sr}\left(\mathrm{Ni}_{0.8} \mathrm{U}_{0.5}\right) \mathrm{O}_{3}}$	258.073	488.050	8	3.937	7.022
$\mathrm{Sr}\left(\mathrm{Ni}_{0.5} \mathrm{U}_{0.5}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Ni}_{0.5} \mathrm{~W}_{0.5} \mathrm{O}_{3}\right.$	283.988	541.343	8	4.075	6.967
$\mathrm{Sr}\left(\mathrm{Ni}_{0.5} \mathrm{~W}_{0.6}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Pb}_{0,5} \mathrm{Mo}_{0} \mathrm{O}^{\text {a }}\right.$ (256.898	488.677	8	3.938	6.981
$\mathrm{Sr}\left(\mathrm{Pb}_{0.8} \mathrm{Mo}_{0.5}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Sr}_{0.8} \mathrm{Os} \mathrm{s}_{0.5} \mathrm{O}_{3}\right.$	287.183	-	-		
$\mathrm{Sr}\left(\mathrm{Sr}_{0.5} \mathrm{Os}_{0.5}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Sr}_{0.5} \mathrm{Re}_{0,5}\right) \mathrm{O}_{4}$	274.528	562.086	8	4.126	6.486
	272.528	575.019	8	4.158	6.294
$\mathrm{Sr}\left(\mathrm{Sr}_{0.8} \mathrm{U}_{0.8}\right) \mathrm{O}_{8}$ $\mathrm{Sr}\left(\mathrm{Sr}_{0.8} \mathrm{~W}_{0.8}\right) \mathrm{O}_{8}$	298.443	323.356	4	4.324	6.128
$\mathrm{Sr}\left(\mathrm{Sr}_{0.8} \mathrm{~W}_{0.8}\right) \mathrm{O}_{3}$ $\mathrm{Sr}\left(\mathrm{Zn}_{0.8} \mathrm{Re}_{0.8}\right) \mathrm{O}_{3}$	271.353	551.368	8	4.100	6.536
$\underline{\mathrm{Sr}\left(\mathrm{Zn}_{0.5} \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}}$	261.403	498.639	8	3.885	6.862

There also is a small amount of mechanical property data available on perovskite solid solutions of the PZT type, $\mathrm{Pb}\left(\mathrm{Zr}_{1-x} \mathrm{Ti}_{x}\right) \mathrm{O}_{s}{ }^{(5)}$ The interest in these materials as piezoelectrics was discussed in Chapter 5. Tensile strength measurements on hot-pressed specimens of $\mathrm{Pb}\left(\mathrm{Zr}_{0.52} \mathrm{Ti}_{0.48}\right) \mathrm{O}_{3}$, $\mathrm{Pb}\left(\mathrm{Zr}_{0.05} \mathrm{Ti}_{0.55}\right) \mathrm{O}_{3}, \mathrm{~Pb}\left(\mathrm{Zr}_{0.75} \mathrm{Ti}_{0.25}\right) \mathrm{O}_{3}$ and $\mathrm{Pb}\left(\mathrm{Zr}_{0.95} \mathrm{Ti}_{0.05}\right) \mathrm{O}_{3}$ containing 1 wt\% $\mathrm{Nb}_{2} \mathrm{O}_{5}$ balanced with PbO gave values of $9700,11,150,12,550$ and 14,600 psi respectively. The nominal grain size of these particles was 3 microns and the densities of the specimens were at least 95% theoretical. The moduli of the hot-pressed specimens of $\mathrm{Pb}\left(\mathrm{Zr}_{0.05} \mathrm{Ti}_{0.35}\right) \mathrm{O}_{3}$, $\mathrm{Pb}\left(\mathrm{Zr}_{0.75} \mathrm{II}_{0.25}\right) \mathrm{O}_{3}$ and $\mathrm{Pb}\left(\mathrm{Zr}_{0.95} \mathrm{II}_{0.05}\right) \mathrm{O}_{3}$ de8cribed above were found to be $14 \times 10^{8} \mathrm{psi}$ for the former two phases and 16×10^{6} for the latter phase.

REFERENCES

W. R. Epperly et al., Semiannual Report No. 7 (1 Jan. 1965-30
2. P. G. Dickens and M. S. Whitminamam, Trans. Faraday Soc. 61,

120 (197) J, Ohem. Phys, 20, 342 (1952).
G. Parravano, J. Ohem. Phys, 20, 342 (1.852)
J. R. Tinklepatgh, presented at the 12 th Sy
4. J. R. Tinklepatian, presented at the 12th Sygamore Army Mat.
5. R. H. Dunaan, Development Report SC-DR-86-593, Sandia Corp. (Nov. 1966).

Many of the perovskite-type oxides can be prepared by a high-temperature solid-state reaction between binary oxide powders which are stable in air. However, it is often advantageous to use carbonates, nitrates, etc., instead of the oxides, if they can be obtained in smaller partiole sizes to insure quicker reactions or if they are much purer. In a typical prep-
 titanium oxide are weighed out in equal molar quantities, mixed thoroughly and fired at $1000^{\circ} \mathrm{C}$ for 24 hr in zirconium silicate boats or in platinum crucibles. However, the

 quired.

Some of the perovskite-type compounds can only be prepared using special to niques. The A position of the perov skite structure are often difficult to prepare because of the volatility of lead oxide. Sometimes this problem can be alleviated by heating the reactants in a lead oxide atmosphere, by using an excess of lead oxide in the reaction mixture, or by heating the reactants at a relatively low temperature to allow them to combine before the final firing. When lead 'suot ge eqf ss pesn eis suot quejen
compounds with the pyrochlore structure very often are formed early in the reaction sequence and are difficult to react further even with repeated mixing and reheating of the product.
Fresia et al. ${ }^{(1)}$ found that in the preparation of compounds with the general formula $\mathrm{A}\left(\mathrm{B}_{0.5}^{2}{ }^{+} \mathrm{W}_{0.5}\right) \mathrm{O}_{3}$, where $\mathrm{A}=\mathrm{Sr}, \mathrm{Ba}$, $\mathrm{B}^{2+}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ and Zn , alkaline earth tungstates always could be detected in the final products. Similar results have been observed for molybdenum compounds. Regrinding and refiring of the samples often helps to reduce the amount of tungstate or molybdate present, but each compound has to be treated as a separate case for which the best firing temperature and firing time must be determined.

In preparing perovskite-type compounds containing divalent iron and cobalt, the valence state is retained by heating the sample in an evacuated sealed silica capsule or in a non-oxidizing atmosphere. Divalent Fe or Cr ions can be obtained in a compound by mixing equal amounts of metallic
 oxide constituents. For example, Galasso et al. ${ }^{(2)}$ prepared
 the equation:

$\mathrm{BaO}+\frac{1}{9} \mathrm{Fe}_{2} \mathrm{O}_{3}+\frac{1}{9} \mathrm{Fe}+\frac{1}{3} \mathrm{Ta}_{2} \mathrm{O}_{5} \longrightarrow \mathrm{Ba}\left(\mathrm{Fe}_{0.33} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}$,

hr

24

Sleightand Ward ${ }^{(3)}$ in forming compounds of the $\mathrm{A}\left(\mathrm{B}_{0.5}^{2+} \mathrm{U}_{0.5}^{6}\right) \mathrm{O}_{3}$ type found it advantageous to use $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as a source of hexavalent uranium. Compounds containing pentavalent uranium were prepared by heating UO_{2} and UO_{3} in equal proportions with the other oxide reactants. The UO_{3} was
 UO_{2} was prepared by heating UO_{3} at $1000^{\circ} \mathrm{C}$ in hydrogen. өqTYs compounds such as $\operatorname{Sr}\left(\mathrm{Na}_{0.5} \mathrm{Re}_{0.5}\right) \mathrm{O}_{3}$ and $\mathrm{Sr}\left(\mathrm{Na}_{0.5} \mathrm{Os}_{0.5}\right) \mathrm{O}_{3}$ which contained heptavalent rhenium and strontium oxide ing the metal with sodium car uged to prepare compounds in air. A similar procedu as one of the B ions. The reaction
would result in the formation of TiO_{2}. This factor is used to advantage in the preparation of many of the perovskite type compounds.

The preparation of the magnetic perovskites BiMnO_{3} and BiCrO_{3} created an interesting new area of research on perovskite type compounds. ${ }^{(10)}$ These compounds were formed by heating the oxides at $700^{\circ} \mathrm{C}$ under a pressure of 40 kbar , and then quenching them. In both cases, they formed compounds which had distorted perovskite structures with triclinic unit cells.

10.2. Thin Eilms

 considerable interest in the formation of thin films of dielectric materials. The perovskite-type compounds which have high dielectric constants are most attractive for this purpose. However, the problems of forming binary oxides in thin film form have not been entirely solved, thus, researchers have been reluctant to attempt the preparation of thin films of more complicated materials. Of the studies which have been conducted on perovskites, most of them have been on BaTiO_{3} films. Films 7.5μ thick have been formed by a special slip method ${ }^{(11)}$ but thinner films could not be prepared. In addition, thin single crystal films have been prepared by first growing crystals from solution ${ }^{(12)}$ and then etching in hot phosphoric acid. ${ }^{(13-14)}$ Films also have been obtained by spreading small amounts of molten BaTiO_{3} on a platinum sheet. (15)
 approximately 1 to 2μ thick by vapor deposition. ${ }^{(16)}$ In this process, the BaTiO_{3} powder was mixed with alcohol, placed
 platinum substrate. The BaO evaporated first and the TiO_{2} later, but after firing the film at $1000-1100^{\circ} \mathrm{C}$ the barium titanate wàs again formed. X-ray diffraction studies indicated that the films consisted of mainly BaTiO_{3} with tiaces of BaO_{2} and TiO_{2} and with minor amounts of $\mathrm{BaTi}_{4} \mathrm{O}_{0}, \mathrm{BaTi}_{3} \mathrm{O}_{7}$ and $\mathrm{Ba}_{2} \mathrm{TiO}_{4}^{\prime}$. The samples were prepared for property measurements by placing a gold dot on the surface to act as an elec-

PREPARATION OF PEROVSKITE-TYPE OXIDES 165
the bulk material in a vacuum chamber and forming the thin

 the thinnest films has been found to be 10 volts:

10.3. Single Crystals

 structure, those with ferroelectrio and magnetic properties
 have received the most attention from single-crystal researchers.

Single crystals of potassium niobate, KNBO_{3} and BaTiO_{3} have been studied most extensively. Matthias and Remeika ${ }^{(24)}$

 A. Roisman and (1955)).

PREPARATION OF PEROVSIEITE-TYPE COMPOUNDS
 166

In the process used by Wemple ${ }^{(30)}$ to pull crystals of KTaO_{3}, a typical charge of 70 g of $\mathrm{Ta}_{2} \mathrm{O}_{5}, 42.10 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 24 \mathrm{mg}$
 tinum crucible, and set into a vertical furnace. An oxygen atmosphere is maintained is slowly heated to a temperature
 $\mathrm{Ta}_{2} \mathrm{O}_{5}$

 $10-20^{\circ} \mathrm{C}$ above the liquidus over a $12-15-\mathrm{hr}$ period and soaked for $4-6-\mathrm{hr}$. The KTaO_{8} seed then is lowe of the melt is 0.5 cm from the melt surface, cooled at the rate of $3.5^{\circ} \mathrm{C} / \mathrm{hr}$. When the melt passed through a temperature $2-3^{\circ} \mathrm{C}$ above T_{L}, the seed is lowered to touch the melt and lifted $1-2 \mathrm{~mm}$, pulling a small meniscus. The seed drive motor then is set to rotate at $60 \mathrm{rev} / \mathrm{min}$ with reversal every 30 sec . During the growth period the cooling rate is maintained at $3.5^{\circ} \mathrm{C} / \mathrm{hr}$ and at various times the seed is lifted $1-2 \mathrm{~mm}$. When the crystal is at the desired size, it is lifted above the melt surface but still kept in the furnace, and. the cooling rate is changed to $25-30^{\circ} \mathrm{C} / \mathrm{hr}$ until room tem-
perature is attained. The color of the crystals grown in this manner changed from a bright green to colorless, at room temperature and the crystals weighed from 4-10 g.

 exhibit a large room-temperature electro-optic effect, low electrical losses and a large saturation polarization. A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Ta}_{2} \mathrm{O}_{5}, \mathrm{Nb}_{3} \mathrm{O}_{5}$ and SnO_{2} in appropriate proportions to obtain : \& composition $\mathrm{K}_{1+x}\left(\mathrm{Ta}_{0.29} \mathrm{Nb}_{0.71}\right) \mathrm{O}_{3} \mathrm{Sn}_{0.001}$, where x depends on volatilization losses, were placed in a platinum crucible and set in a vertical tube furnace. The composition
 $\mathrm{K}\left(\mathrm{Ta}_{0.83} \mathrm{Nb}_{0,37}\right) \mathrm{O}_{3}$ would be pulled from the melt (see Fig. 10.4). The crucible was placed on a pedestal whioh was rotat-

ed at $60 \mathrm{rev} / \mathrm{min}$ with reversals every 30 sec . The top of the muffle which contained the crucible was closed by a split ring with a hole to accommodate the rod that held the seed. The furnace was held at approximately $1225^{\circ} \mathrm{C}$, oxygen flow was maintained up through the muffle, and the bottom of the crucible was kept $50^{\circ} \mathrm{C}$ warmer than the top of the melt. The melt was then cooled $0.1^{\circ} \mathrm{C} / \mathrm{hr}$ while the seed was rotat-

Attempts also were made by von Hippel et al. ${ }^{(18)}$ to grow single crystals of BaTiO_{3} by the flame-fusion technique. For this technique powders with small particle size but with good flow characteristics are necessary. In order to produce the powder, a solution of titanium tetrachloride, prepared by dripping 1.50 moles of TiCl_{4} into 500 ml of water below $20^{\circ} \mathrm{C}$, was added to a solution of oxalic acid, 5 moles (COOH$)_{2}$ in 1320 ml of water and held at $20^{\circ} \mathrm{C}$. A solution of barium chloride at $70^{\circ} \mathrm{C}, 1.60$ moles $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ dissolved in 900 ml

$\mathrm{H}_{2} \mathrm{O}$, was added to the mixture with rapid stirring. After 5 hr of stirring, barium titanyl oxalate was filtered, washed
 sieve, and was used in the flame-fusion apparatus (see Fig. 10.7). Small crystals of BaTiO_{3} were obtained, but they were not of optical quality.

Brown and Toat ${ }^{(37)}$ found that they could grow single crystals 2.5 cm long by 0.32 om diameter of BaTiO_{3} which contain $1.5 \%, \mathrm{SrTiO}_{3}$ by a floating zone process. The heating - өuoz uөf
niques such as pulling from the melt and the Verneuil method involve relatively rapid and uneven cooling of the crys. tal through a phase transition which causes the crystal to gu!

 powders must be prepared and the resulting crystals are highly strained. The floating-zone process produces crystals
 defects than crystals grown by flux and Czoohralski techniques.

$$
\mathrm{CaTiO}_{3}
$$

Single crystals of CaTiO_{s} have been obtained using CaCl_{2}, $\mathrm{BaCl}_{2}, \mathrm{CaCl}_{2}-\mathrm{BaCl}_{2}$ and $\mathrm{Na}_{3} \mathrm{CO}_{3}-\mathrm{K}_{2} \mathrm{CO}_{3}$ fluxes. The chloride solutions were soaked at $1150^{\circ} \mathrm{C}$ and the carbonates at $1000^{\circ} \mathrm{C}$ for $30-40 \mathrm{hr}$. Cooling rates used varied from $50^{\circ} \mathrm{C}$ to

 meter, have been grown by Merker using the flame-fusion technique. ${ }^{(40)}$ The feed material was prepared by mixing solutions of titanium tetrachloride, calcium chloride and oxalic

 ter growth, but this was overcome by annealing and slowly cooling the crystal.

SrTiO_{3}

 Merker. ${ }^{(11)}$ The feed material was formed by nearly the same process reported for preparing BaTiO_{3} boule powder. A solution of oxalic acid was added to dilute titanium tetrachloride, followed by the addition of a solution of strontium chloride. The solution temperature was held at $70^{\circ} \mathrm{C}$ under agitation.

 appearance ; however, a colorless transparent crystal was obtained by annealing the crystal in air.
 in. have been grown by Airtron $\mathrm{Bi}_{2} \mathrm{O}_{8}-\mathrm{B}_{2} \mathrm{O}_{8}$ flux. $\mathrm{AH}_{2} \mathrm{O}_{3}$ wax mixed in proportions with the
 u! peorid sвя өqपionxo unutil -
 a furnace, heated for 16 hr at flux was poured off and the cooling it slowly with dilute HNO_{3}. All of the crystals were crystals washed roctangular parallelepipeds. Airtron also has in the form of growth on a seed using a hydrothermal synthesis procucess where LaAlO_{3} powder was used for a nutrient. The $\mathrm{K}_{2} \mathrm{CO}_{3}$ concentration used was 7 molal, the pressure was $20,000 \mathrm{psi}$, and the growth temperature was approximately $500^{\circ} \mathrm{C}$.
Single crystals of LaAlO_{3} also have been prepared by pulling from the melt. ${ }^{(49)}$ The crucible was charged with $\mathrm{La}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ powder in equal quantities. The mem this melt, LaAlO_{3} was found to be crystals up to 43 g in wergentions were obtained.

$$
\mathrm{GdAlO}_{3}
$$

 from a melt. The seed was inserted inting the rod holding the a temperature of 2. Using a pull rate of $6-7 \mathrm{~mm} / \mathrm{hr}$ crysseed at 65 rever diameter and 1 in . long were obtained. The crystals, however, were not of good optioal quality.

$$
\xrightarrow{\sim}
$$

ut ' $\theta d S 7$ өq!

in an inert atmosphere and then slowly cooled. The crystals were recovered by leaching the solid in boiling water, sodium hydroxide solution and then HF.

$\mathrm{Pb}\left(\mathrm{B}_{0.33}^{2+} \mathrm{B}_{0.67}\right) \mathrm{O}_{3}$

Bokov and Myl'nikova ${ }^{(52)}$ prepared single crystals of the ferroelectric compounds $\mathrm{Pb}\left(\mathrm{Ni}_{0.93} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}, \mathrm{~Pb}\left(\mathrm{Mg}_{0.33} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}$ $\mathrm{Pb}\left(\mathrm{Co}_{0.33} \mathrm{Nb}_{0.07}\right) \mathrm{O}_{3}, \mathrm{~Pb}\left(\mathrm{Co}_{0.38} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}, \mathrm{~Pb}\left(\mathrm{Zn}_{0.39} \mathrm{Nb}_{0.87}\right) \mathrm{O}_{3}$ using a lead oxide flux. A mixture of $60-80 \mathrm{~mole} \% \mathrm{PbO}$ and reagent grade oxides in proper proportions was placed in a platinum crucible and heated to $1200-1300^{\circ} \mathrm{C}$. The melt

 Crystals were separated by boiling in $20 \% \mathrm{HNO}_{3}$ except for

 on edge.

Later, Bokov et al. ${ }^{(53)}$ grew $\mathrm{Pb}\left(\mathrm{Co}_{0.5} \mathrm{~W}_{0.5}\right) \mathrm{O}_{3}$ single crystals using a similar technique. Cobalt carbonate, $\mathrm{H}_{2} \mathrm{WO}_{4}$ and PbO
 $20-30$ mole $\% \mathrm{WO}_{3}$, and $70-80 \% \mathrm{PbO}$. The soaking temperature was $1200^{\circ} \mathrm{C}$ and the cooling rate to $800^{\circ} \mathrm{C}$ was $5^{\circ} \mathrm{C} / \mathrm{hr}$. The crystals formed were small cubes.

$\mathrm{Ba}\left(\mathrm{B}_{0.33}^{2+} \mathrm{Ta}_{0.07}\right) \mathrm{O}_{3}$

Single crystals of $\mathrm{Ba}\left(\mathrm{B}_{0.33}^{2+} \mathrm{Ta}_{0.87}\right) \mathrm{O}_{3}$ type compounds(st)
where B^{2+} is $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Zn}$ or Ni were grown by Galasso and
Pinto using a $\mathrm{BaF} \mathrm{F}_{2}$ flux. The details of the process for each
compound and results are presented in Table 10.1.

$\mathrm{Pb}\left(\mathrm{B}_{0.5}^{3+} \mathrm{B}_{0.5}^{5+}\right) \mathrm{O}_{3}$

 where B^{3+} is Sc or Fe and B^{5+} is Nb or Ta , were prepared by Galasso and Darby fluxes. The

Growth of $\mathrm{Ba}\left(\mathrm{Y}_{0.5} \mathrm{Ta}_{0.5}\right) \mathrm{O}_{3}$ orystals from a flux in a temperature gradient using a seed crystal suspended below the

PREPARATION OF PEROVSKITE-TYPE OXIDES 1/y
Table 10.3. Crystal Growth Data for $\mathrm{La}\left(\mathrm{B}_{0}^{2+5}+\mathrm{B}_{0.5}^{4+}\right) \mathrm{O}_{\mathbf{3}}$-type Com-

Compound	Flux	$\begin{aligned} & \text { Flux } \\ & (w t \%) \end{aligned}$	$\begin{gathered} \text { Temp. } \\ \text { range }\left({ }^{\circ} \mathrm{O}\right) \end{gathered}$	Cooling rate (${ }^{\circ} \mathrm{C} / \mathrm{hr}$)	$\begin{gathered} \hline \text { Crystal } \\ \text { size } \\ (\mathrm{mm}) \text { on } \\ \text { edge } \end{gathered}$
$\begin{aligned} & \mathrm{La}\left(\mathrm{Mg}_{0.8} \mathrm{Ru}_{0.8}\right) \mathrm{O}_{8} \\ & \mathrm{La}\left(\mathrm{Ni}_{0.8} \mathrm{I}_{0.8}\right) \mathrm{O}_{8} \end{aligned}$	$\begin{aligned} & \mathrm{PbO}- \\ & \mathrm{PbF}_{\mathbf{z}} \\ & \mathrm{PbO}_{\mathbf{z}} \end{aligned}$	85	1320-1000	30	1.0
		85	1300-1000	30	0.5
$\mathrm{La}\left(\mathrm{Ni}_{0.5} \mathrm{Ru}_{0.8}\right) \mathrm{O}_{8}$	PbO PbF_{8} PbO	85	1300-1000	30	2.0
		85	1300-850	30	0.5
$\mathrm{La}\left(\mathrm{Zn}_{0.5} \mathrm{Ru}_{0.8}\right) \mathrm{O}_{8}$		85	1300-25	30	0.1

SHONGBEATH

```
PREPARATION OF PEROVSEITE-TYPE OXIDES 181
```


18. D. Franke, A. Hagenlocierer, E. O. Hafynher, P. H. Kiegi,
A. Sandor, E. Both and H. J. Degenhart, Proc. Electron Com-
Many fluorides with the perovskite structure also have been prepared by a solid-state reaction between an alkali metal halide and a divalent metal oxide at $500-800^{\circ} \mathrm{C} .{ }^{(8)}$ The same type of reactions have been conducted between the binary fluorides.
Single crystals of a number of fluorides have been prepared by Knox using fluorides precipitated from aqueous solutions
 HEF, mixed with KHF_{2}, melted and slowly cooled in an inert atmosphere. Crystals of $\mathrm{KMnF}_{3}, \mathrm{KFeF}_{3}, \mathrm{KCoF}_{3}, \mathrm{KNiF}_{3}$, KCuF_{3} and KZnF_{3} have been grown in this manner. Single crystals of KMnF_{3} have been grown by the Czochralski technique by Nassau. ${ }^{(7)}$ In these studies, special equip-

THE oxides are by far the most numerous and most interesting materials with the perovskite structure. However, there are some carbides, halides, hydrides and nitrides with this
 netic properties and possible use as hosts for transition metal activating ions. Some of the data on their preparation, structure and properties is presented in this chapter.

11.1. Preparation of Perovskith-type Phases

(OTHER THAN OXIDES)

 metals and carbon under argon and cooling them. Whenever

 is heated with carbon and the alloy is ground, mixed with the other metal and heated again.

Perovskite-type fluorides have been prepared by precipitation from aqueous solutions. However, crystals prepared in this manner are not stoichiometric. ${ }^{(3)}$ Therefore, other techniques are used when possible. The halides $\mathrm{K}\left(\mathrm{Na}_{0.5} \mathrm{Cr}_{0.5}\right) \mathrm{F}_{3}$, $\mathrm{K}\left(\mathrm{Na}_{0.5} \mathrm{Fe}_{0.5}\right) \mathrm{F}_{3}$ and $\mathrm{K}\left(\mathrm{Na}_{0.5} \mathrm{Ga}_{0.5}\right) \mathrm{F}_{2}$ were formed by reacting the trifluorides with KHF_{3} and NaHF_{2} in a platinum crucible over an open flame. ${ }^{(4)}$ The melt was cooled, leached

CHAPTER 11
 OTHER PEROVSKITE-TYPE COMPOUNDS

184 PREPARATION OF PEROVSKITE-TYPE COMPOUNDS
ment had to be fabricated to prevent any oxygen from reacting with the melt (see Fig. 11.1). RbFeF_{3} and CsFeF_{3} using a horizontal Bridgman technique. Anhydrous fluorides were used in dense graphite containers under an HF-argon atmosphere. Single crystals 2×0.5 in. in dimensions were grown by this method.
The ternary hydrides, LiBaH_{3} and LiSrH_{3}, were prepared by placing mixtures of the metals in a stainless-steel boat in a stainless-steel bomb and heating the mixture under a hydrogen atmosphere. ${ }^{(\theta)}$ The metals were ground and treated in a dry box under an argon atmosphere.
The nitrides $\mathrm{Fe}_{3} \mathrm{NiN}, \mathrm{Fe}_{3} \mathrm{PtN}, \mathrm{Fe}_{4} \mathrm{~N}$ and $\mathrm{Fe}_{3} \mathrm{PdN}$ were prepared by Stadelmaier and Fraker ${ }^{(10)}$ using an induction unit to melt the alloy, which they then nitrided. The alloyrogen ground into powders and a mixer and Berger ${ }^{(11)}$ found was used as the nitriding gas. We first processing the ingots that they could mogeneous nitrides were obtained.

11.2. STRUCTURE

 the C atom in the B position, and the transition metal atoms in the oxygen atom positions of the perovshite structure. This makes the X-ray pattern of these phanement of atoms produced by a face centered unit cell of $\mathrm{Mn}_{3} \mathrm{AlC}$ structure with a superstructure. In the ated at the face centers, the aluthe manganese atoms are locat
at the body centered position. The nitrides $\mathrm{Fe}_{3} \mathrm{~N}$ structure. Studies by Wiener and Ber these nitrides. Be-
 cause of the low scattering also look as though they had a patterns of thith a face-centered cubic lattice.

186 PREPARATYON OF PEROVSKITE-TYPE COMPOUNDS

Phases	$d(A)$	$c(A)$		References
RbMnF_{3}	4.250	8.01	tetragonal	17
RbZnF_{8}	8.71			5
$\mathrm{K}\left(\mathrm{Cr}_{0}{ }_{8} \mathrm{Na}_{0} \cdot{ }_{8}\right) \mathrm{F}_{8}$	8.268			4
$\mathrm{K}\left(\mathrm{Fe}_{0} \cdot{ }_{8} \mathrm{Na}_{0} \cdot{ }_{8}\right) \mathrm{F}_{3}$	8.323			4
$\mathrm{K}\left(\mathrm{Ca}_{0} \cdot \mathrm{~S}^{\mathrm{Na}} \mathrm{a}_{0} \cdot 8\right) \mathrm{F}_{3}$	8.246			4
Hydrides				
LiBaH_{8}.	4.023			9
$\mathrm{LiEuH}_{8}{ }^{\text {- }}$	3.796			18
LiSrH3	3.833			9
Nitrides				
$\mathrm{Fe}_{4} \mathrm{~N}$	3.795			11
Mn , N	3.857			11
$\mathrm{Fe}_{3} \mathrm{NiN}$	3.790			11
$\mathrm{Fe}_{3} \mathrm{PtN}$	3.857			11

As can be seen in Table 11.1, many of the fluorides have the "ideal" cubic perovskite structure. Of the series with the formula $\mathrm{KBF}_{3}\left(\mathrm{~B}^{2+}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Cr}\right.$ and Zn), only KCuF_{3} and KCrF_{3} have distorted structures. Many of the others have structures related to the various modification of the perovskite type.
The complex fluorides $\mathrm{K}\left(\mathrm{Na}_{0.5} \mathrm{Cr}_{0.5}\right) \mathrm{F}_{3}$ and $\mathrm{K}\left(\mathrm{Na}_{0.5} \mathrm{Fe}_{0.5}\right) \mathrm{F}_{3}$ were found to adopt the ordered perovskite structure of the $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$ type. The fluoride ions in this structure move closer to the transition metal ion and away from the sodium
hadrides LiBaH_{3} and LiSrH_{3} have the inverse perovskite structure with the lithium ions in the B position and alkaline earth metal ions in the A position. The crystal-
 halides and nitrides are listed in Table 11.1.

Many of the carbides and nitrides with the perovskite structure are ferromagnetic materials. The carbide $\mathrm{Mn}_{3} \mathrm{AlC}$ has been studied extensively. Butters and Myers ${ }^{(2)}$ found that it was strongly magnetic at low temperature and has a Curie temperature of $15^{\circ} \mathrm{C}$. They also found that $\mathrm{Mn}_{3} \mathrm{ZnC}$ was ferromagnetic with a Curie temperature of $80^{\circ} \mathrm{C}$. The

$\frac{1}{\text { Lattice Parameter, } \dot{A}} \quad \frac{1}{3.920}$
Frg. 11.2. Variation of Curie temperature with lattice parameters (after Butters and Myers ${ }^{(2)}$)
temperature with lattice constant for the $\mathrm{Mn}_{x} \mathrm{Zn}_{y} \mathrm{C}$ phases. Note that the Curie temperature increases as the lattice constant decreases.

The electrical resistivity of $\mathrm{Mn}_{3} \mathrm{ZnC}$ is $770 \times$ cat ${ }^{6} \mathrm{ohm}-\mathrm{cm}$ stable in moist air and must be kept in a desictor.re

	W. Rudoryf, J. Kandler, G. Lincere and D. Babel, Angew. Chem. 71, 672 (1959).
	C. Brist, Ann. Ohem. 42, 356 (1952).
	A. Orazaigi and Y. Summune, J. Phys. Soc. Japan 17, 204 (1962).
	. E. Messerr and K. Hardoastrin, Inorg. Chem. 8, 1327 (1964).
	D. J. Maghan, R. L. Martis and R. S. Nyholm, J. Chem. Soc. 81, 1490 (1963).
	F. F. Y. Wang and M. Kestralan, J. Appl. Phys. 37, 976 (1966).
	. L. Mordzur and D. T. Teaney, Bull. Am. Phys. Soc. 9 (1964).
	W. W. Homoway, Jr., M. Kestigian, R. Nifwan and Proforsixy, Phys. Rev. Letters 11, 82 (1963).
	. W. Honloway, Jr., E. W. Prohofsey and M. Kestigian, hys. Rev. 189, A954 (1965).

[^22]> (1960).
11. G. W. Wnener and J. A. Berghr, J. Metals 7, 360 (1955).
12. H. P. Myers, University of British Columbia (1956).

192
$\stackrel{\leftrightarrow}{6}$

[^23]88
GRVICE REGULAR
2NF. \# BESG090130048-1
NNIACT Alma Garchner almag@us.ibm.com Phone 914-642-6811 Fax 914-642-6820
ZMMENTS

```

\section*{PAX*}
ipmorriseus.ibm.com

\begin{tabular}{|c|c|}
\hline 888 & \multirow{7}{*}{LH, SU} \\
\hline Alma Gardner & \\
\hline - & \\
\hline Dept. 40L, L/2C908, MD/238 & \\
\hline 1133 Westchester Averuse & \\
\hline White Plains, NY 10604 & \\
\hline USA & \\
\hline
\end{tabular}

February 17, 2005


For questions about this order contact us at orderhelp@ieonline.com.
\(\bullet\)

\section*{BRIEF ATTACHMENT Z}

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

In re Patent Application of
Date: March 1, 2005
Applicants: Bednorz et al.
Docket: YO987-074BZ
Serial No.: 08/479,810
Filed: June 7, 1995
Group Art Unit: 1751

For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

\section*{FIRST SUPPLEMENTAL AMENDMENT}

Sir:

In response to the Office Action dated July 28, 2004, please consider the following:

\section*{ATTACHMENT Z}



Charles P. Poole, Jr. Horacio A. Farach Richard J. Creswick Department of Physics and Astronomy University of South Carolina Columbia, South Carolina

This book is printed on acid-free paper. ©

Copyright © 1995 by ACADEMIC PRESS
All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press
A Division of Harcourt Brace \& Company
525 B Street, Suite 1900, San Diego, California 92101-4495
United Kingdom Edition published by
Academic Press Limited
24-28 Oval Road, London NW1 7DX
Library of Congress Cataloging-in-Publication Data
Poole, Charles P.
Superconductivity / by Charles P. Poole, Jr., Horacio A. Farach, Richard J. Creswick.
p. \(\quad \mathrm{cm}\).

Includes index:
ISBN 0-12-561455-1. -- ISBN 0-12-561456-X (pbk.)
1. superconductivity. I. Farach, Horacio A. II. Creswick, Richard J. III. Title.
QC611.92.P66 1995
537.6'23-dc20

CIP.


\section*{I. INTRODUCTION}

Chapter 3 shows that the majority of single-element crystals have highly symmetrical structures, generally fcc or bcc, in which their physical properties are the same along the three crystallographic directions \(x, y\), and \(z\). The NaCl-type and A15 compounds are also cubic. Some compounds do have lower symmetries, showing that superconductivity is compatible with many different types of crystallographic structure, but higher symmetries are certainly more common. In this chapter we will describe the structures of the hightemperature superconductors, almost all of which are tetragonal or orthorhombic.

In Chapter 3, we also gave some examples of the role played by structure in determining the properties of superconductors. The highest transition tempera-
tures in alloys of transition metals are at the boundaries of instability between the bcc and hcp forms. The NaCl-type compounds have ordered vacancies on one or another lattice site. The magnetic and superconducting properties of the Chevrel phases depend on whether the large magnetic cations (i.e., positive ions) occupy eightfold sites surrounded by chalcogenide ions or whether the small magnetic ions occupy octahedral sites surrounded by Mo ions.

The structures described here are held together by electrons that form ionic or covalent bonds between the atoms. No account is taken of the conduction electrons, which are delocalized over the copper oxide planes and form Cooper pairs responsible for the superconducting properties below \(T_{c}\). The following chapter will be devoted to explaining the role of these
conduction electrons within the frameworks of the Hubbard model and band theory. Whereas the present chapter describes atom positions in coordinate space, the following chapter relies on a reciprocal lattice elucidation of these same materials.

We begin with a description of perovskite and explain some reasons that perovskite undergoes various types of distortions. This prototype exhibits a number of characteristics that are common to the high-temperature superconducting cuprates (see Section V). We will emphasize the structural commonalities of these materials and make frequent comparisons between them. Our earlier work (Poole et al., 1988) and the comprehensive review by Yvon and François (1989) may be consulted for more structural detail on the atom positions, interatomic spacings, site
\[
\begin{array}{lll}
\text { cubic: } & a=b=c=4.0118 \AA & V=64.57 \AA^{3} \\
\text { tetragonal: } & a=b=3.9947, c=4.0336 & V=64.37 \AA^{3}  \tag{7.1}\\
\text { orthorhombic: } & a=4.009 \sqrt{2} \AA, b=4.018 \sqrt{2} \AA, c=3.990 \AA & V=2(64.26) \AA^{3}
\end{array}
\]
symmetries, etc., of these compounds. There have been reports of superconductivity in certain other cuprate structures (e.g., Murphy et al., 1987), but these will not be reported on in this chapter.

There is a related series of layered compounds \(\mathrm{Bi}_{2} \mathrm{O}_{2}\left(M_{m-1} R_{m} \mathrm{O}_{3 m+1}\right)\) called Aurivillius (1950, 1951, 1952) phases, with the 12 -coordinated \(M=\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Bi}, \mathrm{Pb}\), \(\mathrm{Cd}, \mathrm{La}, \mathrm{Sm}, \mathrm{Sc}\), etc., and the 6 -coordinated transition metal \(R=\mathrm{Nb}, \mathrm{Ti}, \mathrm{Ta}, \mathrm{W}, \mathrm{Fe}\), etc. The \(m=1\) compound \(\mathrm{Bi}_{2} \mathrm{NbO}_{6}\) belongs to the same tetragonal space group \(14 / \mathrm{mmm}, D_{4 h}^{17}\) as the lanthanum, bismuth,
and thallium high temperature superconductors (Medvedeva et al., 1993).

We assume that all samples are well made and safely stored. Humidity can affect composition, and Garland (1988) found that storage of \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\) in \(98 \%\) humidity exponentially decreased the diamagnetic susceptibility with a time constant of 22 days.

\section*{II. PEROVSKITES}

Much has been written about the high-temperature superconductors being perovskite types, so we will begin by describing the structure of perovskites. The prototype compound barium titanate, \(\mathrm{BaTiO}_{3}\), exists in three crystallographic forms with the following lattice constants and unit cell volumes (Wyckoff, 1964):

For all three cases the crystallographic axes are mutually perpendicular. We will comment on each case in turn.

\section*{A. Cubic Form}

Above \(201^{\circ} \mathrm{C}\) barium titanate is cubic and the unit cell contains one formula unit \(\mathrm{BaTiO}_{3}\) with a titanium atom on each apex, a barium atom in the body center, and an oxygen atom on the center of each edge of the cube, as illustrated in Fig. 7.1. This corresponds to the barium atom, titanium atom, and three oxygen atoms being placed in positions with the following \(x, y\), and \(z\) coordinates:
\begin{tabular}{lll} 
E site: Ti & \((0,0,0)\) & Ti on apex \\
F site: O & \(\left(0,0, \frac{1}{2}\right) ;\left(0, \frac{1}{2}, 0\right) ;\left(\frac{1}{2}, 0,0\right)\) & three oxygens \\
& & \begin{tabular}{l} 
centered on edges \\
C site \(: \mathrm{Ba}\)
\end{tabular} \\
\(\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\) & Ba in center.
\end{tabular}


Figure 7.1 Barium titanate \(\left(\mathrm{BaTiO}_{3}\right)\) perovskite cubic unit cell showing titanium (small black circles) at the vertices and oxygen (large white circles) at the edge-centered positions. Ba, not shown, is at the body center position (Poole et al., 1988, p. 73).

The barium in the center has 12 nearestneighbor oxygens, so we say that it is \(12-\) fold coordinated, while the titanium on each apex has 6 -fold (octahedral) coordination with the oxygens, as may be seen from the figure. (The notation \(E\) for edge, \(F\) for face, and \(C\) for center is adopted for reasons that will become clear in the discussion which follows.) Throughout this chapter we will assume that the \(z\)-axis is oriented vertically, so that the \(x\) and \(y\) axes lie in the horizontal plane.

Ordinarily, solid-state physics texts place the origin \((0,0,0)\) of the perovskite unit cell at the barium site, with titanium in the center and the oxygens at the centers of the cube faces. Our choice of origin facilitates comparison with the structures of the oxide superconductors.

This structure is best understood in terms of the sizes of the atoms involved. The ionic radii of \(\mathrm{O}^{2-}(1.32 \AA)\) and \(\mathrm{Ba}^{2+}\) \((1.34 \AA)\) are almost the same, as indicated in Table 7.1, and together they form a perfect fcc lattice with the smaller \(\mathrm{Ti}^{4+}\) ions ( \(0.68 \AA\) ) located in octahedral holes surrounded entirely by oxygens. The octahedral holes of a close-packed oxygen lattice have a radius of \(0.545 \AA\); if these holes were empty the lattice constant would be \(a=3.73 \AA\), as noted in Fig. 7.2a. Each
titanium pushes the surrounding oxygens outward, as shown in Fig. 7.2b, thereby increasing the lattice constant. When the titanium is replaced by a larger atom, the lattice constant expands further, as indicated by the data in the last column of Table 7.2. When Ba is replaced by the smaller \(\mathrm{Ca}(0.99 \AA)\) and \(\mathrm{Sr}(1.12 \AA)\) ions, by contrast, there is a corresponding decrease in the lattice constant, as indicated by the data in columns 3 and 4 , respectively, of Table 7.2. All three alkaline earths, \(\mathrm{Ca}, \mathrm{Sr}\), and Ba , appear prominently in the structures of 3 high-temperature superconductors.

\section*{B. Tetragonal Form}

At room temperature barium titanate is tetragonal and the deviation from cubic, \((c-a) / \frac{1}{2}(c+a)\), is about \(1 \%\). All of the atoms have the same \(x, y\) coordinates as in the cubic case, but are shifted along the \(z\)-axis relative to each other by \(\approx 0.1 \AA\), producing the puckered arrangement shown in Fig. 7.3. The distortions from the ideal structure are exaggerated in this sketch. The puckering bends the \(\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}\) group so that the \(\mathrm{Ti}-\mathrm{O}\) distance increases while the \(\mathrm{Ti}-\mathrm{Ti}\) distance remains almost

Table 7.1 Ionic Radii for Selected Elements \({ }^{a}\)
\begin{tabular}{lllll}
\hline Small & \(\mathrm{Cu}^{2+}\) & \(0.72 \AA\) & \(\mathrm{Bi}^{5+}\) & \(0.74 \AA\) \\
\begin{tabular}{ll} 
Small- \\
Medium
\end{tabular} & \(\mathrm{Cu}^{+}\) & \(0.96 \AA\) & \(\mathrm{Y}^{3+}\) & \(0.94 \AA\) \\
& \(\mathrm{Bi}^{3+}\) & \(0.96 \AA\) & \(\mathrm{Tl}^{3+}\) & \(0.95 \AA\) \\
& \(\mathrm{Ca}^{2+}\) & \(0.99 \AA\) & \(\mathrm{Bi}^{3+}\) & \(0.96 \AA\) \\
& \(\mathrm{Nd}^{3+}\) & \(0.995 \AA\) & & \\
Medium- & \(\mathrm{Hg}^{2+}\) & \(\mathbf{1 . 1 0 \AA}\) & & \\
Large & \(\mathrm{Sr}^{2+}\) & \(\mathbf{1 . 1 2 \AA}\) & \(\mathbf{L a}^{3+}\) & \(1.14 \AA\) \\
& \(\mathrm{~Pb}^{2+}\) & \(1.20 \AA\) & \(\mathrm{Ag}^{+}\) & \(1.26 \AA\) \\
Large & \(\mathrm{K}^{+}\) & \(1.33 \AA\) & \(\mathrm{O}^{2-}\) & \(1.32 \AA\) \\
& \(\mathrm{Ba}^{2+}\) & \(1.34 \AA\) & \(\mathrm{~F}^{-}\) & \(1.33 \AA\)
\end{tabular}

\footnotetext{
\({ }^{a}\) See Table VI-2 of Poole et al. (1988) for a more extensive list.
}



Figure 7.2 Cross section of the perovskite unit cell in the \(z=0\) plane showing (a) the size of the octahedral hole (shaded) between oxygens (large circles), and (b) oxygens pushed apart by the transition ions (small circles) in the hole sites. For each case the lattice constant is indicated on the right and the oxygen and hole sizes on the left (Poole et al., 1988, p. 77).


Figure 7.3 Perovskite tetragonal unit cell showing puckering of \(\mathrm{Ti}-\mathrm{O}\) layers that are perfectly flat in the cubic cell of Fig. 7.1. The notation of Fig. 7.1 is used (Poole et al., 1988, p. 75).
the same. This has the effect of providing more room for the titanium atoms to fit in their lattice sites. We will see later that a similar puckering distortion occurs in the high-temperature superconductors as a way of providing space for the Cu atoms in the planes.

\section*{C. Orthorhombic Form}

There are two principal ways in which a tetragonal structure distorts to form an orthorhombic phase. The first, shown at

Table 7.2 Dependence of Lattice Constants a of Selected Perovskites \(\mathrm{AMO}_{3}\) on Alkaline Earth \(A\) and Ionic Radius of Transition Metal Ion \(M^{+4}\); the Alkaline Earth Ionic Radii are \(0.99 \AA(\mathrm{Ca}), 1.12 \AA(\mathrm{Sr})\), and \(1.34 \AA(\mathrm{Ba})^{a}\)
\begin{tabular}{llllll}
\hline & & \multicolumn{3}{c}{ Lattice constant \(a, \AA\)} \\
\cline { 4 - 6 } \begin{tabular}{lll} 
Transitional \\
metal
\end{tabular} & \begin{tabular}{l} 
Transitional metal \\
radius, \(\AA\)
\end{tabular} & \(\mathbf{C a}\) & Sr & Ba \\
\hline Ti & 0.68 & 3.84 & 3.91 & 4.01 \\
Fe & - & - & 3.87 & 4.01 \\
Mo & 0.70 & - & 3.98 & 4.04 \\
Sn & 0.71 & 3.92 & 4.03 & 4.12 \\
Zr & 0.79 & 4.02 & 4.10 & 4.19 \\
Pb & 0.84 & - & - & 4.27 \\
Ce & 0.94 & 3.85 & 4.27 & 4.40 \\
Th & 1.02 & 4.37 & 4.42 & 4.80 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) Data from Wyckoff (1964, pp. 391ff).
}
the top of Fig. 7.4, is for the \(b\)-axis to stretch relative to the \(a\)-axis, resulting in the formation of a rectangle. The second, shown at the bottom of the figure, is for one diagonal of the \(a b\) square to stretch and the other diagonal to compress, resulting in the formation of a rhombus. The two diagonals are perpendicular, rotated by \(45^{\circ}\) relative to the original axes, and become the \(a^{\prime}, b^{\prime}\) dimensions of the new orthorhombic unit cell, as shown in Fig. 7.5. These \(a^{\prime}, b^{\prime}\) lattice constants are \(\approx \sqrt{2}\) times longer than the original constants, so that the volume of the unit cell roughly doubles; thus, it contains exactly twice as many atoms. (The same \(\sqrt{2}\) factor appears in Eq. 7.1 in our discussion of the lattice constants for the orthorhombic form of barium titanate.)

When barium titanate is cooled below \(5^{\circ} \mathrm{C}\) it undergoes a diagonal- or rhombaltype distortion. The atoms have the same \(z\) coordinates ( \(z=0\) or \(\frac{1}{2}\) ) as in the cubic phase, so the distortion occurs entirely in the \(x, y\)-plane, with no puckering of the atoms. The deviation from tetragonality, as


Figure 7.4 Rectangular- (top) and rhombal- (bottom) type distortions of a two-dimensional square unit cell of width a (Poole et al., 1989).


Figure 7.5 Rhombal expansion of monomolecular tetragonal unit cell (small squares, lower right) to bimolecular orthorhombic unit cell (large squares) with new axes \(45^{\circ}\) relative to the old axes. The atom positions are shown for the \(z=0\) and \(z=\frac{1}{2}\) layers (Poole et al., 1988, p. 76).
given by the percentage of anisotropy,
\[
\begin{equation*}
\% \mathrm{ANIS}=\frac{100|b-a|}{\frac{1}{2}(b+a)}=0.22 \%, \tag{7.3}
\end{equation*}
\]
is less than that of most orthorhombic copper oxide superconductors. We see from Fig. 7.5 that in the cubic phase the oxygen atoms in the \(z=0\) plane are separated by \(0.19 \AA\). The rhombal distortion increases this \(\mathrm{O}-\mathrm{O}\) separation in one direction and decreases it in the other, in the manner indicated in Fig. 7.6a, to produce the Ti nearest-neighbor configuration shown in Fig. 7.6b. This arrangement helps to fit the titanium into its lattice site.

The transformation from tetragonal to orthorhombic is generally of the rhombal type for \(\left(\mathrm{La}_{1-x} \mathrm{Sr}_{x}\right)_{2} \mathrm{CuO}_{4}\) and of the rectilinear type for \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\).


Figure 7.6 Shift of the oxygens in the \(a, b\)-plane around the titanium atom of perovskite from the room-temperature tetragonal (and cubic) configuration (a) to the rhombal configuration (b) of its lowtemperature orthorhombic structure.

\section*{D. Planar Representation}

Another way of picturing the structure of perovskite is to think of the atoms as forming horizontal planes. If we adopt the notation [E F C] to designate the occupation of the \(\mathrm{E}, \mathrm{F}\), and C sites, the sketches of perovskite presented in Figs. 7.1 and 7.3 follow the scheme
\[
\begin{array}{lll}
z=1 & {\left[\mathrm{TiO}_{2}-\right]} & \mathrm{Ti} \text { at } \mathrm{E}, \mathrm{O} \text { at two } \mathrm{F} \text { sites } \\
z=\frac{1}{2} & {[\mathrm{O}-\mathrm{Ba}]} & \mathrm{O} \text { at } \mathrm{E}, \mathrm{Ba} \text { at } \mathrm{C} \\
z=0 & {\left[\mathrm{TiO}_{2}-\right]} & \mathrm{Ti} \text { at } \mathrm{E}, \mathrm{O} \text { at two } \mathrm{F} \text { sites. } \tag{7.4}
\end{array}
\]

The planes at the heights \(z=0, \frac{1}{2}\), and 1 can be labeled using this notation. The
usefulness of this labeling scheme will be clarified in Section V.

This completes our treatment of the structure of perovskite. We encountered many features that we will meet again in the analogous superconductor cases, and established notation that will be useful in describing the structure of the cuprates. However, before proceeding we present details about a cubic and a close-to-cubic perovskite superconductor in the following two sections.

\section*{III. CUBIC BARIUM POTASSIUM BISMUTH OXIDE}

The compound
\[
\mathrm{Ba}_{1-x} \mathrm{~K}_{x} \mathrm{BiO}_{3-y}
\]
which forms for \(x>0.25\), crystallizes in the cubic pervoskite structure with \(a=4.29 \AA\) (Cava et al., 1988; Jin et al., 1992; Mattheiss et al., 1988). \(\mathrm{K}^{+}\)ions replace some of the \(\mathrm{Ba}^{2+}\) ions in the C site, and Bi ions occupy the E sites of Eq. (7.2) (Hinks et al., 1988b; Kwei et al., 1989; Pei et al., 1990; SalemSugui et al., 1991; Schneemeyer et al., 1988). Some oxygen sites are vacant, as indicated by \(y\). Hinks et al. (1989) and Pei et al. (1990) determined the structural phase diagram (cf. Kuentzler et al., 1991; Zubkus et al., 1991). We should note from Table 7.1 that the potassium ( \(1.33 \AA\) ) and barium ( \(1.32 \AA\) ) ions are almost the same size, and that \(\mathrm{Bi}^{5+}(0.74 \AA)\) is close to \(\mathrm{Ti}^{4+}(0.68 \AA)\). Bismuth represents a mixture of the valence states \(\mathrm{Bi}^{3+}\) and \(\mathrm{Bi}^{5+}\) which share the \(\mathrm{Ti}^{4+}\) site in a proportion that depends on \(x\) and \(y\). The larger size \((0.96 \AA)\) of the \(\mathrm{Bi}^{3+}\) ion causes the lattice constant \(a\) to expand \(7 \%\) beyond its cubic \(\mathrm{BaTiO}_{3}\) value. Oxygen vacancies help to compensate for the larger size of \(\mathrm{Bi}^{3+}\).

It is noteworthy that \(\mathrm{Ba}_{1-x} \mathrm{~K}_{x} \mathrm{BiO}_{3-y}\) becomes superconducting at a temperature ( \(\approx 40 \mathrm{~K}\) for \(x \approx 0.4\) ) that is higher than the \(T_{c}\) of all of the A15 compounds. This compound, which has no copper, has
been widely studied in the quest for clues that would elucidate the mechanism of high-temperature superconductivity. Features of \(\mathrm{Ba}_{1-x} \mathrm{~K}_{x} \mathrm{BiO}_{3-y}\), such as the fact that it contains a variable valence state ion and utilizes oxygen vacancies to achieve charge compensation, reappear in the high-temperature superconducting compounds.

\section*{IV. BARIUM LEAD BISMUTH OXIDE}

In 1983 Mattheiss and Hamann referred to the 1975 "discovery by Sleight et al. of high-temperature superconductivity" in the compound \(\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x} \mathrm{O}_{3}\) in the composition range \(0.05 \leq x \leq 0.3\) with \(T_{c}\) up to 13 K . Many consider this system, which disproportionates \(2 \mathrm{Bi}^{4+} \rightarrow \mathrm{Bi}^{3+}+\) \(\mathrm{Bi}^{5+}\) in going from the metallic to the semiconducting state, as a predecessor to the LaSrCuO system.

The metallic compound \(\mathrm{BaPbO}_{3}\) is a cubic perovskite with the relatively large lattice constant (Wyckoff, 1964; cf. Nitta et al., 1965; Shannon and Bierstedt, 1970) listed in Table 7.3. At room temperature semiconducting \(\mathrm{BaBiO}_{3}\) is monoclinic ( \(a \approx b \approx c / \sqrt{2}, \beta=90.17^{\circ}\) ), but close to orthorhombic (Chaillout et al., 1985; Cox and Sleight, 1976, 1979; cf. Federici et al., 1990; Jeon et al., 1990; Shen et al., 1989). These two compounds form a solid solution series \(\mathrm{BaPb}_{1-x} \mathrm{Bi}_{x} \mathrm{O}_{3}\) involving cubic, tetragonal, orthorhombic, and monoclinic modifications. Superconductivity appears in the tetragonal phase, and the metal-toinsulator transition occurs at the tetrag-onal-to-orthorhombic phase boundary \(x \approx\) 0.35 (Gilbert et al., 1978; Koyama and Ishimaru, 1992; Mattheiss, 1990; Mattheiss and Hamann, 1983; Sleight, 1987; cf. Bansil et al., 1991; Ekino and Akimitsu, 1989a, b; Papaconstantopoulous et al., 1989).

The compound resembles
\[
\mathrm{Ba}_{1-x} \mathrm{~K}_{x} \mathrm{BiO}_{3-y}
\]
with its variable Bi valence states, but it differs in not exhibiting superconductivity in the cubic phase.

\section*{V. PEROVSKITE-TYPE SUPERCONDUCTING STRUCTURES}

In their first report on high-temperature superconductors Bednorz and Müller (1986) referred to their samples as "metallic, oxygen-deficient ... perovskitelike mixed-valence copper compounds." Subsequent work has confirmed that the new superconductors do indeed possess these characteristics.

In the oxide superconductors \(\mathrm{Cu}^{2+}\) replaces the \(\mathrm{Ti}^{4+}\) of perovskite, and in most cases the \(\mathrm{TiO}_{2}\)-perovskite layering is retained as a \(\mathrm{CuO}_{2}\) layering with two oxygens per copper. Because of this feature of \(\mathrm{CuO}_{2}\) layers, which is common to all of the high-temperature superconductors, such superconductors exhibit a uniform lattice size in the \(a, b\)-plane, as the data in Table 7.3 demonstrate. The compound \(\mathrm{BaCuO}_{3}\) does not occur because the \(\mathrm{Cu}^{4+}\) ion does not form, but this valence constraint is overcome by replacement of \(\mathrm{Ba}^{2+}\) by a trivalent ion, such as \(\mathrm{La}^{3+}\) or \(\mathrm{Y}^{3+}\), by a reduction in the oxygen content, or by both. The result is a set of "layers" containing only one oxygen per cation located between each pair of \(\mathrm{CuO}_{2}\) layers, or none at all. Each high-temperature superconductor has a unique sequence of layers.

We saw from Eq. (7.2) that each atom in perovskite is located in one of three types of sites. In like manner, each atom at the height \(z\) in a high-temperature superconductor occupies either an Edge (E) site on the edge \((0,0, z)\), a Face ( \(F\) ) site on the midline of a face \(\left(\left(0, \frac{1}{2}, z\right)\right.\) or \(\left(\frac{1}{2}, 0, z\right)\) or both), or a Centered: (C) site centered within the unit cell on the \(z\)-axis \(\left(\frac{1}{2}, \frac{1}{2}, z\right)\). The site occupancy notation [E F C] is used because many cuprates contain a succession of \(\left[\mathrm{Cu} \mathrm{O}_{2}-\right]\) and [ \(-\mathrm{O}_{2} \mathrm{Cu}\) ] layers in which the Cu atom switches between edge and centered sites, with the oxygens
Table 7.3 Crystallographic Characteristics of Oxide Superconducting and Related Compounds \({ }^{a}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & Symbol & Symm & Type & Enlarg. & Form. units & \(a_{0}\left(\right.\) ( \({ }^{\text {a }}\) ) & \(c_{0}\left(\begin{array}{l}\text { A }\end{array}\right)\) & \(c_{0} / \mathrm{Cu}\) & \%Anis & \(T_{\text {c }}(\mathrm{K})\) & Comments \\
\hline \(\mathrm{BaTiO}_{3}\) & - & C & A & 1 & 1 & 4.012 & 4.012 & - & 0 & - & \(T>200^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{BaTiO}_{3}\) & - & T & A & 1 & 1 & 3.995 & 4.03 & - & 0 & - & \(20^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{BaTiO}_{3}\) & - & 0 & A & \(\sqrt{2}\) & 2 & \(4.013 \sqrt{2}\) & 3.990 & - & 0.23 & - & \(\mathrm{T}<5^{\circ} \mathrm{C}\) \\
\hline \(\mathrm{BaPbO}_{3}\) & - & C & A & 1 & 1 & 4.273 & 4.273 & - & 0 & 0.4 & \\
\hline \(\mathrm{BaPb}_{0.7} \mathrm{Bi}_{0.3} \mathrm{O}_{3}\) & - & T & S & \(\sqrt{2}\) & 4 & \(4.286 \sqrt{2}\) & 4.304 & - & 0 & 12 & \\
\hline \(\mathrm{BaBiO}_{3}\) & - & M & A & \(\sqrt{2}\) & 2 & \(4.355 \sqrt{2}\) & 4.335 & - & 0.13 & - & \(\beta=90.17^{\circ}\) \\
\hline \(\mathrm{Ba}_{0.6} \mathrm{~K}_{0.4} \mathrm{BiO}_{3}\) & - & C & A & 1 & 1 & 4.293 & 4.293 & - & 0 & 30 & \\
\hline \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) & 0201 & T & S & 1 & 2 & 3.81 & 13.18 & 6.59 & 0 & 35 & Sr , doped \\
\hline \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) & 0201 & O & S & \(\sqrt{2}\) & 4 & \(3.960 \sqrt{2}\) & 13.18 & 6.59 & 6.85 & 35 & Sr , doped \\
\hline \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{8}\) & 0213 & T & A & 1 & 1 & 3.902 & 11.94 & 3.98 & 0 & - & \\
\hline \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) & 0213 & O & A & 1 & 1 & 3.855 & 11.68 & 3.89 & 1.43 & 92 & \\
\hline \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}\) & 2212 & T & S & \(5 \sqrt{2}\) & 20 & \(3.81 \sqrt{2}\) & 30.6 & 7.65 & 0 & 84 & \\
\hline \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}\) & 2223 & \(\bigcirc\) & S & \(5 \sqrt{2}\) & 20 & \(3.83 \sqrt{2}\) & 37 & 6.17 & 0.57 & 110 & \\
\hline \(\mathrm{TI}_{2} \mathrm{Ba}_{2} \mathrm{CuO}_{6}\) & 2201 & T & S & 1 & 2 & 3.83 & 23.24 & 11.6 & 0 & 90 & \\
\hline \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}\) & 2212 & T & S & 1 & 2 & 3.85 & 29.4 & 7.35 & 0 & 110 & \\
\hline \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}\) & 2223 & T & S & 1 & 2 & 3.85 & 35.88 & 5.98 & & 125 & \\
\hline \(\mathrm{TlBa}_{2} \mathrm{CuO}_{5}\) & 1201 & & A & 1 & 1 & & 9.5 & 9.5 & & \(<17\) & \\
\hline \(\mathrm{TlBa}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{7}\) & 1212 & & A & 1 & 1 & & 12.7 & 6.35 & & 91 & \\
\hline \(\mathrm{TlBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{9}\) & 1223 & & A & 1 & 1 & & 15.9 & 5.3 & & 116 & \\
\hline \(\mathrm{TiBa}_{2} \mathrm{Ca}_{3} \mathrm{Cu}_{4} \mathrm{O}_{11}\) & 1234 & & A & 1 & 1 & & 19.1 & 4.78 & & 122 & \\
\hline \(\mathrm{TlBa}_{2} \mathrm{Ca}_{4} \mathrm{Cu}_{5} \mathrm{O}_{13}\) & 1245 & & A & 1 & 1 & & 22.3 & 4.46 & & \(<120\) & \\
\hline \(\mathrm{HgBa}_{2} \mathrm{CuO}_{4}\) & 1201 & T & A & 1 & 1 & 3.86 & 9.5 & 9.5 & & 95 & \\
\hline \(\mathrm{HgBa}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{6}\) & 1212 & T & A & 1 & 1 & 3.86 & 12.6 & 6.3 & & 122 & \\
\hline \(\mathrm{HgBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{8}\) & 1223 & T & A & 1 & 1 & 3.86 & 17.7 & 5.2 & & 133 & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) Symbol, symmetry (cubic C , tetragonal T , orthorhombic O , monoclinic M ); type (aligned A , staggered S ); enlargement in \(a\), \(b\)-plane (diagonal distortion \(\sqrt{2}\), superlattice 5); formula units per unit cell; lattice parameters ( \(a_{0}, c_{0}, c_{0}\), and \(c_{0}\) per Cu ion); \(\%\) anisotropy; and transition temperature \(T_{\mathrm{c}}\). For the orthorhombic compounds tabulated values of \(a_{0}\) are averages of \(a_{0}\) and \(b_{0}\).
}


Figure 7.7 Types of atom positions in the layers of a high-temperature superconductor structure, using the edge, face, center notation [ \(E\) F C]. Typical site occupancies are given in the upper right (Poole et al., 1989).
remaining at their face positions. Similar alternations in position take place with Ba , O , and Ca layers, as illustrated in Fig. 7.7.

Hauck et al. (1991) proposed a classification of superconducting oxide structures in terms of the sequence (1) superconducting layers \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}-\right.\) ] and \(\left[-\mathrm{O}_{2} \mathrm{Cu}\right]\), (2) insulating layers, such as [Y--] or [ -Ca ], and (3) hole-donating layers, such as \(\left[\mathrm{Cu} \mathrm{O}^{\mathrm{b}}-\right]\) or \([\mathrm{Bi}-\mathrm{O}]\).

The high-temperature superconductor compounds have a horizontal reflection plane ( \(\perp\) to \(z\) ) called \(\sigma_{h}\) at the center of the unit cell and another \(\sigma_{h}\) reflection plane at the top (and bottom). This means that every plane of atoms in the lower half of the cell at the height \(z\) is duplicated in the upper half at the height \(1-z\). Such atoms, of course, appear twice in the unit cell, while atoms right on the symmetry planes only occur once since they cannot be reflected. Figure 7.8 shows a [ \(\mathrm{Cu} \mathrm{O}_{2}-\) ] plane at a height \(z\) reflected to the height \(1-z\). Note how the puckering preserves the reflection symmetry operation. Superconductors that have this reflection plane, but lack end-centering and body-centering op-


Figure 7.8 Unit cell of \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) showing the molecular groupings, reflection plane, and layer types.
erations (see Section VII), are called aligned because all of their copper atoms are of one type; either all on the edge \((0,0, z)\) in \(E\) positions or all centered \(\left(\frac{1}{2}, \frac{1}{2}, z\right)\) at \(C\) sites. In other words, they all lie one above the other on the same vertical lines, as do the Cu ions in Fig. 7.8.

\section*{VI. ALIGNED \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\)}

The compound \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\), sometimes called YBaCuO or the 123 compound, in its orthorhombic form is a superconductor below the transition temperature \(T_{\mathrm{c}} \approx 92 \mathrm{~K}\). Figure 7.8 sketches the locations of the atoms, Fig. 7.9 shows the arrangement of the copper oxide planes, Fig. 7.10 provides more details on the unit cell, and Table 7.4 lists the atom positions and unit cell dimensions (Beno et al., 1987; Capponi et al., 1987; Hazen et al., 1987; Jorgensen et al., 1987; Le Page et al., 1987; Siegrist et al., 1987; Yan and Blanchin,

1991; see also Schuller et al., 1987). Considered as a perovskite derivative, it can be looked upon as a stacking of three perovskite units \(\mathrm{BaCuO}_{3}, \mathrm{YCuO}_{2}\), and \(\mathrm{BaCuO}_{2}\), two of them with a missing oxygen, and this explains why \(c \approx 3 a\). It is, however, more useful to discuss the compound from the viewpoint of its planar structure.

\section*{A. Copper Oxide Planes}

We see from Fig. 7.9 that three planes containing Cu and O are sandwiched between two planes containing Ba and O and one plane containing \(Y\). The layering scheme is given on the right side of Fig. 7.8 , where the superscript \(b\) on O indicates that the oxygen lies along the \(b\)-axis, as shown. The atoms are puckered in the two \(\left[\mathrm{Cu} \mathrm{O}_{2}-\right.\) ] planes that have the [- -Y\(]\) plane between them. The third copper oxide plane \([\mathrm{Cu} \mathrm{O} ~-~], ~ o f t e n ~ r e f e r r e d ~ t o ~ a s ~\)


Figure 7.9 Layering scheme of orthorhombic \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) with the puckering indicated. The layers are perpendicular to the \(c\)-axis (Poole et al., 1988, p. 101).
\(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}\)
orthorhombic Pmmm

\(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\mathrm{x}}\)
tetragonal \(\mathrm{P} 4 / \mathrm{mmm}\)


Figure 7.10 Sketches of the superconducting orthorhombic (left) and nonsuperconducting tetragonal (right) YBaCuO unit cells. Thermal vibration ellipsoids are shown for the atoms. In the tetragonal form the oxygen atoms are randomly dispersed over the basal plane sites (Jorgensen et al., 1987a, b; also see Schuller et al., 1987).

Table 7.4 Normalized Atom Positions in the \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) Orthorhombic Unit Cell (dimensions \(a=3.83 \AA, b=3.88 \AA\), and \(c=11.68 \AA\) )
\begin{tabular}{|c|c|c|c|c|}
\hline Layer & Atom & \(x\) & \(\boldsymbol{y}\) & \(z\) \\
\hline \multirow{2}{*}{\(\left[\begin{array}{ccc}\text { O }\end{array}\right]\)} & \(\mathrm{Cu}(1)\) & 0 & 0 & 1 \\
\hline & O(1) & 0 & \(\frac{1}{2}\) & 1 \\
\hline \multirow{2}{*}{[ \(\mathrm{O}-\mathrm{Ba}\) ]} & O(4) & 0 & 0 & 0.8432 \\
\hline & Ba & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.8146 \\
\hline \multirow{3}{*}{\(\left[\mathrm{Cu} \mathrm{O}_{2}-1\right]\)} & \(\mathrm{Cu}(2)\) & 0 & 0 & 0.6445 \\
\hline & O(3) & 0 & \(\frac{1}{2}\) & 0.6219 \\
\hline & O(2) & \(\frac{1}{2}\) & 0 & 0.6210 \\
\hline [--Y] & Y & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline \multirow{3}{*}{\(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}-\right]\)} & \(O(2)\) & \(\frac{1}{2}\) & 0 & 0.3790 \\
\hline & O(3) & 0 & \(\frac{1}{2}\) & 0.3781 \\
\hline & \(\mathrm{Cu}(2)\) & 0 & 0 & 0.3555 \\
\hline [ \(\mathrm{O}-\mathrm{Ba}\) ] & Ba & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.1854 \\
\hline \multirow{3}{*}{[ \(\mathrm{Cu} \mathrm{O}-\)-]} & \(\mathrm{O}(4)\) & 0 & 0 & 0.1568 \\
\hline & O(1) & 0 & \(\frac{1}{2}\) & 0 \\
\hline & \(\mathrm{Cu}(1)\) & 0 & 0 & 0 \\
\hline
\end{tabular}
"the chains," consists of \(-\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}-\mathrm{O}-\) chains along the \(b\) axis in lines that are perfectly straight because they are in a horizontal reflection plane \(\sigma_{h}\); where no puckering can occur. Note that, according to the figures, the copper atoms are all stacked one above the other on edge ( E ) sites, as expected for an aligned-type superconductor. Both the copper oxide planes and the chains contribute to the superconducting properties.

\section*{B. Copper Coordination}

Now that we have described the planar structure of YBaCuO it will be instructive to examine the local environment of each copper ion. The chain copper ion \(\mathrm{Cu}(1)\) is square planar-coordinated and the two coppers \(\mathrm{Cu}(2)\) and \(\mathrm{Cu}(3)\) in the plane exhibit fivefold pyramidal coordination, as indicated in Fig. 7.11. The ellipsoids at the atom positions of Fig. 7.10 provide a measure of the thermal vibrational motion which the atoms experience, since the amplitudes of the atomic vibrations are indicated by the relative size of each of the ellipsoids.

\section*{C. Stacking Rules}

The atoms arrange themselves in the various planes in such a way as to enable them to stack one above the other in an efficient manner, with very little interference from neighboring atoms. Steric effects prevent large atoms such as Ba ( 1.34 \(\AA\) ) and \(O(1.32 \AA)\) from overcrowding a layer or from aligning directly on top of each other in adjacent layers. In many cuprates stacking occurs in accordance with the following two empirical rules:
1. Metal ions occupy either edge or centered sites, and in adjacent layers alternate between E and C sites.
2. Oxygens are found in any type of site, but they occupy only one type in a particular layer, and in adjacent layers they are on different types of sites.


Figure 7.11 Stacking of pyramid, square-planar, and inverted pyramid groups along the \(c\)-axis of orthorhombic \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) (adapted from Poole et al., 1988, p. 100).

Minor adjustments to make more room can be brought about by puckering or by distorting from tetragonal to orthorhombic.

\section*{D. Crystallographic Phases}

The \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\) compound comes in tetragonal and orthorhombic varieties, as shown in Fig. 7.10, and it is the latter phase which is ordinarily superconducting. In the tetragonal phase the oxygen sites in the chain layer are about half occupied

Figure ;
(bottom) the oxyg. right) for range 0age of \(t h\) Jorgenser see also I
in a random or disordered manner, and in the orthorhombic phase are ordered into \(-\mathrm{Cu}-\mathrm{O}\) - chains along the \(b\) direction. The oxygen vacancy along the \(a\) direction causes the unit cell to compress slightly so that \(a<b\), and the resulting distortion is of the rectangular type shown in Fig. 7.4a. Increasing the oxygen content so that \(\delta<0\) causes oxygens to begin occupying the vacant sites along \(a\). Superlattice ordering of the chains is responsible for the phase that goes superconducting at 60 K .

YBaCuO is prepared by heating in the \(750-900^{\circ} \mathrm{C}\) range in the presence of various concentrations of oxygen. The compound is tetragonal at the highest temperatures, increases its oxygen content through oxygen uptake and diffusion (Rothman et al., 1991) as the temperature is lowered, and undergoes a second-order phase transition of the order-disorder type at about \(700^{\circ} \mathrm{C}\) to the low-temperature orthorhombic phase, as indicated in Fig. 7.12


Figure 7.12 Fractional occupancies of the ( \(\frac{1}{2}, 0,0\) ) (bottom) and ( \(0, \frac{1}{2}, 0\) ) (top) sites (scale on left), and the oxygen content parameter \(\delta\) (center, scale on right) for quench temperatures of YBaCuO in the range \(0-1000^{\circ} \mathrm{C}\). The \(\delta\) parameter curve is the average of the two site-occupancy curves (adapted from Jorgensen et al., 1987a; also see Schuller et al., 1987; see also Poole et al., 1988).
(Jorgensen et al., 1987, 1990; Schuller et al., 1987; cf. Beyers and Ahn, 1991; Metzger et al., 1993; Fig. 8). Quenching by rapid cooling from a high temperature can produce at room temperature the tetragonal phase sketched on the right side of Fig. 7.10, and slow annealing favors the orthorhombic phase on the left. Figure 7.12 shows the fractional site occupancy of the oxygens in the chain site ( \(0, \frac{1}{2}, 0\) ) as a function of the temperature in an oxygen atmosphere. A sample stored under sealed conditions exhibited no degradation in structure or change in \(T_{c}\) four years later (Sequeira et al., 1992). Ultra-thin films tend to be tetragonal (Streiffer et al., 1991).

\section*{E. Charge Distribution}

Information on the charge distributions around atoms in conductors can be obtained from knowledge of their energy bands (see description in Chapter 8). This is most easily accomplished by carrying out a Fourier-type mathematical transformation between the reciprocal \(k_{x}, k_{y}, k_{z}\)-space (cf. Chapter 8, Section II) in which the energy bands are plotted and the coordinate \(x, y, z\)-space, where the charge is distributed. We will present the results obtained for \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) in the three vertical symmetry planes ( \(x, z, y, z\), and diagonal), all containing the \(z\)-axis through the origin, shown shaded in the unit cell of Fig. 7.13.

Contour plots of the charge density of the valence electrons in these planes are sketched in Fig. 7.14. The high density at the \(\mathrm{Y}^{3+}\) and \(\mathrm{Ba}^{2+}\) sites and the lack of contours around these sites together indicate that these atoms are almost completely ionized, with charges of +3 and +2 , respectively. It also shows that these ions are decoupled from the planes above and below. This accounts for the magnetic isolation of the \(Y\) site whereby magnetic ions substituted for yttrium do not interfere with the superconducting properties. In contrast, the contours surrounding the Cu and O ions are not characteristic of an


Figure 7.13 Three vertical crystallographic planes ( \(x, z, y, z\), and diagonal) of a tetragonal unit cell of \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\), and standard notation for the four crystallographic directions.


Figure 7.14 Charge density in the three symmetry planes of YBaCuO shown shaded in Fig. 7.13. The \(\boldsymbol{x}\), \(z\), diagonal and the \(y, z\) planes are shown from left to right, labeled \(\langle 100\rangle,\langle 110\rangle\), and \(\langle 010\rangle\), respectively. These results are obtained from band structure calculations, as will be explained in the following chapter (Krakauer and Pickett, 1988).
ordinary ionic compound. The short \(\mathrm{Cu}-\mathrm{O}\) bonds in the planes and chains (1.93-1.96 \(\AA\) ) increase the charge overlap. The least overlap appears in the \(\mathrm{Cu}(2)-\mathrm{O}(4)\) vertical bridging bond, which is also fairly long ( \(2.29 \AA\) ). The \(\mathrm{Cu}, \mathrm{O}\) charge contours can be represented by a model that assigns charges of +1.62 and -1.69 to Cu and O , respectively, rather than the values of +2.33 and -2.00 expected for a standard ionic model, where the charge +2.33 is an average of \(+2,+2\), and +3 for the three copper ions. Thus the \(\mathrm{Cu}-\mathrm{O}\) bonds are not completely ionic, but partly covalent.

\section*{F. YBaCuO Formula}

In early work the formula
\[
\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{9-\delta}
\]
was used for YBaCuO because the prototype triple pervoskite \(\left(\mathrm{YCuO}_{3}\right)\left(\mathrm{BaCuO}_{3}\right)_{2}\) has nine oxygens. Then crystallographers showed that there are eight oxygen sites in the 14 -atom YBaCuO unit cell, and the formula \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{8-\delta}\) came into widespread use. Finally, structure refinements demonstrated that one of the oxygen sites is systematically vacant in the chain layers, so the more appropriate expression \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\) was introduced. It would be preferable to make one more change and use the formula \(\mathrm{Ba}_{2} \mathrm{YCu}_{3} \mathrm{O}_{7-\delta}\) to emphasize that Y is analogous to Ca in the bismuth and thallium compounds, but very few workers in the field do this, so we reluctantly adopt the usual "final" notation. In the \(\mathrm{Bi}-\mathrm{Tl}\) compound notation of Section IX, B, \(\mathrm{Ba}_{2} \mathrm{YCu}_{3} \mathrm{O}_{7-\delta}\) would be called a 0213 compound. We will follow the usual practice of referring to \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\) as the 123 compound.

\section*{C. \(\mathrm{YBa}_{2} \mathrm{Cu}_{4} \mathrm{O}_{8}\) and \(\mathrm{Y}_{2} \mathrm{Ba}_{4} \mathrm{Cu}_{7} \mathrm{O}_{15}\)}

These two superconductors are sometimes referred to as the 124 compound and the 247 compound, respectively. They have the property that for each atom at position \((x, y, z)\) there is another identical atom at


Figure 7.15 Crystal structure of \(\mathrm{YBa}_{2} \mathrm{Cu}_{4} \mathrm{O}_{8}\) showing how, as a result of the side-centering symmetry operation, the atoms in adjacent \(\mathrm{Cu}-\mathrm{O}\) chains are staggered along the \(y\) direction, with Cu above O and O above Cu (Heyen et al., 1991; modified from Campuzano et al., 1990).
position \(\left(x, y+\frac{1}{2}, z+\frac{1}{2}\right)\). In other words, the structure is side centered. This property prevents the stacking rules of Section \(C\) from applying.

The chain layer of \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) becomes two adjacent chain layers in \(\mathrm{YBa}_{2} \mathrm{Cu}_{4} \mathrm{O}_{8}\), with the Cu atoms of one chain located directly above or below the O ' atoms of the other, as shown in Fig. 7.15 (Campuzano et al., 1990; Heyen et al., 1990a, 1991; Iqbal, 1992; Kaldis et al., 1989; Marsh et al., 1988; Morris et al., 1989a). The transition temperature remains in the range from 40 K to 80 K when Y is replaced by various rare earths (Morris et al., 1989). The double chains do not exhibit the variable oxygen stoichiometry of the single ones.

The other side-centered compound, \(\mathrm{Y}_{2} \mathrm{Ba}_{4} \mathrm{Cu}_{7} \mathrm{O}_{15}\), may be considered according to Torardi, "as an ordered 1:1 intergrowth of the 123 and 124 compounds
\[
\begin{aligned}
&\left(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}+\mathrm{YBa}_{2} \mathrm{Cu}_{4} \mathrm{O}_{8}\right. \\
&\left.=\mathrm{Y}_{2} \mathrm{Ba}_{4} \mathrm{Cu}_{7} \mathrm{O}_{15}\right) "
\end{aligned}
\]
(Bordel et al., 1988, Gupta and Gupta, 1993). The 123 single chains can vary in their oxygen content, and superconductivity onsets up to 90 K have been observed. This compound has been synthesized with several rare earths substituted for \(Y\) (Morris et al., 1989b).

\section*{VII. BODY CENTERING}

In Section V we discussed aligned-type superconductor structures that possess a horizontal plane of symmetry. Most hightemperature superconductor structures have, besides this \(\sigma_{h}\) plane, an additional symmetry operation called body centering whereby for every atom with coordinates ( \(x, y, z\) ) there is an identical atom with coordinates as determined from the following operation:
\[
\begin{equation*}
x \rightarrow x \pm \frac{1}{2}, \quad x \rightarrow y \pm \frac{1}{2}, \quad z \rightarrow z \pm \frac{1}{2} \tag{7.5}
\end{equation*}
\]

Starting with a plane at the height \(z\) this operation forms what is called an image plane at the height \(z+\frac{1}{2}\) in which the edge atoms become centered, the centered atoms become edge types, and each face atom moves to another face site. In other words, the body-centering operation acting on a plane at the height \(z\) forms a body centered plane, also called an image plane, at the height \(z \pm \frac{1}{2}\). The signs in these operations are selected so that the generated points and planes remain within the unit cell. Thus if the initial value of \(z\) is greater than \(\frac{1}{2}\), the minus sign must be selected, viz., \(z \rightarrow z-\frac{1}{2}\). Body centering causes half of the \(\mathrm{Cu}-\mathrm{O}\) planes to be [ \(\mathrm{Cu} \mathrm{O}_{2}-\) ], with the copper atoms at edge sites, and the other half to be [ \(-\mathrm{O}_{2} \mathrm{Cu}\) ], with the copper atoms at centered sites.

Let us illustrate the symmetry features of a body-centered superconductor by considering the example of \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}\). This compound has an initial plane [ \(\mathrm{Cu} \mathrm{O}_{2}\)-] with the copper and oxygen atoms at the vertical positions \(z=0.0540\) and 0.0531 , respectively, as shown in Fig.


Figure 7.16 Body-centered tetragonal unit cell containing four puckered \(\mathrm{CuO}_{2}\) groups showing how the initial group (bottom) is replicated by reflection in the horizontal reflection plane ( \(z=\frac{1}{2}\) ), by the body centering operation, and by both.
7.16. For illustrative purposes the figure is drawn for values of \(z\) closer to 0.1 . We see from the figure that there is a reflected plane \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}-\right]\) at the height \(1-z\), an image (i.e., body centered) plane [ \(-\mathrm{O}_{2}\) \(\mathrm{Cu}]\) of the original plane at the height \(\frac{1}{2}+z\), and an image plane [ \(-\mathrm{O}_{2} \mathrm{Cu}\) ] of the reflected plane (i.e., a reflected and body centered plane) at the height \(\frac{1}{2}-z\). Figure 7.16 illustrates this situation and indicates how the atoms of the initial plane can be transformed into particular atoms in other planes (see Problem 5). Figure 7.17 shows how the configurations of the


Figure 7.17 Body-centered unit cell divided into four regions by the reflection and body centering operations.
atoms in one-quarter of the unit cell, called the basic subcell, or subcell I, determine their configurations in the other three subcells II, III, and IV through the symmetry operations of reflection and body centering.

\section*{VIII. BODY-CENTERED \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) AND \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\)}

The body-centered compound
\[
M_{2} \mathrm{CuO}_{4}
\]
has three structural variations in the same crystallographic space group, namely the \(M=\mathrm{La}\) and \(M=\mathrm{Nd}\) types, and a third mixed variety (Xiao et al., 1989). Table 7.5 lists the atom positions of the first two types, and Fig. 7.18 presents sketches of the structures of all three. Each will be discussed in turn.

\section*{A. Unit Cell Generation of \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) (T Phase)}

The structure of the more common \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) variety, often called the T phase,

Table 7.5 Atom Positions in the \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) and \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) Structures
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\(\mathrm{La}_{2} \mathrm{CuO}_{4}\) structure} & \multicolumn{5}{|c|}{\(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) structure} \\
\hline Layer & Atom & \(x\) & \(y\) & \(z\) & Layer & Atom & \(\boldsymbol{x}\) & \(\boldsymbol{y}\) & \(z\) \\
\hline & O(1) & \(\frac{1}{2}\) & 0 & 1 & & O(1) & \(\frac{1}{2}\) & 0 & 1 \\
\hline \(\left[\mathrm{Cu} \mathrm{O}_{2}-\right.\) ] & Cu & 0 & 0 & 1 & \(\left[\mathrm{Cu}^{(1)} \mathrm{O}_{2}-\right]\) & Cu & 0 & 0 & 1 \\
\hline & O(1) & 0 & \(\frac{1}{2}\) & 1 & & O(1) & 0 & \(\frac{1}{2}\) & 1 \\
\hline & La & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.862 & [ - Nd] & Nd & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.862 \\
\hline [ O - La] & & & & & & & & & \\
\hline & O(2) & 0 & 0 & 0.818 & & O(3) & 0 & \(\frac{1}{2}\) & \(\frac{3}{4}\) \\
\hline & & & & & \(\left[-\mathrm{O}_{2}-1\right]\) & & & & \\
\hline & O(2) & \(\frac{1}{2}\) & , \(\frac{1}{2}\) & 0.682 & & O(3) & \(\frac{1}{2}\) & 0 & \(\frac{3}{4}\) \\
\hline [ La - O] & & & & & & & & & \\
\hline & La & 0 & 0 & 0.638 & [ Nd - - ] & Nd & 0 & 0 & 0.638 \\
\hline & O(1) & \(\frac{1}{2}\) & 0 & \(\frac{1}{2}\) & & O(1) & \(\frac{1}{2}\) & 0 & \(\frac{1}{2}\) \\
\hline \(\left[-\mathrm{O}_{2} \mathrm{Cu}\right]\) & Cu & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(\left[-\mathrm{O}_{2} \mathrm{Cu}\right]\) & Cu & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline & O(1) & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) & & O(1) & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline & La & 0 & 0 & 0.362 & [ Nd - -] & Nd & 0 & 0 & 0.362 \\
\hline [ \(\mathrm{La}-\mathrm{O}\) ] & & & & & & & & & \\
\hline & O(2) & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(0.318^{\circ}\) & & O(3) & \(\frac{1}{2}\) & 0 & \(\frac{1}{4}\) \\
\hline & & & & & \(\left[-\mathrm{O}_{2}-\right]\) & & & & \\
\hline & O(2) & 0 & 0 & 0.182 & & O(3) & 0 & \(\frac{1}{2}\) & \(\frac{1}{4}\) \\
\hline [ O - La] & & & & & & & & & \\
\hline & La & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.138 & [ - Nd] & Nd & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.138 \\
\hline & O(1) & 0 & \(\frac{1}{2}\) & 0 & & O(1) & 0 & \(\frac{1}{2}\) & 0 \\
\hline \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}-\right]\) & Cu & 0 & 0 & 0 & \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}\right.\)-] & Cu & 0 & 0 & 0 \\
\hline & O(1) & \(\frac{1}{2}\) & 0 & 0 & & O(1) & \(\frac{1}{2}\) & 0 & 0 \\
\hline
\end{tabular}

(b) \(\mathrm{T}^{*}\) phase

(c) T" phase
- Cu
○ O
O \(_{\mathrm{La}, \mathrm{Gd},(\mathrm{Sr})}\)



Figure 7.18 (a) Regular unit cell ( T phase) associated with hole-type ( \(\left.\mathrm{La}_{1-x} \mathrm{Sr}_{x}\right)_{2} \mathrm{CuO}_{4}\) superconductors, (b) hybrid unit cell ( \(\mathrm{T}^{*}\) phase) of the hole-type \(\mathrm{La}_{2-x-y} R_{y} \mathrm{Sr}_{x} \mathrm{CuO}_{4}\) superconductors, and (c) alternate unit cell ( \(\mathrm{T}^{\prime}\) phase) associated with electron-type \(\left(\mathrm{Nd}_{1-x} \mathrm{Ce}_{x}\right)_{2} \mathrm{CuO}_{4}\) superconductors. The La atoms in. the left structure become Nd atoms in the right structure. The upper part of the hybrid cell is T type, and the bottom is \(\mathrm{T}^{\prime}\). The crystallographic space group is the same for all three unit cells (Xiao et al., 1989; see also Oguchi, 1987; Ohbayashi et al., 1987; Poole et al., 1988, p. 83; Tan et al., 1990).
can be pictured as a stacking of \(\mathrm{CuO}_{4} \mathrm{La}_{2}\) groups alternately with image (i.e., body centered) \(\mathrm{La}_{2} \mathrm{O}_{4} \mathrm{Cu}\) groups along the \(c\) direction, as indicated on the left side of Fig. 7.19 (Cavaet et al., 1987; Kinoshita et al., 1992; Longo and Raccah, 1973; Ohbayashi et al., 1987; Onoda et al., 1987; Zolliker et al., 1990). Another way of visualizing the structure is by generating it from the group \(\mathrm{Cu}_{\frac{1}{2}} \mathrm{O}_{2} \mathrm{La}\), comprising the layers [ \(\mathrm{O}-\mathrm{La}\) ] and \(\frac{1}{2}\left[\mathrm{Cu} \mathrm{O}_{2}-\right]\) in subcell I shown on the right side of Fig. 7.19 and also on the left side of Fig. 7.20. (The factor \(\frac{1}{2}\) appears because the \(\left[\mathrm{Cu} \mathrm{O}_{2}-\right]\) layer is shared by two subcells.) Subcell II is formed by reflection from subcell I, and subcells III and IV are formed from I and II via the body-centering operation in the manner of Figs. 7.16 and 7.17. Therefore, subcells I
and II together contain the group \(\mathrm{CuO}_{4} \mathrm{La}_{2}\), and subcells III and IV together contain its image (body centered) counterpart group \(\mathrm{La}_{2} \mathrm{O}_{4} \mathrm{Cu}\). The BiSrCaCuO and TlBaCaCuO structures to be discussed in Section IX can be generated in the same manner, but with much larger repeat units along the \(c\) direction.

\section*{B. Layering Scheme}

The \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) layering scheme consists of equally-spaced, flat \(\mathrm{CuO}_{2}\) layers with their oxygens stacked one above the other, the copper ions alternating between the ( \(0,0,0\) ) and ( \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\) ) sites in adjacent layers, as shown in Fig. 7.21. These planes are body-centered images of each other, and are perfectly flat because they are

Figur left) tions in the


Figure 7.19 Structure of \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) (center), showing the formula units (left) and the level labels and subcell types (right). Two choices of unit cell are indicated, the left-side type unit cell based on formula units, and the more common right-side type unit cell based on copper-oxide layers.
\begin{tabular}{lcc}
{\(\left[\mathrm{La}_{2} \mathrm{CuO}_{4}\right.\)} & \begin{tabular}{c}
Sub \\
Cell
\end{tabular} & \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) \\
{\(\left[\mathrm{CuO}_{2}-\right]\)} & - & {\(\left[\mathrm{CuO}_{2}-\right]\)} \\
{\([\mathrm{O}-\mathrm{La}]\)} & II & {\([--\mathrm{Nd}]\)} \\
{\([\mathrm{La}-\mathrm{O}]\)} & - & {\(\left[-\mathrm{O}_{2}-\right]\)} \\
& III & {\([\mathrm{Nd}--]\)} \\
{\(\left[-\mathrm{O}_{2} \mathrm{Cu}\right]\)} & - & {\(\left[-\mathrm{O}_{2} \mathrm{Cu}\right]\)} \\
{\([\mathrm{La}-\mathrm{O}]\)} & IV & {\([\mathrm{Nd}--]\)} \\
{\([\mathrm{O}-\mathrm{La}]\)} & - & {\(\left[-\mathrm{O}_{2}-\right]\)} \\
{\(\left[\mathrm{CuO}_{2}-\right]\)} & - & {\([--\mathrm{Nd}]\)} \\
{\(\left[\mathrm{CuO}_{2}-\right]\)}
\end{tabular}

Figure 7.20 Layering schemes of the \(\mathrm{La}_{2} \mathrm{CuO}_{4}(\mathrm{~T}\), left) and \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) ( \(\mathrm{T}^{\prime}\), right) structures. The locations of the four subcells of the unit cell are indicated in the center column.
reflection planes. Half of the oxygens, \(O(1)\), are in the planes, and the other half, \(O(2)\), between the planes. The copper is octahedrally coordinated with oxygen, but the distance \(1.9 \AA\) from Cu to \(\mathrm{O}(1)\) in the \(\mathrm{CuO}_{2}\) planes is much less than the vertical distance of \(2.4 \AA\) from Cu to the apical oxygen \(\mathrm{O}(2)\), as indicated in Fig. 7.22. The La is ninefold coordinated to four \(O(1)\) oxygens, to four \(O(2)\) at \(\left(\frac{1}{2}, \frac{1}{2}, z\right)\) sites, and to one \(O(2)\) at a \((0,0, z)\) site.

\section*{C. Charge Distribution}

Figure 7.23 shows contours of con-stant-valence charge density on a logarithmic scale drawn on the back \(x, z\)-plane and on the diagonal plane of the unit cell sketched in Fig. 7.13. These contour plots are obtained from the band structure calculations described in Chapter 8, Section XIV. The high-charge density at the lanthanum site and the low charge density around this site indicate an ionic state


Figure \(7.21 \mathrm{CuO}_{2}\) layers of the \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) structure showing horizontal displacement of Cu atoms in alternate layers. The layers are perpendicular to the \(c\)-axis (Poole et al., 1988, p. 87).


Figure 7.22 Ordering of axially distorted \(\mathrm{CuO}_{6}\) octahedra in \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) (Poole et al., 1988, p. 88).
\(\mathrm{La}^{3+}\). The charge density changes in a fairly regular manner around the copper and oxygen atoms, both within the \(\mathrm{CuO}_{2}\) planes and perpendicular to these planes, suggestive of covalency in the \(\mathrm{Cu}-\mathrm{O}\) bonding, as is the case with the \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) compound.

\section*{D. Superconducting Structures}

The compound \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) is itself an antiferromagnetic insulator and must be doped, generally with an alkaline earth, to exhibit pronounced superconducting prop-
erties. The compounds \(\left(\mathrm{La}_{1-x} M_{x}\right)_{2} \mathrm{CuO}_{4}\), with \(3 \%\) to \(15 \%\) of \(M=\mathrm{Sr}\) or Ba replacing La , are orthorhombic at low temperatures and low \(M\) contents and are tetragonal otherwise; superconductivity has been found on both sides of this transition. The orthorhombic distortion can be of the rectangular or of the rhombal type, both of which are sketched in Fig. 7.4. The phase diagram of Fig. 7.24 shows the tetragonal, orthorhombic, superconducting, and antiferromagnetically ordered regions for the lanthanum compound (Weber et al., 1989; cf. Goodenough et al., 1993). We see that

Figu \(\mathrm{La}_{2-}\) romá


Figure 7.23 Contour plots of the charge density of \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) obtained from band structure calculations. The \(x, z\)-crystallographic plane labeied \(\langle 100\rangle\) is shown on the left and the diagonal plane labeled (110) on the right. The contour spacing is on a logarithmic scale (Pickett, 1989).


Figure 7.24 Phase diagram for hole-type \(\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-y}\) indicating insulating (INS), antiferromagnetic (AF), and superconducting (SC) regions. Figure VI-6 of Poole et al. (1988) shows experimental data along the orthorhombic-to-tetragonal transition line. Spin-density waves (SDW) are found in the AF region (Weber et al., 1989).
the orthorhombic phase is insulating at high temperatures, metallic at low temperatures, and superconducting at very low temperatures. Spin-density waves, to be discussed in Chapter 8, Section XIX, occur in the antiferromagnetic region.

\section*{E. \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) Compound ( \(\mathrm{T}^{\prime}\) Phase)}

The rarer \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) structure (Skantakumar et al., 1989; Sulewski et al., 1990; Tan et al., 1990) given on the right side of Fig. 7.18 and Table 7.5 has all of its atoms in the same positions as the standard \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) structure, except for the apical \(\mathrm{O}(2)\) oxygens in the [ \(\mathrm{O}-\mathrm{La}\) ] and [ \(\mathrm{La}-\mathrm{O}\) ] layers, which move to form a \(\left[-\mathrm{O}_{2}-\right]\) layer between [- - La] and [ \(\mathrm{La}--\) ]. These oxygens, now called \(O(3)\), have the same \(x, y\) coordinate positions as the \(O(1)\) oxygens, and are located exactly between the \(\mathrm{CuO}_{2}\) planes with \(z=\frac{1}{4}\) or \(\frac{3}{4}\). We see from Fig. 7.18 that the \(\mathrm{CuO}_{6}\) octahedra have now lost their apical oxygens, causing Cu to become square planar-coordinated \(\mathrm{CuO}_{4}\) groups. The Nd is eightfold coordinated to four \(O(1)\) and four \(O\) (3) atoms, but with slightly different \(\mathrm{Nd}-\mathrm{O}\) distances. The \(\mathrm{CuO}_{2}\) planes, however, are identical in the two structures. Superconductors with this \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) structure are of the electron type, in contrast to other high-temperature superconductors, in which the current carriers are holes. In particular, the electron superconductor \(\mathrm{Nd}_{1.85} \mathrm{Ce}_{0.15} \mathrm{CuO}_{4-\delta}\) with \(T_{\mathrm{c}}=24 \mathrm{~K}\) has been widely studied (Fontcuberta and Fàbrega, 1995, a review chapter; Allen 1990; Alp et al., 1989b; Barlingay et al., 1990; Ekino and Akimitsu, 1989a, b; Lederman et al., 1991; Luke et al., 1990; Lynn et al., 1990; Sugiyama et al., 1991; Tarason et al., 1989a). Other rare earths, such as \(\operatorname{Pr}\) (Lee et al., 1990) and Sm (Almasan et al., 1992) have replaced Nd.

The difference of structures associated with different signs attached to the current carriers may be understood in terms of the doping process that converts undoped material into a superconductor. Lanthanum and neodymium are both trivalent, and in the undoped compounds they each con-

\(\xi\)
tribute three electrons to the nearby oxygens,
\[
\begin{align*}
\mathrm{La} & \rightarrow \mathrm{La}^{3+}+3 \mathrm{e}^{-}  \tag{7.6}\\
\mathrm{Nd} & \rightarrow \mathrm{Nd}^{3+}+3 \mathrm{e}^{-}
\end{align*}
\]
to produce \(\mathrm{O}^{2-}\). To form the superconductors a small amount of La in \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) can be replaced with divalent Sr , and some Nd in \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) can be replaced with tetravalent Ce , corresponding to
\[
\begin{array}{ll}
\mathrm{Sr} & \rightarrow \mathrm{Sr}^{2+}+2 \mathrm{e}^{-}  \tag{7.7}\\
\mathrm{Ce} \rightarrow \mathrm{Ce}^{4+}+4 \mathrm{e}^{-} & \text {(in } \left.\mathrm{La}_{2} \mathrm{CuO}_{4}\right) \\
\left.\mathrm{Nd}_{2} \mathrm{CuO}_{4}\right) .
\end{array}
\]

Thus, Sr doping decreases the number of electrons to produce hole-type carriers, while Ce doping increases the electron concentration and the conductivity is electron type.

There are also copper-oxide electron superconductors with different structures, such as \(\mathrm{Sr}_{1-x} \mathrm{Nd}_{x} \mathrm{CuO}_{2}\) (Smith et al., 1991) and \(\mathrm{TlCa}_{1-x} R_{x} \mathrm{Sr}_{2} \mathrm{Cu}_{2} \mathrm{O}_{7-\delta}\), where \(R\) is a rare earth (Vijayaraghavan et al., 1989). Electron- and hole-type superconductivity in the cuprates has been compared (Katti and Risbud, 1992; Medina and Regueiro, 1990).

\section*{F. \(\mathrm{La}_{2-x-y} \mathrm{R}_{x} \mathrm{Sr}_{y} \mathrm{CuO}_{4}\) Compounds (T* Phase)}

We have described the T structure of \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) and the \(\mathrm{T}^{\prime}\) structure of \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\). The former has \(\mathrm{O}(2)\) oxygens and the latter \(O(3)\) oxygens, which changes the coordinations of the Cu atoms and that of the La and Nd atoms as well. There is a hybrid structure of hole-type superconducting lanthanum cuprates called the \(\mathrm{T}^{*}\) structure, illustrated in Fig. 7.18b, in which the upper half of the unit cell is the T type with \(O(2)\) oxygens and lower half the \(T^{\prime}\) type with \(O(3)\) oxygens. These two varieties of halfcells are stacked alternately along the tetragonal \(c\)-axis (Akimitsu et al., 1988; Cheong et al., 1989b; Kwei et al., 1990; Tan et al., 1990). Copper, located in the base of an oxygen pyramid, is fivefold-coordinated \(\mathrm{CuO}_{5}\). There are two inequivalent rare earth sites; the ninefoldcoordinated site in the T-type halfcell is
preferentially occupied by the larger La and Sr ions, while the smaller rare earths \(R\) (i.e., \(\mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}\), or Tb ) prefer the eightfold-coordinated site in the \(\mathrm{T}^{\prime}\) halfcell. Tan et al. (1991) give a phase diagram for the concentration ranges over which the T and \(\mathrm{T}^{*}\) phases are predominant.

\section*{IX. BODY-CENTERED BiSrCaCuO AND TIBaCaCuO}

Early in 1988 two new superconducting systems with transition temperatures considerably above those attainable with YBaCuO , namely the bismuth- and thal-lium-based materials, were discovered. These compounds have about the same \(a\) and \(b\) lattice constants as the yttrium and lanthanum compounds, but with much larger unit cell dimensions along \(c\). We will describe their body-centered structures in terms of their layering schemes. In the late 1940s some related compounds were synthesized by the Swedish chemist Bengt Aurivillius (1950, 1951, 1952).

\section*{A. Layering Scheme}
\[
\begin{gathered}
\text { The } \mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n} \text { and } \\
\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}
\end{gathered}
\]
compounds, where \(n\) is an integer, have essentially the same structure and the same layering arrangement (Barry et al., 1989; Siegrist et al., 1988; Torardi et al., 1988a; Yvon and François, 1989), although there are some differences in the detailed atom positions. Here there are groupings of \(\mathrm{CuO}_{2}\) layers, each separated from the next by Ca layers with no oxygen. The \(\mathrm{CuO}_{2}\) groupings are bound together by intervening layers of BiO and SrO for the bismuth compound, and by intervening layers of TlO and BaO for the thallium compound. Figure 7.25 compares the layering scheme of the \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\) compounds with \(n=0,1,2\) with those of the lanthanum and yttrium compounds. We also see from the figure that the groupings of \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}^{-]}\right.\)planes and [ \(-\mathrm{O}_{2} \mathrm{Cu}\) ] image
(i.e., bc the \(c\)-a that are ing prol

A . shows tl tioned scheme adjacent and cen 1 never \(h\) : sites. Tt at the ce is also c and that staggeres

Figu: sents a 1 the infon


Figure 7.25 Layering schemes of various high-temperature superconductors. The \(\mathrm{CuO}_{2}\) plane layers are enclosed in small inner boxes, and the layers that make up a formula unit are enclosed in larger boxes. The \(\mathrm{Bi}-\mathrm{Sr}\) compounds \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\) have the same layering schemes as their Tl - Ba counterparts shown in this figure.
(i.e., body centered) planes repeat along the \(c\)-axis. It is these copper-oxide layers that are responsible for the superconducting properties.

A close examination of this figure shows that the general stacking rules mentioned in Section VI.C for the layering scheme are satisfied, namely metal ions in adjacent layers alternate between edge ( E ) and centered (C) sites, and adjacent layers never have oxygens on the same types of sites. The horizontal reflection symmetry at the central point of the cell is evident. It is also clear that \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) is aligned and that the other four compounds are staggered.

Figure 7.26 (Torardi et al., 1988a) presents a more graphical representation of the information in Fig. 7.25 by showing the
positions of the atoms in their layers. The symmetry and body centering rules are also evident on this figure. Rao (1991) provided sketches for the six compounds \(\mathrm{Tl}_{m} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{x}\) similar to those in Fig. 7.26 with the compound containing one ( \(m=1\) ) or two thallium layers \((m=2)\), where \(n=0,1,2\), as in the Torardi et al. figure.

\section*{B. Nomenclature}

There are always two thalliums and two bariums in the basic formula for \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\), together with \(n\) calciums and \(n+1\) coppers. The first three members of this series for \(n=0,1\), and 2 are called the 2201, 2212, and 2223 compounds, respectively, and similarly for their

\(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CuO}_{6}\)

\(\mathrm{TH}_{2} \mathrm{Ba}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}\)

\(\mathrm{TI}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}\)

Figure 7.26 Crystal structures of \(\mathrm{T}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\) superconducting compounds with \(n=0,1,2\) arranged to display the layering schemes. The \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\) compounds have the same respective structures (Torardi et al., 1988a).

BiSr analogues \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\). Since Y in \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) is structurally analogous to Ca in the Tl and Bi compounds, it would be more consistent to write \(\mathrm{Ba}_{2} \mathrm{YCu}_{3} \mathrm{O}_{7}\) for its formula, as noted in Section VI.F. In this spirit \(\mathrm{Ba}_{2} \mathrm{YCu}_{3} \mathrm{O}_{7-\delta}\) might be called the 0213 compound, and \(\left(\mathrm{La}_{1-x} M_{x}\right)_{2} \mathrm{CuO}_{4-\delta}\) could be called 2001.

\section*{C. Bi-Sr Compounds}

Now that the overall structures and interrelationships of the BiSr and TlBa high-temperature superconductors have been made clear in Figs. 7.25 and 7.26 we will comment briefly about each compound. Table 7.3 summarizes the characteristics of these and related compounds.

The first member of the BiSr series, the 2201 compound with \(n=0\), has octahedrally coordinated Cu and \(T_{\mathrm{c}} \approx 9 \mathrm{~K}\) (Torardi et al., 1988b). The second mem-
ber, \(\mathrm{Bi}_{2}(\mathrm{Sr}, \mathrm{Ca})_{3} \mathrm{Cu}_{2} \mathrm{O}_{8+\delta}\), is a superconductor with \(T_{c} \approx 90 \mathrm{~K}\) (Subramanian et al., 1988a; Tarascon et al., 1988b). There are two \(\left[\mathrm{Cu} \mathrm{O}_{2}-\right]\) layers separated from each other by the [- - Ca] layer. The spacing from \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}^{-}\right.\)] to \([-\mathrm{Ca}\) ] is \(1.66 \AA\), which is less than the corresponding spacing of \(1.99 \AA\) between the levels [ \(\mathrm{Cu} \mathrm{O}_{2}-\) ] and \([--\mathrm{Y}]\) of YBaCuO . In both cases the copper ions have a pyramidal oxygen coordination of the type shown in Fig. 7.11. Superlattice structures have been reported along \(a\) and \(b\), which means that minor modifications of the unit cells repeat approximately every five lattice spacings, as explained in Sect. IX.E. The third member of the series, \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}\), has three \(\mathrm{CuO}_{2}\) layers separated from each other by [- - Ca] planes and a higher transition temperature, 110 K , when doped with Pb . The two Cu ions have pyramidal coordination, while the third is square planar.
indical
\(\mathrm{Cu}-\mathrm{O}\) and \(\mathrm{L}_{i}\) cate v cent [I
D. TI-

Th
have \(h\) their t 1989; : et al., series, no [transiti second called t

Charge-density plots of
\[
\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}
\]
indicate the same type of covalency in the \(\mathrm{Cu}-\mathrm{O}\) bonding as with the \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) and \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) compounds. They also indicate very little bonding between the adjacent \([\mathrm{Bi}-\mathrm{O}]\) and \([\mathrm{O}-\mathrm{Bi}]\) layers.

\section*{D. TI-Ba Compounds}

The TlBa compounds
\[
\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}
\]
have higher transition temperatures than their bismuth counterparts (Iqbal et al., 1989; Subramanian et al., 1988b; Torardi et al., 1988a). The first member of the series, namely \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CuO}_{6}\) with \(n=0\), has no [ -Ca ] layer and a relatively low transition temperature of \(\approx 85 \mathrm{~K}\). The second member ( \(n=1\) ), \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}\), called the 2212 compound, with \(T_{\mathrm{c}}=110 \mathrm{~K}\)
has the same layering scheme as its Bi counterpart, detailed in Figs. 7.25 and 7.26. The [ \(\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}^{-]}\)layers are thicker and closer together than the corresponding layers of the bismuth compound (Toby et al., 1990). The third member of the series, \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}\), has three \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}\right.\)-] layers separated from each other by [- - Ca] planes, and the highest transition temperature, 125 K , of this series of thallium compounds. It has the same copper coordination as its BiSr counterpart. The 2212 and 2223 compounds are tetragonal and belong to the same crystallographic space group as \(\mathrm{La}_{2} \mathrm{CuO}_{4}\).

We see from the charge-density plot of \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CuO}_{6}\) shown in Fig. 7.27 that \(\mathrm{Ba}^{2+}\) is ionic, Cu exhibits strong covalency, especially in the \(\mathrm{Cu}-\mathrm{O}\) plane, and Tl also appears to have a pronounced covalency. The bonding between the \([\mathrm{Tl}-\mathrm{O}]\) and \([\mathrm{O}-\mathrm{Tl}]\) planes is stronger than that between the \([\mathrm{Bi}-\mathrm{O}]\) and \([\mathrm{O}-\mathrm{Bi}]\) planes of \(\mathrm{Bi}-\mathrm{Sr}\).


Figure 7.27 Contours of constant charge density on a logarithmic scale in two high-symmetry crystallographic planes of \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CuO}_{6}\). Oxygen atoms \(O(1), O(2)\), and \(O(3)\) are denoted 1,2 , and 3 , respectively. The planar \(\mathrm{Cu}-\mathrm{O} 1\) binding is strongest (Hamann and Mattheiss, 1988; see Pickett, 1989).

\section*{E. Modulated Structures}

The x-ray and neutron-diffraction patterns obtained during crystal structure determinations of the bismuth cuprates \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\) exhibit weak satellite lines with spacings that do not arise from an integral multiple of the unit cell dimensions. These satellites have modulation periods of \(21 \AA, 19.6 \AA\), and \(20.8 \AA\), respectively, for the \(n=0,1\), and 2 compounds (Li et al., 1989). Since the lattice constant \(a=5.41 \AA(b=5.43 \AA)\) for all three compounds, this corresponds to a superlattice with unit cell of dimensions \(\approx 3.8 a, b, c\), with the repeat unit along the \(a\) direction equal to \(\approx 3.8 a\) for all three compounds. A modulation of \(4.7 b\) has also been reported (Kulik et al., 1990). This structural modulation is called incommensurate because the repeat unit is not an integral multiple of \(a\).

Substitutions dramatically change this modulation. The compound
\[
\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{1-x} \mathrm{Y}_{x} \mathrm{Cu}_{2} \mathrm{O}_{y}
\]
has a period that decreases from about \(4.8 b\) for \(x=0\) to the commensurate value \(4.0 b\) for \(x=1\) (Inoue et al., 1989; Tamegai et al., 1989). Replacing Cu by a transition metal ( \(\mathrm{Fe}, \mathrm{Mn}\), or Co ) produces nonsuperconducting compounds with a structural modulation that is commensurate with the lattice spacing (Tarascon et al., 1989b). A modulation-free bismuth-lead cuprate superconductor has been prepared (Manivannan et al., 1991). Kistenmacher (1989) examined substitution-induced superstructures in \(\mathrm{YBa}_{2}\left(\mathrm{Cu}_{1-x} M_{x}\right)_{3} \mathrm{O}_{7}\). Superlattices with modulation wavelengths as short as \(24 \AA\) have been prepared by employing ultra-thin deposition techniques to interpose insulating planes of \(\mathrm{PrBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) between superconducting \(\mathrm{Cu}-\mathrm{O}\) layers of \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) (Jakob et al., 1991; Lowndes et al., 1990; Pennycook et al., 1991; Rajagopal and Mahanti, 1991; Triscone et al. 1990). Tanaka and Tsukada (1991) used the Kronig-Penney model (Tanaka and

Tsukada, 1989a, b) to calculate the quasiparticle spectrum of superlattices.

\section*{F. Aligned Tl-Ba Compounds}

A series of aligned thallium-based superconducting compounds that have the general formula \(\mathrm{TlBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{5+2 n}\) with \(n\) varying from 0 to 5 has been reported (Ihara et al., 1988; Rona, 1990). These constitute a series from 1201 to 1245. They have superconducting transition temperatures almost as high as the \(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{6+2 n}\) compounds. Data on these compounds are listed in Table 7.3.

\section*{G. Lead Doping}

In recent years a great deal of effort has been expended in synthesizing leaddoped superconducting cuprate structures (Itoh and Uchikawa, 1989). Examples involve substituting Pb for Bi (Dou et al., 1989; Zhengping et al., 1990), for T1 (Barry et al., 1989; Mingzhu et al., 1990), or for both Bi and Tl (Iqbal et al., 1990). Different kinds of Pb , Y-containing superconductors have also been prepared (cf. Mattheiss and Hamann, 1989; Ohta and Maekawa, 1990; Tang et al., 1991; Tokiwa et al., 1990, 1991).

\section*{X. ALIGNED HgBaCaCuO}

The series of compounds
\[
\mathrm{HgBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+4}
\]
where \(n\) is an integer, are prototypes for the Hg family of superconductors. The first three members of the family, with \(n=\) \(0,1,2\), are often referred to as \(\mathrm{Hg}-1201\), \(\mathrm{Hg}-1212\), and \(\mathrm{Hg}-1223\), respectively. They have the structures sketched in Fig. 7.28 (Tokiwa-Yamamoto et al., 1993; see also Martin et al., 1994; Putilin et al., 1991). The lattice constants are \(a=3.86 \AA\) for all of them, and \(c=9.5,12.6\), and \(15.7 \AA\) for \(n=0,1,2\), respectively. The atom positions of the \(n=1\) compound are listed in Table 7.6 (Hur et al., 1994). The figure is drawn


Figure 7.28 Structural models for the series \(\mathrm{HgBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+4}\). The first three members with \(n=0,1,2\) are shown (parts a, b, and c, respectively) (Tokiwa-Yamamoto et al., 1993).

Table 7.6 Normalized Atom Positions in the \(\underline{\text { Tetragonal Unit Cell of } \mathrm{HgBa}_{2} \mathrm{Ca}_{0.86} \mathrm{Sr}_{0.14} \mathrm{Cu}_{2} \mathrm{O}_{6+\delta}{ }^{a}}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Layer & Atom & \(x\) & \(y\) & \(z\) \\
\hline \multirow{2}{*}{[ Hg - -]} & Hg & 0 & 0 & 1 \\
\hline & O(3) & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 1 \\
\hline \multirow{3}{*}{[ O - Ba]} & O(2) & 0 & 0 & 0.843 \\
\hline & Ba & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.778 \\
\hline & Cu & & 0 & 0.621 \\
\hline \multirow[t]{2}{*}{\(\left[\mathrm{Cu} \mathrm{O}_{2}-\right.\) ]} & O(1) & 0 & \(\frac{1}{2}\) & 0.627 \\
\hline & O(1) & \(\frac{1}{2}\) & 0 & 0.627 \\
\hline \multirow[t]{2}{*}{[- - Ca]} & \(\mathrm{Ca}, \mathrm{Sr}\) & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline & O(1) & \(\frac{1}{2}\) & 0 & 0.373 \\
\hline \multirow[t]{2}{*}{\(\left[\mathrm{Cu} \mathrm{O}_{2}-\right.\) ]} & O(1) & 0 & \(\frac{1}{2}\) & 0.373 \\
\hline & Cu & 0 & 0 & 0.379 \\
\hline & Ba & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0.222 \\
\hline \multirow[t]{3}{*}{[ O - Ba]} & & & & \\
\hline & O(2) & 0 & 0 & 0.157 \\
\hline & O(3) & \(\frac{1}{2}\) & \(\frac{1}{2}\) & 0 \\
\hline [ \(\mathrm{Hg}-\mathrm{-}\) ] & Hg & 0 & 0 & 0 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) Unit cell dimensions \(a=3.8584 \AA\) and \(c=12.6646 \AA\), space group is \(P 4 / \mathrm{mmm}, D_{4 h}^{1}\). The Hg site is \(91 \%\) occupied and the \(\mathrm{O}(3)\) site is \(11 \%\) occupied ( \(\delta=0.11\) ). The data are from Hur et al. (1994).
}


Figure 7.29 Schematic structure of the \(\mathrm{HgBa}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{6+\delta}\) compound which is also called \(\mathrm{Hg}-1212\) (Meng et al., 1993a).
with mercury located in the middle layer of the unit cell, while the table puts Hg at the origin (000) and Ca in the middle ( \(\frac{1}{2} \frac{1}{2} \frac{1}{2}\) ). Figure 7.29 presents the unit cell for the \(n=1\) compound \(\mathrm{HgBa}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{6+\delta}\) drawn with Ca in the middle (Meng et al., 1993a). The symbol \(\delta\) represents a small excess of oxygen located in the center of the top and bottom layers, at positions \(\frac{1}{2} \frac{1}{2} 0\) and \(\frac{1}{2} \frac{1}{2} 1\) which are labeled "partial occupancy" in the figure. If this oxygen were included the level symbol would be \([\mathrm{Hg}-\mathrm{O}]\) instead of [ Hg - -]. These Hg compound structures are similar to those of the series \(\mathrm{TlBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+4}\) mentioned above in Section IX.F.

We see from Fig. 7.28 that the copper atom of \(\mathrm{Hg}-1201\) is in the center of a stretched octahedron with the planar oxygens \(O(1)\) at a distance of \(1.94 \AA\), and the apical oxygens \(\mathrm{O}(2)\) of the \([\mathrm{O}-\mathrm{Ba}]\) layer much further away ( \(2.78 \AA\) ). For \(n=1\) each copper atom is in the center of the


Figure 7.30 Layering schemes of three \(\mathrm{HgBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+4}\) compounds, using the notation of Fig. 7.25.
base of a tetragonal pyramid, and for \(n=2\) the additional \(\mathrm{CuO}_{2}\) layer has Cu atoms which are square planar coordinated. The layering scheme stacking rules of Section VI.C are obeyed by the Hg series of compounds, with metal ions in adjacent layers alternating between edge ( E ) and centered (C) sites, and oxygen in adjacent layers always at different sites. We see from Table 7.6 that the \([\mathrm{O}-\mathrm{Ba}]\) layer is strongly puckered and the \(\left[\mathrm{Cu} \mathrm{O} \mathrm{O}_{2}-\right]\) layer is only slightly puckered.

The relationships between the layering scheme of the \(\mathrm{HgBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+4}\) series of compounds and those of the other cuprates may be seen by comparing the sketch of Fig. 7.30 with that of Fig. 7.25. We see that the \(n=1\) compound \(\mathrm{HgBa}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{6}\) is quite similar in structure to \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) with Ca replacing Y in the center and Hg replacing the chains [ \(\mathrm{Cu} \mathrm{O}-]\). More surprising is the similarity between the arrangement of the atoms in the unit cell of each
\[
\mathrm{HgBa}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+4}
\]
compound and the arrangement of the atoms in the semi-unit cell of the corresponding
\[
\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{n} \mathrm{Cu}_{n+1} \mathrm{O}_{2 n+6}
\]
compound. They are the same except for the replacement of the [ \(\mathrm{Tl}-\mathrm{O}\) ] layer by [ \(\mathrm{Hg}-\mathrm{-}\), and the fact that the thallium compounds are body centered and the Hg ones are aligned.

Supercells involving polytypes with ordered stacking sequences of different phases, such as \(\mathrm{Hg}-1212\) and Hg -1223, along the \(c\) direction have been reported. The stoichiometry is often
\[
\mathrm{Hg}_{2} \mathrm{Ba}_{4} \mathrm{Ca}_{3} \mathrm{Cu}_{5} \mathrm{O}_{x}
\]
corresponding to equal numbers of the \(\mathrm{Hg}-1212\) and \(\mathrm{Hg}-1223\) phases (Phillips, 1993; Schilling et al., 1993, 1994).

Detailed structural data have already been reported on various Hg family compounds such as \(\mathrm{HgBa}_{2} \mathrm{CuO}_{4+\delta}\) (Putlin et al., 1993) and the \(n=1\) compound with partial Eu substitution for Ca (Putlin et al., 1991). The compound
\[
\mathrm{Pb}_{0.7} \mathrm{Hg}_{0.3} \mathrm{Sr}_{2} \mathrm{Nd}_{0.3} \mathrm{Ca}_{0.7} \mathrm{Cu}_{3} \mathrm{O}_{7}
\]
has Hg in the position ( \(0.065,0,0\) ), slightly displaced from the origin of the unit cell (Martin et al., 1994). Several researchers have reported synthesis and pretreatment procedures (Adachi et al., 1993; Itoh et al., 1993; Isawa 1994a; Meng, 1993b; Paranthaman, 1994; Paranthaman et al., 1993). Lead doping for Hg has been used to improve the superconducting properties (Iqbal et al., 1994; Isawa et al., 1993; Martin et al., 1994).

\section*{XI. BUCKMINSTERFULLERENES}

The compound \(\mathrm{C}_{60}\), called buckminsterfullerene, or fullerene for short, con-
sists of 60 carbon atoms at the vertices of the dotriacontohedron (32-sided figure) that is sketched in Fig. 3.35 and discussed in Chapter 3, Section XVI. The term fullerene is used here for a wider class of compounds \(\mathrm{C}_{n}\) with \(n\) carbon atoms, each of whose carbon atoms is bonded to three other carbons to form a closed surface, with the system conjugated such that for every resonant structure each carbon has two single bonds and one double bond. The smallest possible compound of this type is tetrahedral \(\mathrm{C}_{4}\), which has the three resonant structures shown in Fig. 7.31. Cubic \(\mathrm{C}_{8}\) is a fullerene, and we show in Problem 17 that it has nine resonant structures. Icosahedral \(\mathrm{C}_{12}\) is also a fullerene, but octahedral \(\mathrm{C}_{6}\) and dodecahedral \(\mathrm{C}_{20}\) are not because their carbons are bonded to more than three neighbors. These hypothetical smaller \(C_{n}\) compounds have never been synthesized, but the larger ones, such as \(\mathrm{C}_{60}, \mathrm{C}_{70}, \mathrm{C}_{76}, \mathrm{C}_{78}\), and \(\mathrm{C}_{82}\), have been made and characterized. Some of them have several forms, with different arrangements of polygons. Clusters of buckminsterfullerenes, such as icosahedral \(\left(\mathrm{C}_{60}\right)_{13}\), have also been studied (T. P. Martin et al., 1993).

There are several interesting geometrical characteristics of fullerenes (Chung and Sternberg, 1993). Since each carbon (vertex) joins three bonds (edges) and each edge has two vertices, the number of edges \(E\) in a structure \(\mathrm{C}_{n}\) is \(50 \%\) greater than the number of vertices \(V\). There is a general theorem in topology, called Euler's Theorem, that the number of faces \(F\) of a


Figure 7.31 The three resonant structures of the (hypothetical) tetrahedral compound \(\mathrm{C}_{4}\).
polyhedron is given by the formula
\[
\begin{equation*}
F=E-V+2 \tag{7.8}
\end{equation*}
\]

In a fullerene \(\mathrm{C}_{n}\) where \(n=V\) three edges meet at each vertex, so we have
\[
\begin{align*}
& E=3 V / 2  \tag{7.9}\\
& F=\frac{V}{2}+2 \tag{7.10}
\end{align*}
\]

It is shown in Problem 16 that
\[
\begin{align*}
E & =\frac{1}{2} \sum_{s} s F_{s}  \tag{7.11a}\\
V & =\frac{1}{3} \sum_{s} s F_{s}, \tag{7.11b}
\end{align*}
\]
where \(F_{s}\) is the number of faces with \(s\) sides, and of course,
\[
\begin{equation*}
F=\sum_{s} F_{s} . \tag{7.12}
\end{equation*}
\]

Combining Eqs. (7.10)-(7.12) gives the fullerene face formula
\[
\begin{equation*}
\sum_{s}(6-s) F_{s}=12 . \tag{7.13}
\end{equation*}
\]

This expression does not place any restrictions on the number of hexagons ( \(F_{s}\) ), but it does severely limit the number of other polyhedra. The two smallest hypothetical fullerenes, the tetrahedron and the cube, have no hexagons, and the larger ones consist of 12 pentagons ( \(F_{s}\) ), from Eq. (7.13), and numerous hexagons. For example, the molecule \(\mathrm{C}_{60}\) with \(V=60\) has 12 pentagons and 20 hexagons. Table 7.7 gives the geometric characteristics of the five Platonic solids, the solids generated by truncating all of their vertices, and several other regular polygons, most of which are fullerenes. The fullerenes of current interest are \(\mathrm{C}_{60}\) and larger molecules consisting of 12 pentagons and numerous hexagons, such as \(\mathrm{C}_{70}, \mathrm{C}_{76}, \mathrm{C}_{78}\), and \(\mathrm{C}_{82}\). Some have several varieties, such as the isomers of \(\mathrm{C}_{78}\) with the symmetries \(C_{2 u}, D_{3}\), and \(D_{3 h}\) (Diederich and Whetten, 1992).

The outer diameter of the \(\mathrm{C}_{60}\) molecule is \(7.10 \AA\) and its van der Waals separation is \(2.9 \AA\), so that the nearestneighbor distance (effective diameter) in a

Table 7.7 Characteristics of Several Regular Solids \({ }^{a}\)
\begin{tabular}{lcccl}
\hline Figure & Vertices & Edges & Faces & Face (polygon) type \\
\hline Tetrahedron & 4 & 6 & 4 & all equilateral triangles \\
Octahedron \(^{b}\) & 6 & 12 & 8 & all equilateral triangles \\
Cube & 8 & 12 & 6 & all squares \\
Icosahedron \(^{b}\) & 12 & 30 & 20 & all equilateral triangles \\
\begin{tabular}{l} 
Dodecahedron \\
(pentagonal)
\end{tabular} & & & \\
Hexadecahedron & 20 & 30 & 12 & all regular pentagons \\
Truncated tetrahedron & 12 & 42 & 16 & 12 pentagons, 4 hexagons \\
Truncated octahedron & 24 & 18 & 8 & 4 equilateral triangles, 4 hexagons \\
Truncated cube & 24 & 36 & 14 & 6 squares, 8 hexagons \\
Dotriacontohedron & & 36 & 14 & 8 equilateral triangles, 6 octagons \\
(truncated icosahedron) & 60 & 90 & 32 & 12 regular pentagons, 20 hexagons \\
Truncated dodecahedron & 60 & 90 & 32 & 20 equilateral triangles, 12 decagons \\
Heptatriacontohedron & 70 & 105 & 37 & 12 pentagons (2 regular), 25 hexagons \\
Tetracontahedron & 76 & 114 & 40 & 12 pentagons, 28 hexagons \\
Hentetracontohedron & 78 & 116 & 41 & 12 pentagons, 29 hexagons \\
Dotetracontohedron & 84 & 126 & 44 & 12 pentagons, 32 hexagons \\
Large Fullerene & \(n\) & \(\frac{3}{2} n\) & \(\frac{1}{2} n+2\) & 12 pentagons, \(\frac{1}{2} n-10\) hexagons \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) The first five solids are the Platonic solids, and the seventh to eleventh are truncations of the Platonic solids. When carbons occupy the vertices all correspond to fullerenes except the octahedron and the icosahedron for which \(3 V \neq 2 E\). The smallest compounds in this table have never been synthesized.
\({ }^{b}\) Not a fullerene because the vertices have more than three edges.
}
solid is \(10.0 \AA\). The bonds shared by a five-membered and a six-membered ring are \(1.45 \AA\) long, while those between two adjacent six-membered rings are \(1.40 \AA\) long. Above 260 K these molecules form a face centered cubic lattice with lattice constant \(14.2 \AA\); below 260 K it is simple cubic with \(a=7.10 \AA\) (Fischer et al., 1991; Kasatani et al., 1993; Troullier and Martins, 1992). When \(\mathrm{C}_{60}\) is doped with alkali metals to form a superconductor it crystallizes into a face centered cubic lattice with larger octahedral and smaller tetrahedral holes for the alkalis. The \(\mathrm{C}_{60}\) ions are orientationally disordered in the lattice (Gupta and Gupta, 1993).

\section*{XII. SYMMETRIES}

Earlier in this chapter we mentioned the significance of the horizontal reflection plane \(\sigma_{h}\) characteristic of the hightemperature superconductors, and noted that most of these superconductors are body centered. In this section we will point out additional symmetries that are present. Table VI-14 of our earlier work (Poole et al., 1988) lists the point symmetries at the sites of the atoms in a number of these compounds.

In the notation of group theory the tetragonal structure belongs to the point group \(4 / \mathrm{mmm}\) (this is the newer international notation for what in the older Schönflies notation was written \(D_{4 h}\) ). The unit cell possesses the inversion operation at the center, so when there is an atom at position ( \(x, y, x\) ), there will be another identical atom at position ( \(-x,-y,-z\) ). The international symbol \(4 / \mathrm{mmm}\) indicates the presence of a fourfold axis of symmetry \(C_{4}\) and three mutually perpendicular mirror planes \(m\). The Schönflies notation \(D_{4 h}\) also specifies the fourfold axis, \(h\) signifying a horizontal mirror plane \(\sigma_{h}\) and \(D\) indicating a dihedral group with vertical mirror planes.

We see from Fig. 7.32 that the \(z\)-axis is a fourfold \(\left(90^{\circ}\right)\) symmetry axis called \(C_{4}\), and that perpendicular to it are twofold \(\left(180^{\circ}\right)\) symmetry axes along the \(x\) and \(y\) directions, called \(C_{2}\), and also along the diagonal directions ( \(C_{2}^{\prime}\) ) in the midplane. There are two vertical mirror planes \(\sigma_{v}\), two diagonal mirror planes \(\sigma_{d}\) which are also vertical, and a horizontal mirror plane \(\sigma_{h}\). Additional symmetry operations that are not shown are a \(180^{\circ}\) rotation \(C_{2}^{z}\) around the \(z\) axis,
\[
\begin{equation*}
\mathrm{C}_{2}^{z}=\mathrm{C}_{4}^{z} \mathrm{C}_{4}^{z}, \tag{7.14}
\end{equation*}
\]


Figure 7.32 Symmetry operations of the tetragonal unit cell showing a fourfold rotation axis \(C_{4}\), three twofold axes \(C_{2}\), and reflection planes of the vertical \(\sigma_{z x}=\sigma_{c}\), horizontal \(\sigma_{x y}=\sigma_{h}\); and diagonal \(\sigma_{d}\) types.


Figure 7.33 Rotational symmetry operations of an orthorhombic unit cell (a) with rectangular distortion, and (b) with rhombal distortion from an originally tetragonal cell.
and the improper fourfold rotation \(S_{4}^{z}\) around \(z\) that corresponds to \(C_{4}^{z}\) followed by, or preceded by, \(\sigma_{h}\),
\[
\begin{equation*}
\mathrm{S}_{4}^{z}=\mathrm{C}_{4}^{z} \sigma_{h}=\sigma_{\mathrm{h}} \mathrm{C}_{4}^{z}, \tag{7.15}
\end{equation*}
\]
where \(C_{4}^{z}\) and \(\sigma_{h}\) commute.
The orthorhombic structure has mmm , \(D_{2 h}\) symmetry. We see from Fig. 7.33 that both the rectangular and rhombal unit cells, which correspond to Figs. 7.4a and 7.4b, respectively, have three mutually perpendicular twofold axes, and that they also have three mutually perpendicular mirror planes \(\sigma\), which are not shown. The two cases differ in having their horizontal axes and vertical planes oriented at \(45^{\circ}\) to each other.

Cubic structures, being much higher in symmetry, have additional symmetry operations, such as fourfold axes \(C_{4}^{x}, C_{4}^{y}\), and \(C_{4}^{z}\) along each coordinate direction, threefold axes \(C_{3}\) along each body diagonal, and numerous other mirror planes. These can be easily seen from an examination of Fig. 7.1. Buckyballs belong to the icosohedral group, which has twofold \(\left(C_{2}\right)\), fivefold \(\left(C_{5}\right)\), and sixfold ( \(C_{6}\) ) rotation axes, horizontal reflection planes, inversion symmetry, and sixfold ( \(S_{6}\) ) and tenfold ( \(S_{10}\) ) improper rotations, for a total of 120 individual symmetry operations in all (Cotton, 1963).

\section*{XIII. CRYSTAL CHEMISTRY}

In Chapter 3 we briefly described the structures of some classical superconductors, and in this chapter we provided a more detailed discussion of the structures of the cuprate superconductors. The question arises of how structure is related to the presence of metallic and superconducting properties.

Villars and Phillips (1988; Phillips, 1989a) proposed to explain the combinations of elements in compounds that are favorable for superconductivity at relatively high temperatures by assigning three metallic coordinates to each atom, namely an electron number \(N_{e}\), a size \(r\), and an electronegativity \(X\). The electron numbers are given in Table 3.1 for most of the elements, with \(N_{e}=3\) for all of the rare earths and actinides; several correlations of \(N_{e}\) with \(T_{c}\) have already been given in Chapter 3. The sizes and electronegativities were determined empirically from a study of some 3,000 binary intermetallic compounds of types \(A B, A B_{2}, A B_{3}\), and \(A_{2} B_{5}\). The resulting values for each atom are listed in Fig. 7.34 together with their electron numbers. These values, although arrived at empirically on the basis of the constraint of self-consistency, do have a spectroscopic basis, and thus are called, respectively, spectroscopic radii and spectroscopic electronegativities.

The metallic coordinates of the atoms can be employed to calculate the three Villars-Phillips (VP) coordinates for each compound, namely (a) average number of valence electrons \(N_{\mathrm{v}}=\left\langle N_{\mathrm{e}}\right\rangle_{\mathrm{av}}\), (b) spectroscopic electronegativity difference \(\Delta X\), and (c) spectroscopic radius difference \(\Delta R\), where we are using the VP notation. For example, for the compound NbN , with \(T_{\mathrm{c}}=17.3 \mathrm{~K}\), we have, using the data from Fig. 7.34,
\[
\begin{align*}
N_{\mathrm{v}} & =\frac{1}{2}(4+5)=4.5 \\
\Delta R & =2.76-0.54=2.22  \tag{7.16}\\
\Delta X & =2.03-2.85=-0.82
\end{align*}
\]


Figure 7.34 Periodic table listing metallic valences (upper right), sizes (center), and electronegativities (bottom) in the box of each element, according to the Villars-Phillips model (Phillips, 1989a, p. 321).

The VP coordinates for the A15 compound \(\mathrm{Ge}_{3} \mathrm{Nb}\) with \(T_{\mathrm{c}}=23.2 \mathrm{~K}\) are calculated as follows:
\[
\begin{align*}
N_{\mathrm{v}} & =\frac{1}{4}(4+3 \times 5)=4.75 \\
\Delta R & =\frac{1}{2}(1.56-2.76)=-0.60  \tag{7.17}\\
\Delta X & =\frac{1}{2}(1.99-2.03)=-0.02
\end{align*}
\]

The text by Phillips (1989a) tabulates the VP coordinates for more than 60 superconductors with \(T_{c}>10 \mathrm{~K}\) and for about 600 additional superconductors with transition temperatures in the range \(1<T_{c}<\) 10 K .

When the points for the 600 com pounds with lower transition temperatures are plotted on a three-dimensional coordinate system with axes \(N_{\mathrm{v}}, \Delta X\), and \(\Delta R\), they scatter over a large range of values, but when the points for compounds with \(T_{\mathrm{c}}>10 \mathrm{~K}\) are plotted, they are found to cluster in three regions, called islands, as shown in Fig. 7.35. Island A contains the A15 compounds plus some complex intermetallics, island \(B\) consists mainly of the NbN family plus some borides and car-
bides, and island C has closely clustered Chevrel phases, with the high \(-T_{\mathrm{c}}\) cuprates on the left. When ternary ferroelectric oxides with Curie temperatures that exceed \(500^{\circ} \mathrm{C}\) are plotted in the same diagram as the superconductors they cluster between the Chevrel group and the cuprates. These ferroelectric oxides are not superconductors, though Phillips (1989a) suggested that doping them with Cu and alkaline earths could produce superconductors with high transition temperatures.

Thus we see that the high transition temperatures of classical superconductors are favored by particular structures and by particular combinations of metallic coordinates for each of these structures. The Villars-Phillips approach provides both structural and atomic criteria for the presence of high \(T_{c}\).

We have discussed the Phillips approach to a crystal chemistry explanation of the superconductivity of the cuprates. Other researchers have offered alternate, in some cases somewhat related, approaches to understanding the commonali-


سriment \(\begin{array}{lll}\because & \text { m } \\ \because & \ddots & \ddots\end{array}\)


Figure 7.35 Regions in the Villars-Phillips configuration space where superconductivity occurs at relatively high temperatures (Phillips, 1989a, p. 324; Villars and Phillips, 1988).
ties of the various high-temperature and classical superconductors (Adrian, 1992; Schneider, 1992; Tajima and Kitazawa, 1990; Whangbo and Torardi, 1991; Torrace, 1992; Yakhmi and Iyer, 1992; Zhang and Sato, 1993).

\section*{XIV. COMPARISON WITH CLASSICAL SUPERCONDUCTOR STRUCTURES}

Many elements such as copper and lead are face centered cubic, while many other elements, such as niobium, are body centered cubic, with \(a=3.30 \AA\) for Nb . The \(A 15\) compounds, such as \(\mathrm{Nb}_{3} \mathrm{Se}\), are (simple) cubic with lattice constant \(a \approx\) \(3.63 \sqrt{2}\) and have parallel chains of Nb atoms \(5.14 \AA\) apart. Other types of classical superconductors, such as the Laves and Chevrel phases, are cubic or close to cubic. The new oxide superconductors are tetragonal or orthorhombic close to tetragonal, and they all have \(a \approx b \approx 3.85 \AA\), which is somewhat greater than the value for the \(A 15\) compounds. The third lattice constant \(c\) varies with the compound, with the values \(13.2 \AA\) for \(\mathrm{LaSrCuO}, \circ 11.7 \AA\) for YBaCuO , and \(\approx 23\) to \(36 \AA\) for the

BiSrCaCuO and TlBaCaCuO compounds. These differences occur because the number of copper-oxygen and other planes per unit cell, as well as the spacings between them, vary from compound to compound due to the diverse arrangements of atoms between the layers. Thus relatively highsymmetry crystal structures are characteristic of many superconductors.

\section*{XV. CONCLUSIONS}

Almost all the high-temperature oxide superconductors have point symmetry \(D_{4 h}\) ( \(a=b\) ) or symmetry close to \(D_{4 h}(a \approx b)\). These superconductors consist of horizontal layers, each of which contains one positive ion and either zero, one, or two oxygens. The copper ions may be coordinated square planar, pyramidal, or octahedral, with some additional distortion. Copper oxide layers are never adjacent to each other, and equivalent layers are never adjacent. The cations alternate sites vertically, as do the oxygens. The copper oxide layers are either flat or slightly puckered, in contrast to the other metal oxide layers, which are generally far from planar. The highest \(T_{c}\) compounds have metal layers
1. Shor hole aton 1] \(r_{0}\). the
2. Sho hole ator
(e.g., Ca) with no oxygens between the copper oxide planes.

\section*{FURTHER READING}

The Wyckoff series, Crystal Structures (1963, Vol. 1; 1964, Vol. 2; 1965, Vol. 3; 1968, Vol. 4) provides a comprehensive tabulation of crystal structures, but many important classical superconductors such as the A15 compounds are not included. The International Tables for X-Ray Crystallography (Henry and Lonsdale, 1965, Vol. 1) provide the atom positions and symmetries for all of the crystallographic space groups. The Strukturbericht notation, e.g., A15 for \(\mathrm{Nb}_{3} \mathrm{Ge}\), is explained in Pearson's compilation (1958).

Details of cuprate crystallographic structures are given by Beyers and Shaw (1989; \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\) ), Burns and Glazer (1990), Hazen (1990), Poole et al. (1988, Chapter 6), Santoro (1990), and Yvon and François (1989). Phillips (1989a) provides an extensive discussion of the crystal chemistry of the cuprates. Our earlier work (Poole et al., 1988, p. 107) lists the site symmetries in perovskite and cuprate structures. Billinge et al. (1994) reviewed lattice effects in high temperature superconductors, and Zhu (1994) reviewed structural defects in \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}\).

The microstructure of high temperature superconductors studied by electron microscopy are reviewed by Chen (1990), Gai and Thomas (1992), Gross and Koelle (1994), and Shekhtman (1993). Oxygen stoichiometry in HTSC's is reviewed by Chandrashekhar et al., (1994), Green and Bagley (1990) and by Routbert and Rothman (1995). Electron-doped superconductors are reviewed by Almasan and Maple (1991) and by Fontcuberta and Fàbrega (1995).

The March 1992 special issue of Accounts of Chemical Research (Vol. 25, No. 3) is devoted to reviews of buckminsterfullerenes. Two recent books are edited by Billups and Ciofolini (1993) and by Kroto and Walton (1993), and the review by Dresselhaus et al. (1994) are devoted to fullerenes. The thallium compounds were reviewed by Hermann and Yakhimi (1993) and the mercury superconductors by Chu (1995).

\section*{PROBLEMS}
1. Show that the radius of the octahedral hole in an fcc close-packed lattice of atoms of radius \(r_{0}\) is equal to [ \(\sqrt{2}-\) \(1] r_{0}\). What is the radius of the hole if the lattice is formed from oxygen ions?
2. Show that the radius of the tetrahedral hole in an fcc close-packed lattice of atoms of radius \(r_{0}\) is equal to \(\left[(3 / 2)^{1 / 2}\right.\)
\(-1) r_{0}\). What is the radius of the hole if the lattice is formed from oxygen ions?
3. The "image perovskite" unit cell is generated from the unit cell of Fig. 7.1 by shifting the origin from the point \((0,0,0)\) to the point \(\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\). Sketch this "image" cell. Show that the planes of atoms in this cell are the image planes related by the body centering operation to those of the original perovskite. This image cell is the one that usually appears to represent perovskite in solid-state physics texts.
4. Calculate the distance between the yttrium atom and its nearest-neighbor \(\mathrm{Ba}, \mathrm{Cu}\), and O atoms in the superconductor \(\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\).
5. Write down the \(x, y, z\) coordinates for the five numbered atoms in the initial plane of Fig. 7.16. Give the explicit symmetry operations, with the proper choice of sign in Eq. (7.5) for each case, that transform these five atoms to their indicated new positions on the other three planes.
6. Explain how the international and Schönflies symbols, \(m m m\) and \(D_{2 h}\) respectively, are appropriate for designating the point group for the orthorhombic superconductors.
7. What are the symmetry operations of the A15 unit cell of Fig. 3.19?
8. The \(D_{2 h}\) point group consists of eight symmetry operations that leave an orthorhombic cell unchanged, namely an identity operation \(E\) that produces no change, three twofold rotations \(C_{2}^{i}\) along \(i=x, y, z\), three mirror reflection planes \(\sigma_{i j}\), and an inversion \(i\). Examples of these symmetry operations are
\[
\begin{array}{llll}
E & x \rightarrow x & y \rightarrow y & z \rightarrow z \\
C_{2}^{x} & x \rightarrow x & y \rightarrow-y & z \rightarrow-z \\
\sigma_{x y} & x \rightarrow x & y \rightarrow y & z \rightarrow-z \\
i & x \rightarrow-x & y \rightarrow-y & z \rightarrow-z .
\end{array}
\]

A group has the property that successive application of two symmetry oper-
ations produces a third. Thus, we have, for example,
\[
\begin{aligned}
C_{2}^{x} \sigma_{x y} & =\sigma_{z x} \\
C_{2}^{y} C_{2}^{x} & =C_{2}^{z} \\
i C_{2}^{y} & =\sigma_{z x} \\
\sigma_{z x} \sigma_{y z} & =C_{2}^{z} .
\end{aligned}
\]

These results have been entered into the following multiplication table for the \(D_{2 h}\) group. Fill in the remainder of the table. Hint: each element of a group appears in each row and each column of the multiplication table once and only once.

11. Draw the analogue of Fig. 7.19 for the \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) compound, showing the location of all of the Cu and O atoms. How do Figs. 7.21 and 7.22 differ for \(\mathrm{Nd}_{2} \mathrm{CuO}_{4}\) ?
12. Calculate the Villars-Phillips coordinates for the three superconductors \(\mathrm{MoP}_{3}, \mathrm{~V}_{3} \mathrm{Sn}\), and NbTi .
13. Select one of the compounds \(\left(\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{CuO}_{6}, \quad \mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}\right.\), \(\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}, \mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6}\) ) and construct a table for it patterned after Tables 7.5 or 7.6 .
14. Locate a twofold \(\left(C_{2}\right)\), fivefold \(\left(C_{5}\right)\), and sixfold ( \(C_{6}\) ) rotation axis, and also a reflection plane \(\sigma_{h}\) in the buckyball sketch of Fig. 3.35. How many of each type of operation are there?
15. We can see by examining Fig. 3.35 that a buckyball has inversion symmetry. Identify a sixfold ( \(S_{6}\) ) and tenfold ( \(S_{10}\) ) improper rotation axis, where an improper rotation is understood to involve a sequential inversion and a proper rotation. How many \(S_{6}\) and how many \(S_{10}\) axes are there?
16. Show that the total number of edges \(E\) in a fullerene is given by
\[
E=\frac{1}{2} \sum_{s} s F_{s},
\]
and the number of vortices is
\[
V=\frac{1}{3} \sum_{s} s F_{s},
\]
where \(F_{s}\) is the number of faces with \(s\) sides.
17. Show that the cubic fullerene compound \(\mathrm{C}_{8}\) has nine resonant structures.
I.
thr
teI In atc roi ne: Ca the

\section*{References}
J. Aarts, J. Meiresonne, H. Sprey, W. Maj, and P. Zagwijn, Phys. Rev. B 41, 4739 (1990).
M. Abbate, M. Sacchi, J. J. Wnuk, L. W. M. Schreurs, Y. S. Wang, R. Lof, and J. C. Fuggle, Phys. Rev. B 42, 7914 (1990).
M. Abramowitz and I. A. Stegun, Eds., "Handbook of Mathematical Functions," NBS, U.S. Gov. Printing Off., Washington, DC, 1964.
A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 35, 1442 (1957); Sov. Phys. JETP 5, 1174 (1957).
D. Achkir, D. Poirier, C. Bourbonnais, G. Quirion, C. Lenoir, P. Batail, and D. Jérome, Phys. Rev. B 47, 11595 (1993).
J. V. Acrivos, L. Chen, C. M. Burch, P. Metcalf, J. M. Honig, R. S. Liu, and K. K. Singh, Phys. Rev. B, in press.
S. Adachi, A. Tokiwa-Yàmamoto, M. Itoh, K. Isawa, and H. Yamauchi, Physica C 214, 313 (1993).
F. J. Adrian, Phys. Rev. Lett. 61, 2148 (1988); see also 63, 688, 690 (1989).
F. J. Adrian, Chem. Eng. News Dec. 21, 24 (1992).
G. Aeppli, S. M. Hayden, H. A. Mook, Z. Fisk, S.-W. Cheong, D. Rytz, J. P. Remeika, G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 62, 2052 (1989).
N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 46, 5814 (1992).
N. Agraït, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, 12345 (1993).
I. J. R. Aitchison and N. E. Mavromatos, Phys. Rev. B 39, 6544 (1989).
M. Akera and T. Andu, in "Proc. 8th Int. Conf. on Elect. Prop. of 2-Dimensional Systems," Grenoble, France, 1989.
H. Akera, A. H. MacDonald, S. M. Girvin, and M. R. Norman, Phys. Rev. Lett. 67, 2375 (1991).
J. Akimitsu, S. Suzuki, M. Wantanabe, and H. Sawa, Jpn. J. Appl. Phys. 27, L1857 (1988).
S. Aktas, "A Numerical Study of Magnetic Vortices in High Kappa Superconductors," Ph.D. thesis, University of South Carolina, 1993.
S. Aktas, C. P. Poole, Jr., and H. A. Farach, J. Phys. Condens. Matter 6, 7373 (1994).
N. E. Alekseevskii, N. M. Dobrovolskii, D. Ekkert, and V. I. Tsebro, JETP 72, 1145 (1977).
M. Alexander, H. Romberg, N. Nücker, P. Adelmann, J. Fink, J. T. Markert, M. B. Maple, S. Uchida, H. Takagi, Y. Tokura, A. C. W. P. James, and D. W. Murphy, Phys. Rev. B 43, 333 (1991).
A. A. Aligia, Phys. Rev. B 39, 6700 (1989).
K. Allan, A. Campion, J. Zhou, and J. B. Goodenough, Phys. Rev. B 41, 11572 (1990).
P. B. Allen, Z. Fisk, and A. Migliori, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 5, World Scientific, Singapore, 1989.
P. B. Allen, in "High-Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 9, Springer-Verlag, Berlin, 1990.
J. W. Allen, C. G. Olson, M. B. Maple, J.-S. Kang, L. Z. Liu, J.-H. Park, R. O. Anderson, W. P. Ellis, J. T. Market, Y. Dalichaouch, and R. Liu, Phys. Rev. Lett. 64, 595 (1990).
H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700 (1989).
H. Alloul, A. Mahajan, H. Casalta, and O. Klein, Phys. Rev. Lett. 70, 1171 (1993).
C. C. Almasan, J. Estrada, C. P. Poole, Jr., T. Datta, H. A. Farach, D. U. Gubser, S. A: Wolf, and L. E. Toth, Mater. Res. Soc. Symp. Proc. 99, 451 (1987).
C. C. Almasan and M. B. Maple, in "Chemistry of High Temperature Superconductors" (C. N. R. Rao, Ed.), World Scientific, Singapore, 1991.
C. C. Almasan, S. H. Han, E. A. Early, B. W. Lee, C. L. Seaman, and M. B. Maple, Phys. Rev. B 45, 1056 (1992).
E. E. Alp, J. C. Campuzano, G. Jennings, J. Guo, D. E. Ellis, L. Beaulaigue, S. Mini, M. Faiz, Y. Zhou, B. W. Veal, and J. Z. Liu, Phys. Rev. B 40, 9385 (1989).
A. Amato, C. Geibel, F. N. Gygax, R. H. Heffner, E. Knetsch, D. E. MacLaughlin, C. Schank, A. Schenck, F. Steglich, and M. Weber, Z. Phys. B 86, 159 (1992).
V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 468 (1963a); 11, 104 (1963b).
V. Ambegaokar and U. Eckern, Phys. Rev. B 44, 10358 (1991).
J. R. Anderson, D. A. Papaconstantopoulis, J. W. McCaffrey, and J. E. Schirber, Phys. Rev. B 7, 5115 (1973).
P. W. Anderson, Phys. Rev. 112, 1900 (1958).
P. W. Anderson, Phys. Rev. B 115, 2 (1959).
P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).
P. W. Anderson and J. M. Rowell, Phys. Rev. Lett. 10, 230 (1963).
P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).
P. W. Anderson, Science 235, 1196 (1987a); Phys. Rev. Lett. 59, 2497 (1987b).
P. W. Anderson, in "Frontiers and Borderlines of Many Particle Physics," Int. School of Physics "Enrico Fermi," North-Holland, Varenna, 1987.
P. W. Anderson and Z. Zou, Phys. Rev. Lett. 60, 132 (1988). (Reprinted in Halley, 1988).
P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990a); 65, 2306 (1990b).
P. W. Anderson, Physica C 185-189, 11 (1991).
P. W. Anderson and R. Schrieffer, Physics Today, June 1991, p. 54.
P. W. Anderson, Science 256, 1526 (1992).
P. W. Anderson, "A Career in Theoretical Physics," World Scientific, Singapore, 1994a.
P. W. Anderson, Amer. Scientist 82, 379 (1994b).
M. Andersson and Ö. Rapp, Phys. Rev. B 44, 7722 (1991).
Y. Ando, N. Motohira, K. Kitazawa, J. Takeya, and S. Akita, Jpn. J. Appl. Phys. 30, L1635 (1991a); Phys. Rev. Lett. 67, 2737 (1991b).
B. Andraka, J. S. Kim, G. R. Stewart, K. D. Carlson, H. H. Wang, and J. M. Williams, Phys. Rev. B 40, 11345 (1989).
O. A. Anikeenok, M. V. Eremin, R. Sh. Zhdanov, V. V. Naletov, M. P. Rodionova, and M. A. Teplov, JETP Lett. 54, 149 (1991).
V. I. Anisimov, M. A. Korotin, J. Zaanen, and P. L. Andersen, Phys. Rev. Lett. 68, 345 (1992).
S. M. Anlage, M. Pambianchi, A. T. Findikoglu, C. Doughty, D.-H. Wu, J. Mao, S.-N. Mao, X. X. Xi, T. Venkatesan, J. L. Peng, and R. L. Greene, Proc. SPIE Conf. on Oxide Superconductivity, Vol. 2158 (D. Pavuna, Ed.), in press, 1994.
J. F. Annett, N. Goldenfeld, and S. R. Renn, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 9, World Scientific, Singapore, 1990.
E. J. Ansaldo, C. Niedermayer, H. Glückler, C. E. Stronach, T. M. Riseman, R. S. Cary, D. R. Noakes, X. Obradors, A. Fuetes, J. M. Navarro, P. Gomez, N. Casañ, B. Martinez, F. Perez, J. Ro-driguez-Carvajal, and K. Chow, Physica C 185189, 1213 (1991a).
E. J. Ansaldo, C. Niedermayer, and C. E. Stronach, Nature 353, 121 (1991b).
V. P. Antropov, I. I. Mazin, O. K. Andersen, A. I. Liechtenstein, and O. Jepsen, Phys. Rev. B 47, 12373 (1993).
J. Aponte, H. C. Abache, A. Sa-Neto, and M. Octavio, Phys. Rev. B 39, 2233 (1989).
B. Arfi, Phys. Rev. B 45, 2352 (1992).
G. Arfken, "Mathematical Methods for Physicists," 3rd ed., Wiley, New York, 1985.
T. A. Arias and J. D. Joannopoulos, Phys. Rev. B 39, 4071 (1989).
D. N. Aristov, S. V. Maleyev, and A. G. Yashenkin, Phys. Rev. B 48, 3527 (1993).
A. J. Arko, R. S. List, R. J. Bartlett, S.-W. Cheong, Z. Fisk, J. D. Thompson, C. G. Olson, A.-B. Yang, R. Liu, C. Gu, B. W. Veal, J. Z. Liu, A. P. Plaulikas, K. Vandervoort, H. Claus, J. C. Campuzano, J. E. Schirber, and N. D. Shinn, Phys. Rev. B 40, 2268 (1989).
G. B. Arnold, F. M. Mueller, and J. C. Swihart, Phys. Rev. Lett. 67, 2569 (1991).
A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. Lett. 62, 965, 2236(E), (1989).
D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53, 722 (1984).
E. Arrigoni, G. Strinati, and C. Castellani, Phys. Rev. B 41, 4838 (1990).
E. Arrigoni and G. C. Strinati, Phys. Rev. B 44, 7455 (1991).
K. Asayama, G.-Q. Zheng, Y. Kitaoka, K. Ishida, and K. Fujiwara, Physica C 178, 281 (1991).
N. W. Ashcroft and N. D. Mermin, "Solid State Physics," Saunders, Philadelphia, 1976.
M. Ashida, S. Aoyama, J. Hara, and K. Nagai, Phys. Rev. B 40, 8673 (1989).
M. Ashida, J. Hara, and K. Nagai, Phys. Rev. B 45, 828 (1992).
J. Ashkenazi, S. E. Barnes, F. Zuo, G. C. Vezzoli, and B. M. Klein, Eds., "High Temperature Superconductivity," Plenum, New York, 1991.
T. R. Askew, R. B. Flippen, K. J. Leary, M. N. Kunchur, J. Mater. Res. 6, 1135 (1991).
L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela 10, 1104 (1968) [Sov. Phys. Solid State 10, 875 (1968)].
W. Assmus, M. Herrmann, U. Rauchschwalbe, S. Riegel, W. Lieke, H. Spille, S. Horn, G. Weber, F. Steglich, and G. Cordier, Phys. Rev. Lett. 52, 469 (1984).
K. S. Athreya, O. B. Hyun, J. E. Ostenson, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 38, 11846 (1988).
A. Auerbach, "Interacting Electrons and Quantum Magnetism," Springer-Verlag, Berlin, 1994.
B. Aurivillus, Ark. Kemi 1, 463, 499 (1950).
B. Aurivillus, Ark. Kemi 2, 519 (1951).
B. Aurivillus, Ark. Kemi 5, 39 (1952).
C. Ayache, I. L. Chaplygin, A. I. Kirilyuk, N. M. Kreines, and V. I. Kudinov, Solid State Commun. 81, 41 (1992).
J. Azoulay, Phys. Rev. B 44, 7018 (1991).
E. Babic, M. Prester, D. Drobac, Ž. Marohnic, and N. Biškup, Phys. Rev. B 43, 1162 (1991).
E. Babic, M. Prester, D. Drobac, Ž. Marohnic, P. Nozar, P. Stastny, F. C. Matacotta, and S. Bernik, Phys. Rev. B 45, 913 (1992).
P. K. Babu and J. Ramakrishna, Supercond. Rev. 1, 75 (1992).
D. C. Baird and B. K. Mukherjee, Phys. Rev. Lett. 21, 996 (1968).
D. C. Baird and B. K. Mukherjee, Phys. Rev. 3, 1043 (1971).
C. K. Bak and N. F. Pedersen, Appl. Phys. Lett. 22, 149 (1973).
O. N. Bakharev, A. V. Dooglav, A. V. Egorov, V. V. Naletov, M. P. Rodionova, M. S. Tagirov, and M. A. Teplov, Appl. Magn. Reson. 2, 559 (1991).
J. Bala and A. M. Oleś, Phys. Rev. B 47, 515 (1993).
C. J. Ballhausen, "Introduction to Ligand Field Theory," McGraw-Hill, New York, 1962.
M. Ban, T. Ichiguchi, and T. Onogi, Phys. Rev. B 40, 4419 (1989).
A. Bansil, P. E. Mijnarends, and L. C. Smedskjaer; Phys. Rev. B 43, 3667 (1991).
A. Bansil and S. Kaprzyk, Phys. Rev. B 43, 10335 (1991).
A. Bansil (Ed.), "Proc. Conf. Spectroscopies in Novel Superconductors," J. Phys. Chem. Solids, in press.
A. Baratoff and G. Binnig, Physica B 188, 1335 (1981).
B. Barbiellini, P. Genoud, J. Y. Henry, L. Hoffmann, T. Jarlborg, A. A. Manuel, S. Massidda, M. Peter, W. Sadowski, H. J. Scheel, A. Shukla, A. K. Singh, and E. Walker, Phys. Rev. B 43, 7810 (1991).
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
J. Bardeen and M. P. Stephen, Phys. Rev. A 140, 1197 (1965).
R. Bar-Deroma, J. Felsteiner, R. Brener, J. Ashkenazi, and D. van der Marel, Phys. Rev. B 45, 2361 (1992).
C. Barlingay, V. Garcia-Vázquez, C. M. Falco, S. Mazumdar, and S. H. Risbud, Phys. Rev. B 41, 4797 (1990).
A. Barone and G. Paterno, "Physics and Applications of the Josephson Effect," Wiley, New York, 1982.
S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 41, 6283 (1990).
S. E. Barrett, J. A. Martindale, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 66, 108 (1991).
J. C. Barry, Z. Iqbal, B. L. Ramakrishna, H. Eckhardt, F. Reidinger, and R. Sharma, Appl. Phys. Lett. No. 71.70-b (1989).
S. G. Barsov, A. L. Getalov, V. P. Koptev, L. A. Kuz'min, S: M. Mikirtych'yants, N. A. Tarasov, G. V. Shcherbakov, N. M. Kotov, A. S. Nigmatulin, Ya. M. Mukovskii, V. G. Grebinnik, V. N. Duginov, V. A. Zhukov, A. B. Lazarev, V. G. Ol'shevskii, S. N. Shilov, and E. P. Krasnoperov, JETP Lett. 46, 499 (1987).
K. Bartkowski, R. Horyn, A. J. Zaleski, Z. Bukowski, M. Horobiowski, C. Marucha, J. Rafalowicz, K. Rogacki, A. Stepien-Damm, C. Sulkowski, E. Trojnar, and J. Klamut, Phys. Status Solidi 103, K37 (1987).
F. E. Bates, Phys. Rev. B 39, 322 (1989).
B. Batlogg, A. P. Ramirez, R. J. Cava, R. B. van Dover, and E. A. Reitman, Phys. Rev. B 35, 5340 (1987).
B. Batlogg, R. J. Cava, L. W. Rupp, Jr., A. M. Mujsce, J. J. Krajewski, J. P. Remeika, W. F. Peck, Jr., A. S. Cooper, and G. P. Espinosa, Phys. Rev. Lett. 61, 1670 (1988).
P. E. Batson, T. M. Shaw, D. Dimos, and P. R. Duncombe, Phys. Rev. B 43, 6236 (1991).
B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13, 390 (1964).
G. Baym and C. Pethick, "Landau Fermi-Liquid Theory," Wiley, New York, 1991.
C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).
C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).
M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev. 181, 682 (1969).
J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).
J. G. Bednorz and K. A. Müller (Eds.), "Earlier and Recent Aspects of Superconductivity," SpringerVerlag, Berlin, 1990.
C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett. 66, 3056 (1991).
V. P. Belash, E. Z. Kurmaev, and S. A. Nemnonov, Fiz. Met. Metalloved 37, 659 (1974).
D. Belitz, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 2, Springer-Verlag, Berlin, 1990.
R. Benedek and H.-B. Schüttler, Phys. Rev. B 41, 1789 (1990).
L. H. Bennett, Y. Flom, and G. C. Vezzoli, in "Proceedings High \(T_{c}\) Superconductors: Magnetic Interactions, Gaithersburg, MD," World Scientific, Singapore, 1989.
M. A. Beno, L. Soderholm, D. W. Capone II, D. G. Hinks, J. D. Jorgensen, J. D. Grace, I. K. Schuller, C. U. Segre, and K. Zhang, Appl. Phys. Lett. 51, 57 (1987).
V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).
D. D. Berkley, E. F. Skelton, N. E. Moulton, M. S. Osofsky, W. T. Lechter, V. M. Browning, and D. H. Liebenberg, Phys. Rev. B 47, 5524 (1993).
A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, Phys. Rev. B 48, 4074 (1993).
R. Berman and D. K. C. MacDonald, Proc. R. Soc. London Ser. A 211, 122 (1952).
R. Beyers and T. M. Shaw, Solid State Phys. 42, 135 (1989).
R. Beyers and B. T. Ahn, Annu. Rev. Mater. Sci. 21, 335 (1991).
A. Bezinge, K. Yvon, and J. Muller, Solid State Commun. 63, 141 (1987).
R. Bhagavatula, C. Ebner, and C. Jayaprakash, Phys. Rev. B 45, 4774 (1992).
K. V. Bhagwat and P. Chaddah, Physica C 166, 1 (1990).
K. V. Bhagwat and P. Chaddah, Physica C 190C, 444 (1992).
A. Bharathi, C. S. Sundar, W. Y. Ching, Y. C. Jean, P. H. Hor, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 42, 10199 (1990).
A. K. Bhatnagar, R. Pan, D. G. Naugle, P. J. Sqattrito, A. Clearfield, Z. Z. Sheng, Q. A. Shams, and A. M. Hermann, Solid State Commun. 73, 53 (1990).
R. N. Bhatt, Phys. Rev. B 16, 1915 (1977).
R. N. Bhatt, Phys. Rev. B 17, 2947 (1978).
A. Bhattacharya and C. S. Wang, Phys. Rev. B. 45, 10826 (1992).
J. B. Bieri and K. Maki, Phys. Rev. B 42, 4854 (1990),
B. D. Biggs, M. N. Kunchur, J. J. Lin, S. J. Poon, T. R. Askew, R. B. Flippen, M. A. Subramanian, J. Gopalakrishnan, and A. W. Sleight, Phys. Rev. B 39, 7309 (1989).
S. J. L. Billinge, G. H. Kwei, and J. D. Thompson, in "Strongly Correlated Electronic Materials" (K. S. Bedell, Ed.) Addison-Westey, New York, 1994.
W. E. Billups and M. A. Ciufolini (Eds.), "Buckminster Fullerenes," VCH, New York, 1993.
K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
B. Binnig, A. C. Castellano, M. De Santis, P. Rudolf, P. Lagarde, A. M. Frank, and A. Marcelli, Solid State Commun. 63, 1009 (1980).
M. A. Biondi and M. P. Garfunkel, Phys. Rev. 116, 853 (1959).
R. J. Birgeneau, C. Y. Chen, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, T. Thio, T. R. Thurston, H. L. Tuller, A. D. Axe, P. Böni, and G. Shirane, Phys. Rev. Lett. 59, 1329 (1987).
R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, P. J. Picone, T. R. Thurston, G. Shirane, Y. Endoh, M. Sato, K. Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 38, 6614 (1988).
R. J. Birgeneau and G. Shirane, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 4, World Scientific, Singapore, 1989.
P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, A. Schenck, M. Weber, D. Cattani, J. Cors, M. Decroux, and Ø. Fischer, Phys. Rev. B 48, 15689 (1993).
D. Bishop, C. M. Varma, B. Batlogg, E. Bucher, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 53, 1009 (1984).
H. D. Bist, T. Datta, T. S. Little, J. C. Thigpen, Jr., J. R. Durig, P. R. Broussard, and D. D. Berkley, J. Raman Spectrosc. 22, 639 (1991).
F. Bitter, Phys. Rev. 38, 1903 (1931).
B. L. Blackford and R. H. March, Canad. J. Phys. 46, 141 (1968).
H. A. Blackstead, J. Supercond. 5, 67 (1992).
H. A. Blackstead, Phys. Rev. B 47, 11411 (1993).
E. J. Blagoeva, G. Busiello, L. De Cesare, Y. T. Millev, I. Rabuffo, and D. I. Uzunov, Phys. Rev. B 40, 7357 (1989).
E. J. Blagoeva, G. Busiello, L. De Cesare, Y. T. Millev, I. Rabuffo, and D. I. Uzunov, Phys. Rev. B 42, 6124 (1990).
G. Blatter, J. Rhyner, and V. M. Vinokur, Phys. Rev. B 43, 7826 (1991a).
G. Blatter, V. B. Geshkenbein, and V. M. Vinokur, Phys. Rev. Lett. 66, 3297 (1991b).
G. Blatter, B. I. Ivlev, and J. Rhyner, Phys. Rev. Lett. 66, 2392 (1991c).
G. Blatter, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 68, 875 (1992).
G. Blatter and B. Ivlev, Phys. Rev. Lett. 70, 2621 (1993).
G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
K. W. Blazey, K. A. Müller, J. G. Bednorz, W. Berlinger, G. Amoretti, E. Buluggiu, A. Vera, and F. C. Matacotta, Phys. Rev. B 36, 7241 (1987).
J. E. Blendell, C. K. Chiang, D. C. Cranmer, S. W. Freiman, E. R. Fuller, Jr., E. Drescher-Krasicka, W. L. Johnson, H. M. Ledbetter, L. H. Bennett, L. J. Swartzendruber, R. B. Marinenko, R. L. Mykleburst, D. S. Bright, and D. E. Newbury, ACS Symp. Ser. 351, 240 (1987).
B. Blok and H. Monien, Phys. Rev. B 47, 3454 (1993).
N. Bluzer, Phys. Rev. B 44, 10222 (1991).
G. S. Boebinger, T. T. M. Palstra, A. Passner, M. J. Rosseinsky, D. W. Murphy, and I. I. Mazin, Phys. Rev. B 46, 5876 (1992).
M. Boekholt, M. Hoffmann, and G. Güntherodt, Physica C 175C, 127 (1991).
C. A. Bolle, P. I. Gammel, D. G. Grier, C. A. Murray, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 112 (1991).
J. E. Bonevich, K. Harada, T. Matsuda, H. Kasai, T. Yoshida, G. Pozzi, and A. Tonomura, Phys. Rev. Lett. 70, 2952 (1993).
P. Böni, J. D. Axe, G. Shirane, R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, and T. R. Thurston, Phys. Rev. B 38, 185 (1988).
E. Bonjour, R. Calemczuk, J. Y. Henry, and A. F. Khoder, Phys. Rev. B 43, 106 (1991).
D. A. Bonn, A. H. O'Reilly, J. E. Greedan, C. V. Stager, T. Timusk, K. Kamarás, and D. B. Tanner, Phys. Rev. B 37, 1574 (1988).
B. P. Bonner, R. Reichlin, S. Martin, H. B. Radousky, T. J. Folkerts, and R. N. Shelton, Phys. Rev. B 41, 11576 (1990).
N. Bontemps, D. Davidov, P. Monod, and R. Even, Phys. Rev. B 43, 11512 (1991).
P. Boolchand, C. Blue, K. Elgaid, I. Zitkovsky, D. McDaniel, W. Huff, B. Goodman, G. Lemon, D. E. Farrell, and B. S. Chandrasekhar, Phys. Rev. B 38, 11313 (1988).
P. Boolchand, S. Pradhan, Y. Wu, M. Abdelgadir, W. Huff, D. Farrell, R. Coussement, and D. McDaniel, Phys. Rev. B 45, 921 (1992).
P. Bordet, C. Chaillout, J. Chenavas, J. L. Hodeau, M. Marezio, J. Karpinski, and E. Kaldis, Nature (London) 334, 596 (1988).
H. J. Bornemann, D. E. Morris, C. Steinleitner, and G. Czjzek, Phys. Rev. B 44, 12567 (1991).
F. Borsa, A. Rigamonti, M. Corti, J. Ziolo, O. Hyun, and D. R. Torgeson, Phys. Rev. Lett. 68, 698 (1992).
I. Bose, Phys. Rev. B 43, 13602 (1991).
R. Böttner, N. Schroeder, E. Dietz, U. Gerhardt, W. Assmus, and J. Kowalewski, Phys. Rev. B 41, 8679 (1990).
L. Bottyán, B. Molnár, D. L. Nagy, I. S. Szücs, J. Tóth, J. Dengler, G. Ritter, and J. Schober, Phys. Rev. B 38, 11373 (1988).
R. Boyn, K. Löbe, H.-U. Habermeier, and N. Pruß, Physica C 181C, 75 (1991).
I. Božovic, K. Char, S. J. B. Yoo, A. Kapitulnik, M. R. Beasley, T. H. Geballe, Z. Z. Wang, S. Hagen, N. P. Ong, D. E. Aspnes, and M. K. Kelly, Phys. Rev. B 38, 5077 (1988).
I. Božovic, J. H. Kim, J. S. Harris, Jr., and W. Y. Lee, Phys. Rev. B 43, 1169 (1991).
I. Božovic, J. Supercond. 4, 193 (1991).
I. Božovic, J. H. Kim, J. S. Harris, Jr., E. S. Hellman, E. H. Hartford, and P. K. Chan, Phys. Rev. B 46, 1182 (1992).
A. I. Braginski, Physica C 180, 642 (1991).
B. H. Brandow, J. Solid State Chem. 88, 28 (1990).
E. H. Brandt, Physica C 162C-164C, 1167 (1989).
E. H. Brandt, Physica B 165-166, 1129 (1990); Int. Conf. Low Temperature Phys., Brighton, U.K., August 1990.
E. H. Brandt and A. Sudbø, Physica C 180C, 426 (1991).
E. H. Brandt, Phys. Rev. Lett. 69, 1105 (1992).
A. Brass, H. J. Jensen, and A. J. Berlinsky, Phys. Rev. B 39, 102 (1989).
A. Brass and H. J. Jensen, Phys. Rev. B 39, 9587 (1989).
D. A. Brawner, A. Schilling, H. R. Ott, R. J. Haug, K. Ploog, and K. von Klitzing, Phys. Rev. Lett. 7I, 785 (1993).
Y. J. M. Brechet, B. Douçot, H. J. Jensen, and A.-C. Shi, Phys. Rev. B 42, 2116 (1990).
E. Brézin, A. Fujita, and S. Hikami, Phys. Rev. Lett. 65, 1949 (1990).
G. Briceño, M. F. Crommie, and A. Zettl, Phys. Rev. Lett. 66, 2164 (1991).
D. Brinkmann and M. Mali, in "NMR Basic Principles and Progress," Vol. 31, Springer-Verlag, Berlin, 1994.
M. B. Brodsky, R. C. Dynes, K. Kitazawa, and H. L. Tuller (Eds.), "High Temperature Superconductors," Vol. 99, Materials Research Society, Pittsburgh, 1988.
C. Broholm, G. Aeppli, R. N. Kleiman, D. R. Harshman, D. J. Bishop, E. Bucher, D. Ll. Williams, E. J. Ansaldo, and R. H. Heffner, Phys. Rev. Lett. 65, 2062 (1990).
N. B. Brookes, A. J. Viescas, P. D. Johnson, J. P. Remeika, A. S. Cooper, and N. V. Smith, Phys. Rev. B 39, 2736 (1989).
J. S. Brooks, C. C. Agosta, S. J. Klepper, M. Tokumoto, N. Kinoshita, H. Anzai, S, Uji, H. Aoki, A. S. Perel, G. J. Athas, and D. À. Howe, Phys. Rev. Lett. 69, 156 (1992).
S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).
P. R. Broussard, Phys. Rev. B 43, 2783 (1991).
P. Brüll, D. Kirchgässner, and P. Liederer, Physica C 182C, 339 (1991).
T. Brun, M. Grimsditch, K. E. Gray, R. Bhadra, V. Maroni, and C. K. Loong, Phys. Rev. B 35, 8837 (1987).
L. C. Brunel, S. G. Louie, G. Martinez, S. Labdi, and H. Raffy, Phys. Rev. Lett. 66, 1346 (1991).
O. Brunner, L. Antognazza, J.-M. Triscone, L. Miéville, and Ø. Fischer, Phys. Rev. Lett. 67, 1354 (1991).
R. Brusetti, A. J. Dianoux, P. Gougeon, M. Potel, E. Bonjour, and R. Calemczuk, Phys. Rev. B 41, 6315 (1990).
W. Buckel, "Superconductivity, Fundamentals and Applications," VCH, Weinheim, Germany, 1991.
R. C. Budhani, L. Lesyna, D. DiMarzio, H. Wiesmann, and G. P. Williams, Phys. Rev. B 44, 7087 (1991).
J. I. Budnick, A. Golnik, Ch. Niedermayer, E. Recknagel, M. Rossmanith, A. Weidinger, B. Chamberland, M. Filipkowski, and D. P. Yang, Phys. Lett. A 124, 103 (1987).
J. I. Budnick, B. Chamberland, D. P. Yang, Ch. Niedermayer, A. Golnik, E. Recknagel, M. Rossmanith, and A. Weidinger, Europhys. Lett. 5, 651 (1988).
L. N. Bulaevskii, Zh. Eksp. Teor. Fiz. 64, 2241 (1973); Sov. Phys. JETP (Engl. Trans.) 37, 1133 (1988).
L. N. Bulaevskii, O. V. Dolgov, and M. O. Ptitsyn, Phys. Rev. B 38, 11290 (1988).
L. N. Bulaevskii and M. V. Zyskin, Phys. Rev. B 42, 10230 (1990).
L. N. Bulaevskii and I. D. Vagner, Phys. Rev. B 43, 8694 (1991).
L. N. Bulaevskii, Phys. Rev. B 44, 910 (1991).
L. N. Bulaevskii, M. Ledvij, and V. G. Kogan, Phys. Rev. B 46, 366, 11807 (1992).
N. Bulut and D. J. Scalapino, Phys. Rev. B 45, 2371 (1992).
G. Burns, "Solid State Physics," Academic Press, Orlando, FL 1985.
G. Burns, B. V. Chandrashekhar, F. H. Dacol, M. W. Shafer, and P. Strobel, Solid State Commun. 67, 603 (1988).
G. Burns, P. Strobel, G. V. Chandrashekhar, F. H. Dacol, F. Holtzberg, and M. W. Shafer, Phys. Rev. B 39, 2245 (1989).
G. Burns and A. M. Glazer, "Space Groups for Solid State Scientists," Academic Press, San Diego, 1990.
G. Burns, "High Temperature Superconductivity: An Introduction," Academic Press, Boston, 1992.
M. J. Burns, Phys. Rev. B 40, 5473 (1989).
R. Busch, G. Ries, H. Werthner, G. Kreiselmeyer, and G. Saemann-Ischenko, Phys. Rev. Lett. 69, 522 (1992).
G. Busiello and D. I. Uzunov, Phys. Rev. B 42, 1018 (1990).
G. Busiello, L. De Cesare, Y. T. Millev, I. Rabuffo, and D. I. Uzunov, Phys. Rev. B 43, 1150 (1991).
A. Bussmann-Holder and A. R. Bishop, Phys. Rev. B 44, 2853 (1991).
A. I. Buzdin, Phys. Rev. B 47, 11416 (1993).
B. Cabrera, C. E. Cunningham, and D. Saroff, Phys. Rev. Lett. 62, 2040 (1989).
Z.-X. Cai and D. O. Welch, Phys. Rev. B 45, 2385 (1992).
J. Callaway, "Energy Band Theory," Academic Press, New York, 1964.
H. B. Callen, "Thermodynamics and an Introduction to Thermostatics," Wiley, New York, 1985.
P. Calvani, M. Capizzi, S. Lupi, P. Maselli, and E. Agostinelli, Physica C 180C, 116 (1991).
I. A. Campbell, L. Fruchter, and R. Cabanel, Phys. Rev. Lett. 64, 1561 (1990).
J. C. Campuzano, G. Jennings, M. Faiz, L. Beaulaigue, B. W. Veal, J. Z. Liu, A. P. Paulikas, K. Vandervoort, H. Claus, R. S. List, A. J. Arko, and R. L. Bartlett, Phys. Rev. Lett. 64, 2308 (1990).
J. C. Campuzano, L. C. Smedskjaer, R. S. Benedek, G. Jennings, and A. J. Bansil, Phys. Rev. B 43, 2788 (1991).
J. J. Capponi, C. Chaillout, A. W. Hewat, P. LeJay, M. Marezio, N. Nguyen, B. Raveau, J. L. Soubeyroux, J. L. Tholence, and R. Tournier, Europhys. Lett. 3, 1301 (1987).
J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
J. R. Carbotte and C. Jiang, Phys. Rev. B 48, 4231 (1993).
M. Cardona, Physica C 185C-189C, 65 (1991).
G. Carneiro, Phys. Rev. B 45, 2391 (1992).
P. Carretta and M. Corti, Phys. Rev. Lett. 68, 1236 (1992).
P. Carretta and M. Corti, Phys. Rev. Lett. 68, 1236 (1992).
P. Carretta, M. Corti, A. Rigamonti, R. De Renzi, F. Licci, C. Paris, L. Bonoldi, M. Sparpaglione, and L. Zini, Physica C 191C, 97 (1992).
C. Castellani, M. Grilli, and G. Kotliar, Phys. Rev. B 43, 8000 (1991).
R. J. Cava, A. Santoro, D. W. Johnson, Jr., and W. W. Rhodes, Phys. Rev. B 35, 6716 (1987).
R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp, Jr., A. E. White, K. Short, W. F. Pick, and T. Kometani, Nature 332, 814 (1988).
M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young, Phys. Rev. B 44, 6883 (1991).
P. Chaddah, K. V. Bhagwat, and G. Raulkumaer, Physica C 159C, 570 (1989).
P. Chaddah and K. Bhagwat, in "High Temperature Superconductivity" (S. K. Malik and S. S. Shah, Eds.), Nova Science, New York, 1992.
C. Chaillout, J. P. Remeika, A. Santoro, and M. Marezio, Solid State. Commun. 56, 829 (1985).
T. K. Chaki and M. Rubinstein, Phys. Rev. B 36, 7259 (1987).
B. Chakraborty, Phys. Rev. B 43, 378 (1991).
S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057 (1988).
S. Chakravarty, B. I. Ivlev, and Y. N. Ovchinnikov, Phys. Rev. B 42, 2143 (1990).
S. Chakravarty, A. Sudbø, P. W. Anderson, and S. Strong, Science 261, 337 (1993).

\section*{REFERENCES}
L. P. Chan, D. R. Harshman, K. G. Lynn, S. Massidda, and B. D. Mitzi, Phys. Rev. Lett. 67, 1350 (1991).
B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
B. S. Chandrasekhar, in "Superconductivity" (R. D. Parks, Ed.), Vol. 1, Chap. 1, Dekker, New York, 1969.
N. Chandrasekhar, O. T. Valls, and A. M. Goldman, Mod. Phys. Letters 8, 1863 (1994).
C. L. Chang, A. Kleinhammes, W. G. Moulton, and L. R. Testardi, Phys. Rev. B 41, 11564 (1990).
M. Charalambous, J. Chaussy, and P. Lejay, Phys. Rev. B 45, 5091 (1992).
T. Chattopadhyay, P. J. Brown, B. C. Sales, L. A. Boatner, H. A. Mook, and H. Maletta, Phys. Rev. B 40, 2624 (1989).
P. Chaudhari, R. T. Collins, P. Freitas, R. J. Gambino, J. R. Kirtley, R. H. Koch, R. B. Laibowitz, F. K. LeGoues, T. R. McGuire, T. Penney, Z. Schlesinger, A. P. Segmüller, S. Foner, and E. J. McNiff, Jr., Phys. Rev. B 36, 8903 (1987).
S. V. Chekalin, V. M. Farztdinov, V. V. Golovlyov, V. S. Letokhov, Yu. E. Lozovlk, Yu. A. Matveets, and A. G. Stepanov, Phys. Rev. Lett. 67, 3860 (1991).
J. Chela-Flores, M. P. Das, and A. G. Saif, Solid State Commun. 65, 77 (1988).
D.-X. Chen, R. B. Goldfarb, J. Nogués, and K. V. Rao, J. Appl. Phys. 63, 980 (1988).
D.-X. Chen and R. B. Goldfarb, J. Appl. Phys. 66, 2489 (1989).
G. H. Chen, J. H. Wang, D. N. Zheng, Y. F. Yan, S. L. Jia, Q. S. Yang, Y. M. Ni, and Z. X. Zhao, Mod. Phys. Lett. B 3, 295 (1989).
H. Chen and J. Callaway, Phys. Rev. B 40, 8800 (1989).
C. H. Chen, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 4, World Scientific, Singapore, 1990.
J. H. Chen, Solid State Commun. 75, 557, 563, 567 , 573 (1990a); Phys. Rev. B 42, 3952, 3957 (1990b).
D.-X. Chen, A. Sanchez, J. Nogués, and J. S. Muñoz, Phys. Rev. B 41, 9510 (1990a).
D.-X. Chen, A. Sanchez, and J. Muñoz, J. Appl. Phys. 67, 3430 (1990b).
D.-X. Chen, A. Sanchez, T. Puig, L. M. Martinez, and J. S. Muñoz, Physica C \(168 \mathrm{C}, 652\) (1990c).
C. Y. Chen, R. J. Birgeneau, M. A. Kastner, N. W. Preyer, and T. Thio, Phys. Rev. B 43, 392 (1991).
D.-X. Chen, J. A. Brug, and R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).
D.-X. Chen and A. Sanchez, J. Appl. Phys. 70, 5463 (1991).
C.-C. Chen, S. P. Kelty, and C. M. Lieber, Science 253, 886 (1991).
B. Chen and J. Dong, Phys. Rev. B 44, 10206 (1991).
C. T. Chen, L. H. Tjeng, J. Kwo, H: L. Kao, P. Rudolf, F. Sette, and R. M. Fleming, Phys. Rev. Lett. 68, 2543 (1992).
T.-P. Chen, Z. X. Zhao, H. D. Yang, E. L. Wolf,
R. N. Shelton, and P. Klavins, Phys. Rev. 45, 7945 (1992).
Q. Y. Chen, in "Magnetic Susceptibility of Superconductors and other Spin Systems" (R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds.), Plenum, New York, 1992.
L. Chengren and D. C. Larbalestier, Cryogenics 27, 171 (1987).
S.-W. Cheong, S. E. Brown, Z. Fisk, R. S. Kwok, J. D. Thompson, E. Zirngiebl, G. Gruner, D. E. Peterson, G. L. Wells, R. B. Schwarz, and J. R. Cooper, Phys. Rev. B 36, 3913 (1987).
S.-W. Cheong, M. F. Hundley, J. D. Thompson, and Z. Fisk, Phys. Rev. B 39, 6567 (1989a).
S.-W. Cheong, Z. Fisk, J. D. Thompson, and R. B. Schwarz, Physica C 159C, 407 (1989b).
H.-F. Cheung, Y. Gefen, E. K. Riedel, and W.-H. Shih, Phys. Rev. B 37, 6050 (1988).
X.-F. Chen, M. J. Marone, G. X. Tessema, M. J. Skove, M. V. Nevitt, D. J. Miller, and B. W. Veal, Phys. Rev. B 48, 1254 (1993).
C. C. Chi and C. Vanneste, Phys. Rev. B 42, 9875 (1990).
T. R. Chien, T. W. Jing, N. P. Ong, and Z. Z. Wang, Phys. Rev. Lett. 66, 3075 (1991).
J. H. Cho, F. Borsa, D. C. Johnston, and D. R. Torgeson, Phys. Rev. B 46, 3179 (1992).
C. H. Choi and P. Muzikar, Phys. Rev. B 39, 11296 (1989); Phys. Rev. B 40, 5144 (1989).
J. Choi and J. V. José, Phys. Rev. Lett. 62, 320 (1989).
M. Y. Choi and S. Kim, Phys. Rev. B 44, 10411 (1991).
M. Y. Choi, C. Lee, and J. Lee, Phys. Rev. B 46, 1489 (1992).
H. Chou, K. Yamada, J. D. Axe, S. M. Shapiro, G. Shirane, I. Tanaka, K. Yamane, and H. Kojima, Phys. Rev. B 42, 4272 (1990).
D. B. Chrisey and G. K. Hubler (Eds.), "Pulsed Laser Deposition of Thin Films," Wiley, New York, 1994.
C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, and Z. J. Huang, Science 235, 567 (1987).
C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, and Y. Q. Wang, Phys. Rev. Lett. 58, 405 (1987).
C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, J. Bechtold, M. K. Wu, and C. Y. Huang, Mater. Res. Soc. Symp. Proc. 99, \(15^{-}\)(1987).
C. W. Chu, J. Bechtold, L. Gao, P. H. Hor, Z. J. Huang, R. L. Meng, Y. Y. Sun, Y. Q. Wang, and Y. Y. Xue, Phys. Rev. Lett. 60, 941 (1988).
C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng, and Y. Y. Xue, Nature 365, 323 (1993b).
C. W. Chu, J. Superconductivity 7, 1 (1994).
C. W. Chu, "Unusual High Temperature Superconductors," Proc. Symp. Quantum Theory of Real Materials, Berkeley, California, Aug. 1994, in press.
E. M. Chudnovsky, Phys. Rev. B 40, 11355 (1989).
E. M. Chudnovsky, Phys. Rev. Lett. 65, 3060 (1990).
E. M. Chudnovsky, Phys. Rev. B 43, 7831 (1991).
F. Chung and S. Sternberg, Amer. Scientist 81, 56 (1993).
L. Civale, A. D. Marwick, M. W. McElfresh, T. K. Worthington, A. P. Malozemoff, F. H. Holtzberg, J. R. Thompson, and M. A. Kirk, Phys. Rev. Lett. 65, 1164 (1990).
L. Civale, T. K. Worthington, and A. Gupta, Phys. Rev. B 43, 5425 (1991).
L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, and F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991).
J. H. Claassen, J. F. Evetts, R. E. Somekh, and Z. H. Barber, Phys. Rev. B 44, 9605 (1991).
J. Clarke, Phys. Rev. Lett. 28, 1363 (1972).
J. Clarke and J. L. Paterson, J. Low Temp. Phys. 15, 491 (1974).
J. Clayhold, N. P. Ong, P. H. Hor and C. W. Chu, Phys. Rev. B 38, 7016 (1988).
J. R. Clem, Physica C 162-164, 1137 (1989).
J. R. Clem and M. W. Coffey, Phys. Rev. B 42, 6209 (1990).
J. R. Clem, Phys. Rev. B 43, 7837 (1991).
J. Clem, "A. C. Losses in Type-II Superconductors, Chap. in Magnetic Susceptibility of Superconductors and Other Spin Systems," (R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds.), Plenum, New York, 1992.
J. R. Clem and Z. Hao, Phys. Rev. B 48, 13774 (1993).
A. M. Clogston and J. Jaccarino, Phys. Rev. 121, 1357 (1961).
A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
M. W. Coffey and J. R. Clem, Phys. Rev. B 44, 6903 (1991).
M. W. Coffey, Phys. Rev. B 46, 567 (1992).
M. W. Coffey, Phys. Rev. B 47, 12284 (1993).
M. W. Coffey, Phys. Rev. B 49, 9774 (1994).
R. W. Cohen, G. D. Cody, and L. J. Vieland, in Electronic Density of States, NBS Spec. Publ. (U.S.) 323, 767 (1971).
M. L. Cohen, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 1095. Plenum, New York, 1987.
M. L. Cohen and D. R. Penn, Phys. Rev. B 42, 8702 (1990).
R. E. Cohen, Computers in Phys., in press, 1994.
J. L. Cohn, S. A. Wolf, V. Selvamanickam, and K. Salama, Phys. Rev. Lett. 66, 1098 (1991).
M. B. Cohn, M. S. Rzchowski, S. P. Benz, and C. J. Lobb, Phys. Rev. B 43, 12823 (1991).
J. L. Cohn, S. A. Wolf, and T. A. Vanderah, Phys. Rev. B 45, 511 (1992).
J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 13144 (1992).
J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 13140, 13144 (1992).
B. R. Coles, Cont. Phys. 28, 143 (1987).
G. Collin and R. Comes, C. R. Acad. Sci. Paris 304, 1159 (1987).
R. T. Collins, Z. Schlesinger, F. Holtzberg, and C. Feild, Phys. Rev. Lett. 63, 422 (1989).
R. T. Collins, Z. Schlesinger, G. V. Chandrasehekhar, and M. W. Shafer, Phys. Rev. B 39, 2251 (1989).
R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chaudhari, and C. Feild, Phys. Rev. B 39, 6571 (1989).
R. T. Collins, Z. Schlesinger, F. Holtzberg, C. Feild, U. Welp, G. W. Crabtree, J. Z. Liu, and Y. Fang, Phys. Rev. B, 43, 8701 (1991).
S. J. Collocott, R. Driver, and E. R. Vance, Phys. Rev. B 41, 6329 (1990a).
S. J. Collocott, N. Savvides, and E. R. Vance, Phys. Rev. B 42, 4794 (1990b).
S. Collocott, R. Driver, and C. Andrikidis, Phys. Rev. B 45, 945 (1992).
R. Combescot, Phys. Rev. Lett. 67, 148 (1991a); Phys. Rev. B 42, 7810 (1991b).
E. Compans and F. Baumann, Jpn. J. Appl. Phys. 26 Suppl. 3, 805 (1987).
L. D. Cooley, G. Stejic, and D. C. Labalestier, Phys. Rev. B 46, 2964 (1992).
L. N. Cooper, Phys. Rev. 104, 1189 (1956).
S. L. Cooper, G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, T. Timusk, A. J. Millis, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 40, 11358 (1989).
S. L. Cooper, A. L. Kotz, M. A. Karlow, M. V. Klein, W. C. Lee, J. Giapintzakis, and D. M. Ginzberg, Phys. Rev. B 45, 2549 (1992).
S. L. Cooper, D. Reznik, A. Kotz, M. A. Karlow, R. Liu, M. V. Klein, W. C. Lee, J. Giapintzakis, D. M. Ginsberg, B. W. Veal, and A. P. Paulikas, Phys. Rev. B 47, 8233 (1993).
S. L. Cooper and K. E. Gray in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 3, World Scientific, Singapore, 1994.
C. Coretsopoulos, H. C. Lee, E. Ramli, L. Raven, T. B. Rauchfuss, and E. Oldfield, Phys. Rev. B 39, 781 (1989).
D. L. Cox and M. B. Maple, Phys. Today, Feb. 1995, p. 32.
L. A. Curtiss and S. W. Tam, J. Mater. Res. 3, 1269 (1988).
J. Costa-Quintana, F. López-Aguilar, S. Balle, and R. Salvador, Phys. Rev. B 39, 9675 (1989).
L. Cota, L. Morales de la Garza, G. Hirata, L. Martínez, E. Orozco, E. Carrillo, A. Mendoza, J. L. Albarrán, J. Fuentes-Maya, J. L. Boldú, J. G. Pérez-Ramírez, R. Pérez, J. Reyes Gasga, M. Avalos, and M. José-Yacamán, J. Mater. Res. 3, 417 (1988).
R. Côte and A. Griffin, Phys. Rev. B 48, 10404 (1993).
F. A. Cotton, "Chemical Applications of Group Theory." Wiley, New York, 1963.
D. E. Cox and A. W. Sleight, Solid State Commun. 19, 969 (1976).
D. E. Cox and A. W. Sleight, Acta Cryst. B 35, 1 (1979).
D. L. Cox and M. B. Maple, Phys. Today, February 1995, p. 32.
G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. B 36, 4021 (1987).
M. K. Crawford, G. Burns, and F. Holtzberg, Solid State Commun. 70, 557 (1989).
M. K. Crawford, G. Burns, G. V. Chandrashekhar, F. H. Dacol, W. E. Farneth, E. M. McCarron III, and R. J. Smalley, Phys. Rev. B 41, 8933 (1990a).
M. K. Crawford, G. Burns, G. V. Chandrashekhar, F. H. Dacol, W. E. Farneth, E. M. McCarron III, and R. J. Smalley, Solid State Commun. 73, 507 (1990b).
R. J. Creswick, H. A. Farach, C. P. Poole, Jr., "Introduction to Renormalization Group Methods in Physics," Wiley, New York, 1992.
M. Crisan, Phys. Lett. A 124, 195 (1987).
M. F. Crommie, A. Zettl, T. W. Barbee, III, and M. L. Cohen, Phys. Rev. B 37, 9734 (1988).
M. F. Crommie, G. Briceño, and A. Zettl, Physica C 162C-164C, 1397 (1989).
M. F. Crommie and A. Zettl, Phys. Rev. B 43, 408 (1991).
R. W. Cross and R. B. Goldfab, Appl. Phys. Lett. 58, 415 (1991).
J. E. Crow and N.-P. Ong, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 7, Springer-Verlag, Berlin, 1990.
M. A. Crusellas, J. Fontcuberta, S. Piñol, T. Grenet, and J. Beille, Physica C 180, 313 (1991).
A. M. Cucolo, R. Di Leo, P. Romano, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 44, 2857 (1991).
S.-M. Cui and C.-H. Tsai, Phys. Rev. B 44, 12500 (1991).
J. C. Culbertson, U. Strom, S. A. Wolf, P. Skeath, E. J. West, and W. K. Burns, Phys. Rev. B 39, 12359 (1989).
J. C. Culbertson, U. Strom, S. A. Wolf, and W. W. Fuller, Phys. Rev. B 44, 9609 (1991).
L. A. Curtiss and S. W. Tam, J. Mater. Res. 3, 1269 (1988).
L. A. Curtiss and S. W. Tam, Phys. Rev. B 41, 1824 (1990).
L. L. Daemen and J. E. Gubernatis, Phys. Rev. 43, 413, 2625 (1991).
L. L. Daeman, L. J. Campbell, and V. G. Kogan, Phys. Rev. B 46, 3631 (1992).
L. L. Daemen, L. J. Campbell, A. Yu Simonov, and V. G. Kogan, Phys. Rev. Lett. 70, 2948 (1993).
L. L. Daemen and A. W. Overhauser, Phys. Rev. B 40, 10778 (1989).
L. L. Daemen and J. E. Gubernatis, Phys. Rev. B 45, 314 (1992b).
E. Dagotto, A. Moreo, R. Joynt, S. Bacci, and E. Gagliano, Phys. Rev. B 41, 2585, (1990).
E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera, Phys. Rev. B 45, 10741 (1992).
P. Dai, Y. Zhang, and M. P. Sarachik, Phys. Rev. Lett. 67, 136 (1991).
Y. Dalichaouch, M. B. Maple, J. Y. Chen, T. Kohara, C. Rossel, M. S. Torikachvili, and A. L. Giorgi, Phys. Rev. 41, 1829 (1990a).
Y. Dalichaouch, B. W. Lee, C. L. Seaman, J. T. Markert, and M. B. Maple, Phys. Rev. Lett. 64, 599 (1990b).
Y. Dalichaouch, B. W. Lee, S. E. Lambert, M. P. Maple, J. L. Smith, and Z. Fisk, Phys. Rev. B 43, 299 (1991).
M. Das, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 3, Nova Sci., New York, 1989.
C. Dasgupta and T. V. Ramakrishnan, Physica C (Amsterdam) 183C, 62 (1991).
T. Datta, C. P. Poole, Jr., H. A. Farach, C. Almasan, J. Estrada, D. U. Gubser, and S. A. Wolf, Phys. Rev. B 37, 7843 (1988).
M. Däumling and G. V. Chandrashekhar, Phys. Rev. B 46, 6422 (1992).
D. Davidov, P. Monod, and N. Bontemps, Phys. Rev. B 45, 8036 (1992).
M. C. de Andrade, C. C. Almasan, Y. Dalichaouch, and M. B. Maple, Physica C 184C, 378 (1991).
L. De Cesare, Phys. Rev. B 43, 10555 (1991).
P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).
P. G. de Gennes, "Superconductivity of Metals and Alloys," Benjamin, New York, 1966.
L. Degiorgi, P. Wachter, G. Grüner, S.-M. Huang, J. Wiley, and R. B. Kaner, Phys. Rev. Lett. 69, 2987 (1992).
L. J. de Jongh, Europ. J. Solid State Inorg. Chem., in press.
C. Dekker, W. Eidelloth, and R. H. Koch, Phys. Rev. Lett. 68, 3347 (1992).
O. L. de Lange and V. V. Gridin, Phys. Rev. B 46, 5735 (1992).
P. Delsing, K. K. Likharev, L. S. Kuzmin, and T. Claeson, Phys. Rev. Lett. 63, 1180, 1861 (1989).
H. Dersch and G. Blatter, Phys. Rev. B 38, 11391 (1988).
S. M. DeSoto, C. P. Slichter, H. H. Wang, U. Geiser, and J. M. Williams, Phys. Rev. Lett. 70, 2956 (1993).
D. S. Dessau, B. O. Wells, Z.-X. Shen, W. E. Spicer, A. J. Arko, R. S. List, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 2160 (1991).
D. S. Dessau, Z.-X. Shen, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, L. W. Lombardo, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. B 45, 5095 (1992).
G. Deutscher and P. Chaudhari, Phys. Rev. B 44, 4664 (1991).
F. Devaux, A. Manthiram, and J. B. Goodenough, Phys. Rev. B 41, 8723 (1990).
M. J. DeWeert, D. A. Papaconstantopoulos, and W. E. Pickett, Phys. Rev. B 39, 4235 (1989).
F. W. de Wette, A. D. Kulkarni, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 42, 6707 (1990).
A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 44, 12026 (1991).
A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 48, 6695 (1993).
F. Diederich and R. L. Whetten, Acc. Chem. Res. 25, 119 (1992).
D. DiMarzio, H. Wiesmann, D. H. Chen, and S. M. Heald, Phys. Rev. B 42, 294 (1990).
H.-Q. Ding, Phys. Rev. Lett. 68, 1927 (1992).
T. R. Dinger, T. K. Worthington, W. J. Gailagher, and R. L. Sandstrom, Phys. Rev. Lett. 58, 2687 (1987).
M. I. Dobroliubov and S. Yu. Khlebnikov, Phys. Rev. Lett. 67, 2084 (1991).
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, "Solitons and Nonlinear Wave Equations." Academic Press, New York, 1982.
I. Doi, K. Sano, and K. Takano, Phys. Rev. B 45, 274 (1992).
G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Feild, and F. Holtzberg, Phys. Rev. Lett. 62, 827 (1989a).
G. J. Dolan, F. Holtzberg, C. Feild, and T. R. Dinger, Phys. Rev. Lett. 62, 2184 (1989b).
S. Doniach, in "Proceedings Los Alamos Symposium, High Temp. Supercond.," p. 406. Addison-Wesley, New York, 1989.
S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).
G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 353 (1992).
M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys. Rev. B 41, 6335 (1990).
A. T. Dorsey, M. Huang, and M. P. A. Fisher, Phys. Rev. B 45, 523 (1992).
S. X. Dou, H. K. Liu, A. J. Bourdillon, M. Kviz, N. X. Tan, and C. C. Sorrell, Phys. Rev. B 40, 5266 (1989).
R. A. Doyle, O. L. deLange, and V. V. Gridin, Phys. Rev. B 45, 12580 (1992).
T. B. Doyle and R. A. Doyle, Phys. Rev. B 47, 8111 (1993).
P. G. Drazin and R. S. Johnson, "Solitons: An Introduction." Cambridge Univ. Press Cambridge, U.K., 1989.
L. Dresner, Cryogenics, May, p. 285, 1978.
M. S. Dresselhaus, G. Dresselhaus, and R. Saito, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 7, World Scientific, Singapore, 1994.
H. Drulis, Z. G. Xu, J. W. Brill, L. E. De Long, and J.-C. Hou, Phys. Rev. Lett. 44, 4731 (1991).
Q. Du, M. D. Gunzberger, and J. S. Peterson, Phys. Rev. B 46, 9027 (1992).
L. Dubeck, P. Lindenfeld, E. A. Lynten, and H. Rohrer, Rev. Mod. Phys. 36, 110 (1964).
A. Dulčic, R. H. Crepeau, and J. H. Freed, Phys. Rev. B 39, 4249 (1989).
B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Phys. Rev. B 37, 592 (1988).
C. Duran, J. Yazyi, F. de la Cruz, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. B 44, 7737 (1991).
C. H. Eab and I. M. Tang, Phys. Rev. B 40, 4427 (1989).
D. E. Eastman, Solid State Commun. 7, 1697 (1969).
C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1985).
C. Ebner and D. Stroud, Phys. Rev. B 39, 789 (1989).
U. Eckern and E. B. Sonin, Phys. Rev. B 47, 505 (1993).
G. L. Eesley, J. Heremans, M. S. Meyer, G. L. Doll, and S. H. Liou, Phys. Rev. Lett. 65, 3445 (1990).
H. Eikmans and J. E. van Himbergen, Phys. Rev. 44, 6937 (1991).
R. Eisberg and R. Resnick, "Quantum Physics," Wiley, New York, 1974.
J. W. Ekin, H. R. Hart, and A. R. Gaddipati, J. Appl. Phys. 68, 2285 (1990).
J. W. Ekin, K. Salama, and V. Selvamanickam, Appl. Phys. Lett. 59, 360 (1991).
T. Ekino and J. Akimitsu, Phys. Rev. B 40, 6902, 7364 (1989a).
T. Ekino and J. Akimitsu, J. Phys. Soc. Jpn. 58, 2135 (1989b).
T. Ekino and J. Akimitsu, Phys. Rev. B 42, 8049 (1990).
G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960a).
G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 39, 1437 (1960b).
B. Ellman, J. Yang, T. F. Rosenbaum, and E. Bucher, Phys. Rev. Lett. 64, 1569 (1990).
V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987) (reprinted in Halley, 1988, p. 227).
V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).
J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon, New York, 1965, Vol. 1.
D. Emin, Phys. Rev. B 49, 9157 (1994).
P. Entel and J. Zielinski, Phys. Rev. B 42, 307 (1990).
O. Entin-Wohlman and Y. Imry, Phys. Rev. B 40, 6731 (1989).
L. E. Erickson, Phys. Rev. B 43, 12723 (1991).
R. Escudero, E. Guarner, and F. Morales, Physica C 162C-164C, 1059 (1989).
R. Escudero, F. Morales, and E. Guarner, Physica C \(166 C, 15\) (1990).
D. Estève, J. M. Martinis, C. Urbina, M. H. Devoret, G. Collin, P. Monod, M. Ribault, and A. Revcolevschi, Europhys. Lett. 3, 1237 (1987).
J. P. Estrera and G. B. Arnold, Phys. Rev. B 39, 2094 (1989).
L. M. Falicov and C. R. Proetto, Phys. Rev. B 47, 14407 (1993).
M. M. Fang, J. E. Ostenson, D. K. Finnemore, D. E. Farrell, and N. P. Bansal, Phys. Rev. B 39, 222 (1989).
H. A. Farach, E. Quagliata, T. Mzoughi, M. A. Mesa, C. P. Poole, Jr., and R. Creswick, Phys. Rev. B 41, 2046 (1990).
D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 36, 4025 (1987).
D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal, and V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988).
D. E. Farrell, M. M. Fang, and N. P. Bansal, Phys. Rev. B 39, 718 (1989a).
D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. Jiang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys. Rev. Lett. 63, 782 (1989b).
D. E. Farrell, R. G. Beck, M. F. Booth, C. J. Allen, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 42, 6758 (1990a).
D. E. Farrell, C. J. Allen, R. C. Haddon, and S. V. Chichester, Phys. Rev. B 42, 8694 (1990b).
D. E. Farrell, J. P. Rice, D. M. Ginsberg, and J. Z. Liu, Phys. Rev. Lett. 64, 1573 (1990c).
D. E. Farrell, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Letts. 67, 1165 (1991).
D. E. Farrell, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 4, Chap. 2, World Scientific, Singapore, 1994.
E. Faulques and R. E. Russo, in "Applications of Analytical Techniques to the Characterization of Materials" (D. L. Perry, Ed.), p. 59. Plenum, New York, 1991.
R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991).
J. F. Federici, B. I. Greene, H. Hartford, and E. S. Hellman, Phys. Rev. B 42, 923 (1990).
R. Feenstra, D. K. Christen, C. Klabunde, and J. D. Budai, Phys. Rev. B 45, 7555 (1992).
R. Fehrenbacher, V. B. Geshkenbein, and G. Blatter, Phys. Rev. B 45, 5450 (1992).
D. Feinberg and C. Villard, Phys. Rev. Lett. 65, 919 (1990).
L. F. Feiner, M. Grilli, and C. DiCastro, Phys. Rev. B 45, 10647 (1992).
L. F. Feiner, Phys. Rev. B 48, 16857 (1993).
I. Felner, U. Yaron, Y. Yeshurun, G. V. Chandrashekhar, and F. Holtzberg, Phys. Rev. B 40, 5329 (1989).
J. C. Fernandez, R. Grauer, K. Pinnow, and G. Reinisch, Phys. Rev. B 42, 9987 (1990).
M. J. Ferrari, M. Johnson, F. C. Wellstood, J. Clarke, D. Mitzi, P. A. Rosenthal, C. B. Eom, T. H. Geballe, A. Kapitulnik, and M. R. Beasley, Phys. Rev. Lett. 64, 72 (1989).
M. J. Ferrari, F. C. Wellstood, J. J. Kingston, and J. Clarke, Phys. Rev. Lett. 67, 1346 (1991).
R. A. Ferrell, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 3, Springer-Verlag, Berlin, 1990.
K. Fesser, U. Sum, and H. Büttner, Phys. Rev. B 44, 421 (1991).
A. L. Fetter and J. D. Walecka, "Quantum Theory of Many Particle Systems." McGraw-Hill, New York, 1971.
R. P. Feynman, "Lectures on Physics," Vol. 3, Chap. 21. Addison-Wesley, New York, 1965.
W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. Webb, Phys. Rev. 136, A335 (1964).
A. T. Fiory, M. Gurvitch, R. J. Cava, and G. P. Espinosa, Phys. Rev. B 36, 7262 (1987).
A. T. Fiory, G. P. Espinosa, R. M. Fleming, G. S. Grader, M. Gurvitch, A. F. Hebard, R. E. Howard, J. R. Kwo, A. F. J. Levi, P. M. Mankiewich, S. Martin, C. E. Rice, L. F. Schneemeyer, and A. E. White, International Conference on Electronic Materials, Tokyo, 1988.
A. T. Fiory, S. Martin, R. M. Fleming, L. F. Schneemeyer, J. V. Waszczak, A. F. Hebard, and S. A. Sunshine, Physica C \(162 C-164 C, 1195\) (1989).
A. T. Fiory, M. A. Paalanen, R. R. Ruel, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 4805 (1990).
O. Fischer, Appl. Phys. 16, 1 (1978).
O. Fischer, in "Earlier and Recent Aspects of Superconductivity" (J. G. Bednorz and K. A. Müller, Eds.), p. 96, Springer, Berlin, 1990.
P. Fischer, K. Kakurai, M. Steiner, K. N. Clausen, B. Lebech, F. Hulliger, H. R. Ott, P. Brüesch, and P. Unternährer, Physica C 152C, 145 (1988).
P. Fischer, H. W. Neumüller, B. Roas, H. F. Braun, and G. Saemann-Ischenko, Solid State Commun. 72, 871 (1989).
J. E. Fischer, P. A. Heiney, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., and A. B. Smith, III, Science 252, 1288 (1991).
J. E. Fischer, P. A. Heiney, and A. B. Smith, III, Acc. Chem. Res. 25, 97 (1992).
K. H. Fischer, Physica C 178C, 161 (1991).
D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373, 386 (1988).
M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
R. A. Fisher, S. Kim, B. F. Woodfield, N. E. Phillips, L. Taillefer, K. Hasselbach, J. Flouquet, A. L. Giorgi, and J. L. Smith, Phys. Rev.Lett. 62, 1411 (1989).
M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
R. S. Fishman, Phys. Rev. B 38, 11996 (1988).
R. S. Fishman, Phys. Rev. Lett. 63, 89 (1989).
Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F. Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la Torre, P. Visani, and C. L. Seaman, Phys. Rev. Lett. 67, 3310 (1991).
M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).

\section*{REFERENCES}
M. J. DeWeert, D. A. Papaconstantopoulos, and W. E. Pickett, Phys. Rev. B 39, 4235 (1989).
F. W. de Wette, A. D. Kulkarni, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 42, 6707 (1990).
A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 44, 12026 (1991).
A. DiChiara, F. Fontana, G. Peluso, and F. Tafuri, Phys. Rev. B 48, 6695 (1993).
F. Diederich and R. L. Whetten, Acc. Chem. Res. 25, 119 (1992).
D. DiMarzio, H. Wiesmann, D. H. Chen, and S. M. Heald, Phys. Rev. B 42, 294 (1990).
H.-Q. Ding, Phys. Rev. Lett. 68, 1927 (1992).
T. R. Dinger, T. K. Worthington, W. J. Gallagher, and R. L. Sandstrom, Phys. Rev. Lett. 58, 2687
(1987).
M. I. Dobroliubov and S. Yu. Khlebnikov, Phys. Rev. Lett. 67, 2084 (1991).
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, "Solitons and Nonlinear Wave Equations." Academic Press, New York, 1982.
I. Doi, K. Sano, and K. Takano, Phys. Rev. B 45, 274 (1992).
G. J. Dolan, G. V. Chandrashekhar, T. R. Dinger, C. Feild, and F. Holtzberg, Phys. Rev. Lett. 62, 827 (1989a).
G. J. Dolan, F. Holtzberg, C. Feild, and T. R. Dinger, Phys. Rev. Lett. 62, 2184 (1989b).
S. Doniach, in "Proceedings Los Alamos Symposium, High Temp. Supercond.," p. 406. Addison-Wesley, New York, 1989.
S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).
G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 68, 353 (1992).
M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys. Rev. B 41, 6335 (1990).
A. T. Dorsey, M. Huang, and M. P. A. Fisher, Phys. Rev. B 45, 523 (1992).
S. X. Dou, H. K. Liu, A. J. Bourdillon, M. Kviz, N. X. Tan, and C. C. Sorrell, Phys. Rev. B 40, 5266
(1989).
R. A. Doyle, O. L. deLange, and V. V. Gridin, Phys. Rev. B 45, 12580 (1992).
T. B. Doyle and R. A. Doyle, Phys. Rev. B 47, 8111 (1993).
P. G. Drazin and R. S. Johnson, "Solitons: An Introduction." Cambridge Univ. Press Cambridge, U.K.,
1989.
L. Dresner, Cryogenics, May, p. 285, 1978.
M. S. Dresselhaus, G. Dresselhaus, and R. Saito, in
"Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 7, World Scientific, Singapore, 1994.
H. Drulis, Z. G. Xu, J. W. Brill, L. E. De Long, and
J.-C. Hou, Phys. Rev. Lett. 44, 4731 (1991).
Q. Du, M. D. Gunzberger, and J. S. Peterson, Phys.

Rev. B 46, 9027 (1992).
L. Dubeck, P. Lindenfeld, E. A. Lynten, and H. Rohrer, Rev. Mod. Phys. 36, 110 (1964).
A. Dulčic, R. H. Crepeau, and J. H. Freed, Phys. Rev.
B 39, 4249 (1989).
B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Phys.
Rev. B 37, 592 (1988).
C. Duran, J. Yazyi, F. de la Cruz, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. B 44, 7737 (1991).
C. H. Eab and I. M. Tang, Phys. Rev. B 40, 4427
(1989).
D. E. Eastman, Solid State Commun. 7, 1697 (1969).
C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1985).
C. Ebner and D. Stroud, Phys. Rev. B 39, 789 (1989).
U. Eckern and E. B. Sonin, Phys. Rev. B 47, 505 (1993).
G. L. Eesley, J. Heremans, M. S. Meyer, G. L. Doll, and S. H. Liou, Phys. Rev. Lett. 65, 3445 (1990).
H. Eikmans and J. E. van Himbergen, Phys. Rev. 44,
6937 (1991).
R. Eisberg and R. Resnick, "Quantum Physics," Wi-
ley, New York, 1974 .
J. W. Ekin, H. R. Hart, and A. R. Gaddipati, J. Appl. Phys. 68, 2285 (1990).
J. W. Ekin, K. Salama, and V. Selvamanickam, Appl. Phys. Lett. 59, 360 (1991).
T. Ekino and J. Akimitsu, Phys. Rev. B 40, 6902, 7364
(1989a).
T. Ekino and J. Akimitsu, J. Phys. Soc. Jpn. 58, 2135
(1989b) (1989b).
T. Ekino and J. Akimitsu, Phys. Rev. B 42, 8049
(1990).
G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960a).
G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 39, 1437 (1960b).
B. Ellman, J. Yang, T. F. Rosenbaum, and E. Bucher, Phys. Rev. Lett. 64, 1569 (1990).
V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987) (reprinted in Halley, 1988, p. 227).
V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).
J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon, New York, 1965, Vol. 1.
D. Emin, Phys. Rev. B 49, 9157 (1994).
P. Entel and J. Zielinski, Phys. Rev. B 42, 307 (1990).
O. Entin-Wohlman and Y. Imry, Phys. Rev. B 40,
6731 (1989).
L. E. Erickson, Phys. Rev. B 43, 12723 (1991).
R. Escudero, E. Guarner, and F. Morales, Physica C 162C-164C, 1059 (1989).
R. Escudero, F. Morales, and E. Guarner, Physica C 166C, 15 (1990).
D. Estève, J. M. Martinis, C. Urbina, M. H. Devoret, G. Collin, P. Monod, M. Ribault, and A. Revcolevschi, Europhys. Lett. 3, 1237 (1987).
J. P. Estrera and G. B. Arnold, Phys. Rev. B 39, 2094 (1989).
L. M. Falicov and C. R. Proetto, Phys. Rev. B 47, 14407 (1993).
M. M. Fang, J. E. Ostenson, D. K. Finnemore, D. E. Farrell, and N. P. Bansal, Phys. Rev. B 39, 222 (1989).
H. A. Farach, E. Quagliata, T. Mzoughi, M. A. Mesa, C. P. Poole, Jr., and R. Creswick, Phys. Rev. B 41, 2046 (1990).
D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 36, 4025 (1987).
D. E. Farrell, C. M. Williams, S. A. Wolf, N. P. Bansal, and V. G. Kogan, Phys. Rev. Lett. 61, 2805 (1988).
D. E. Farrell, M. M. Fang, and N. P. Bansal, Phys. Rev. B 39, 718 (1989a).
D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. Jiang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys. Rev. Lett. 63, 782 (1989b).
D. E. Farrell, R. G. Beck, M. F. Booth, C. J. Allen, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 42, 6758 (1990a).
D. E. Farrell, C. J. Allen, R. C. Haddon, and S. V. Chichester, Phys. Rev. B 42, 8694 (1990b).
D. E. Farrell, J. P. Rice, D. M. Ginsberg, and J. Z. Liu, Phys. Rev. Lett. 64, 1573 (1990c).
D. E. Farrell, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Letts. 67, 1165 (1991).
D. E. Farrell, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 4, Chap. 2, World Scientific, Singapore, 1994.
E. Faulques and R. E. Russo, in "Applications of Analytical Techniques to the Characterization of Materials" (D. L. Perry, Ed.), p. 59. Plenum, New York, 1991.
R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991).
J. F. Federici, B. I. Greene, H. Hartford, and E. S. Hellman, Phys. Rev. B 42, 923 (1990).
R. Feenstra, D. K. Christen, C. Klabunde, and J. D. Budai, Phys. Rev. B 45, 7555 (1992).
R. Fehrenbacher, V. B. Geshkenbein, and G. Blatter, Phys. Rev. B 45, 5450 (1992).
D. Feinberg and C. Villard, Phys. Rev. Lett. 65, 919 (1990).
L. F. Feiner, M. Grilli, and C. DiCastro, Phys. Rev. B 45, 10647 (1992).
L. F. Feiner, Phys. Rev. B 48, 16857 (1993).
I. Feiner, U. Yaron, Y. Yeshurun, G. V. Chandrashekhar, and F. Holtzberg, Phys. Rev. B 40, 5329 (1989).
J. C. Fernandez, R. Grauer, K. Pinnow, and G. Reinisch, Phys. Rev. B 42, 9987 (1990).
M. J. Ferrari, M. Johnson, F. C. Wellstood, J. Clarke, D. Mitzi, P. A. Rosenthal, C. B. Eom, T. H. Geballe, A. Kapitulnik, and M. R. Beasley, Phys. Rev. Lett. 64, 72 (1989).
M. J. Ferrari, F. C. Wellstood, J. J. Kingston, and J. Clarke, Phys. Rev. Lett. 67, 1346 (1991).
R. A. Ferrell, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 3, Springer-Verlag, Berlin, 1990.
K. Fesser, U. Sum, and H. Büttner, Phys. Rev. B 44, 421 (1991).
A. L. Fetter and J. D. Walecka, "Quantum Theory of Many Particle Systems." McGraw-Hill, New York, 1971.
R. P. Feynman, "Lectures on Physics," Vol. 3, Chap. 21. Addison-Wesley, New York, 1965.
W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. Webb, Phys. Rev. 136, A335 (1964).
A. T. Fiory, M. Gurvitch, R. J. Cava, and G. P. Espinosa, Phys. Rev. B 36, 7262 (1987).
A. T. Fiory, G. P. Espinosa, R. M. Fleming, G. S. Grader, M. Gurvitch, A. F. Hebard, R. E. Howard, J. R. Kwo, A. F. J. Levi, P. M. Mankiewich, S. Martin, C. E. Rice, L. F. Schneemeyer, and A. E. White, International Conference on Electronic Materials, Tokyo, 1988.
A. T. Fiory, S. Martin, R. M. Fleming, L. F. Schneemeyer, J. V. Waszczak, A. F. Hebard, and S. A. Sunshine, Physica C 162C-164C, 1195 (1989).
A. T. Fiory, M. A. Paalanen, R. R. Ruel, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 4805 (1990).
O. Fischer, Appl. Phys. 16, 1 (1978).
O. Fischer, in "Earlier and Recent Aspects of Superconductivity" (J. G. Bednorz and K. A. Müller, Eds.), p. 96, Springer, Berlin, 1990.
P. Fischer, K. Kakurai, M. Steiner, K. N. Clausen, B. Lebech, F. Hulliger, H. R. Ott, P. Brüesch, and P. Unternährer, Physica C 152C, 145 (1988).
P. Fischer, H. W. Neumüller, B. Roas, H. F. Braun, and G. Saemann-Ischenko, Solid State Commun. 72, 871 (1989).
J. E. Fischer, P. A. Heiney, A. R. McGhie, W. J. Romanow, A. M. Denenstein, J. P. McCauley, Jr., and A. B. Smith, III, Science 252, 1288 (1991).
J. E. Fischer, P. A. Heiney, and A. B. Smith, III, Acc. Chem. Res. 25, 97 (1992).
K. H. Fischer, Physica C 178C, 161 (1991).
D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 373, 386 (1988).
M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).
R. A. Fisher, S. Kim, B. F. Woodfield, N. E. Phillips, L. Taillefer, K. Hasselbach, J. Flouquet, A. L. Giorgi, and J. L. Smith, Phys. Rev. Lett. 62, 1411 (1989):
M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
R. S. Fishman, Phys. Rev. B 38, 11996 (1988).
R. S. Fishman, Phys. Rev. Lett. 63, 89 (1989).
Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F. Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la Torre, P. Visani, and C. L. Seaman, Phys. Rev. Lett. 67, 3310 (1991).
M. D. Fiske, Rev. Mod. Phys. 36, 221 (1964).
S. A. FitzGerald, S. G. Kaplan, A. Rosenberg, A. J. Sievers, and R. A. S. McMordie, Phys. Rev. B 45, 10165 (1992).
R. L. Fleisher, H. R. Hart, Jr., K. W. Lay, and F. E. Luborsky, Phys. Rev. B 40, 2163 (1989).
R. B. Flippen, Phys. Rev. B 44, 7708 (1991).
M. Florjanczyk and M. Jaworski, Phys. Rev. B 40, 2128 (1989).
R. Flükiger and W. Klose, "Landolt-Börnstein, Group III Solid State Physics," Vol. 21, Superconductors. Springer-Verlag, Berlin/New York, 1993.
M. Foldeaki, M. E. McHenry, and R. C. O'Handley, Phys. Rev. B 39, 2883 (1989).
W. Folkerts and C. Haas, Phys. Rev. B 41, 6341 (1990).
S. Foner, E. J. McNiff, Jr., D. Heiman, S.-M. Huang, and R. B. Kaner, Phys. Rev. B 46, 14936 (1992).
J. Fonteuberta and L. Fàbrega, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 16, Nova Sci., New York, in press.
A. Forkl, T. Dragon, and H. Kronmüller, J. Appl. Phys. 67, 3047 (1990).
A. Forkl, H. U. Habermeier, B. Liebold, T. Dragon, and H. Kronmüller, Physica C 180C, 155 (1991).
M. Forsthuber and G. Hilscher, Phys. Rev. B 45, 7996 (1992).
N. A. Fortune, K. Murata, K. Ikeda, and T. Takahashi, Phys. Rev. Lett. 68, 2933 (1992).
C. M. Foster, K. F. Voss, T. W. Hagler, D. Mihailovic, A. S. Heeger, M. M. Eddy, W. L. Olsen, and E. J. Smith, Solid State Commun. 76, 651 (1990).
H. Frahm, S. Ullah, and A. T. Dorsey, Phys. Rev. 66, 3067 (1991).
Z. Frait, D. Fraitová, and L. Pust, J. Phys. Colloque C 8, 2235 (1988a); Z. Frait, D. Fraitová, E. Pollert, and L. Pust, Phys. Status Solidi 146, K119 (1988b).
J. P. Franck, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 4, Chap. 4, World Scientific, Singapore (1994).
G. Frank, Ch. Ziegler and W. Göpel, Phys. Rev. B 43, 2828 (1991).
A. Freimuth, C. Hohn, and M. Galffy, Phys. Rev. B 44, 10396 (1991).
T. Freltoft, G. Shirane, S. Mitsuda, J. P. Remeika, and A. S. Cooper, Phys. Rev. B 37, 137 (1988).
T. Freltoft, H. J. Jensen, and P. Minnhagen, Solid State Commun. 78, 635 (1991).
T. A. Friedmann, J. P. Rice, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. B 39, 4258 (1989).
B. Friedl, C. Thomsen, and M. Cardona, Phys. Rev. Lett. 65, 915 (1990).
T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 42, 6217 (1990).
H. Fröhlich, Phys. Rev. 79, 845 (1950).
L. Fruchter and I. A. Campbell, Phys. Rev. B 40, 5158 (1989).
A. Fujimori, S. Takekawa, E. Takayama-Muromachi,
Y. Uchida, A. Ono, T. Takahashi, Y. Okabe and H. Katayama-Yoshida, Phys. Rev. B 39, 2255 (1989).
H. Fujishita, M. Sera, and M. Sato, Physica C 175, 165 (1991).
K. Fujiwara, Y. Kitaoka, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 184, 207 (1991).
T. Fukami, T. Kamura, A. A. Youssef, Y. Hori, and S. Mase, Physica C 159, 427 (1989).
T. Fukami, K. Hayashi, T. Yamamoto, T. Nishizaki, Y. Horie, F. Ichikawa, T. Aomine, V. Soares, and L. Rinderer, Physica C 184, 65 (1991a).
T. Fukami, T. Yamamoto, K. Hayashi, T. Nishizaki, Y. Hori, F. Ichikawa, and T. Aomine, Physica C 185, 2255 (1991b).
T. A. Fulton, P. L. Gammei, D. J. Bishop, L. N. Dunkleberger, and G. J. Dolan, Phys. Rev. Lett. 63, 1307 (1989).
P. Fumagalli and J. Schoenes, Phys. Rev. B 44, 2246 (1991).
A. Furusaki, H. Takayanagi, and M. Tsukada, Phys. Rev. Lett. 67, 132 (1991).
A. Furusaki and M. Tsukada, Phys. Rev. B 43, 10164 (1991).
A. Furusaki and M. Ueda, Phys. Rev. B 45, 10576 (1992).
A. Furusaki, H. Takayanagi, and M. Tsukada, Phys. Rev. B 45, 10563 (1992).
M. Furuyama, N. Kobayashi, and Y. Muto, Phys. Rev. B 40, 4344 (1989).
E. Gagliano and S. Bacci, Phys. Rev. B 42, 8772 (1990).
P. L. Gai and J. M. Thomas, Supercond. Rev. 1, 1 (1992).
M. C. Gallagher, J. G. Adler, J. Jung, and J. P. Franck, Phys. Rev. B 37, 7846 (1988).
W. J. Gallagher, J. Appl. Phys. 63, 4216 (1988).
C. F. Gallo, L. R. Whitney, and P. J. Walsh, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 385, Plenum, New York, 1987.
C. F. Gallo, L. R. Whitney, and P. J. Walsh, Mater. Res. Soc. Symp. Proc. 99, 165 (1988).
P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 59, 2592 (1987).
P. L. Gammel, L. F. Schneemeyer, J. K. Waszczak, and A. J. Bishop, Phys. Rev. Lett. 61, 1666 (1988).
P. L. Gammel, A. Hebard, and D. J. Bishop, Phys. Rev. B 40, 7354 (1989).
J. T. Gammel, R. J. Donohoe, A. R. Bishop, and B. I. Swanson, Phys. Rev. B 42, 10566 (1990).
P. L. Gammel, L. F. Schneemeyer, and D. J. Bishop, Phys. Rev. Lett. 66, 953 (1991).
P. L. Gammel, D. J. Bishop, T. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 68, 3343 (1992).
F. Gao, G. L. Carr, C. D. Porter, D. B. Tanner, S. Etemad, T. Venkatesan, A. Inam, B. Dutta, X. D. Wu, G. P. Williams, and C. J. Hirschmugl, Phys. Rev. B 43, 10383 (1991).
L. Gao, R. L. Meng, Y. Y. Xue, P. H. Hor and C. W. Chu, Appl. Phys. Lett. 58, 92 (1991).
L. Gao, Z. J. Huang, R. L. Menag, J. G. Lin, F. Chen, L. Beauvais, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Physica C 213, 261 (1993).
L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, submitted for publication.
M. M. Garland, J. Mater. Res. 3, 830 (1988).
P. Garoche, R. Brusett, D. Jérome, and K. Bechgaard, J. Physique Lett. 43, L147 (1982).
L. J. Geerligs, M. Peters, L. E. M. de Groot, A. Verbruggen, and J. E. Mooij, Phys. Rev. Lett. 63, 326 (1989).
I. I. Geguzin, I. Ya. Nikiforov, and G. I. Alperovitch, Fiz. Tverd. Tela. 15, 931 (1973).
C. Geibel, S. Thies, D. Kaczorowski, A. Mehner, A. Grauel, B. Seidel, U. Ahlheim, R. Helfrich, K. Petersen, C. D. Bredl, and F. Steglich, Z. Phys. B-Cond. Matt. 83, 305 (1991a).
C. Geibel, C. Schank, S. Thies, H. Kitzawa, C. D. Bredl, A. Böhm, M. Rau, A. Grauel, R. Caspary, R. Helfrich, U. Anlheim, G. Weber, and F. Steglich, Z. Phys. B-Cond. Matt. 84, 1 (1991b).
C. Geibel, U. Ahlheim, C. D. Bredl, J. Diehl, A. Grauel, R. Helfrich, H. Kitazawa, R. Köhler, R. Modler, M. Lang, C. Schank, S. Thies, F. Steglich, N. Sato, and T. Komatsubara, Physica C 185, 2651 (1991c).
A. K. Geim, I. V. Grigorieva, and S. V. Dubonos, Phys. Rev. B 46, 324 (1992).
B. Y. Gelfand and B. I. Halperin, Phys. Rev. B 45, 5517 (1992).
A. Gerber, Th. Grenet, M. Cyrot, and J. Beille, Phys. Rev. B 45, 5099 (1992).
W. Gerhäuser, G. Ries, H. W. Neumüller, W. Schmidt, O. Eibl, G. Saemann-Ischenko, and S. Klaumünzer, Phys. Rev. Lett. 68, 879 (1992).
V. B. Geshkenbein, V. M. Vinokur, and R. Fehrenbacher, Phys. Rev. B 43, 3748 (1991).
S. K. Ghatak, A. Mitra, and D. Sen, Phys. Rev. B 45, 951 (1992).
J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Phys. Rev. B 42, 2268 (1990).
I. Giaever and H. R. Zeller, Phys. Rev. Lett. 20, 1504 (1968).
J. Giapintzakis, W. C. Lee, J. P. Rice, D. M. Ginsberg, I. M. Robertson, R. Wheeler, M. Kirk, and M.-Q. Ruault, Phys. Rev. B 45, 10677 (1992).
M. A. M. Gijs, D. Scholten, Th. van Rooy, and A. M. Gerrits, Phys. Rev. B 41, 11627 (1990a).
M. A. M. Gijs, A. M. Gerrits, and C. W. J. Beenakker, \({ }^{\text {' }}\) Phys. Rev. B 42, 10789 (1990b).
L. R. Gilbert, R. Messier, and R. Roy, Thin Solid Films 54, 129 (1978).
D. B. Gingold and C. J. Lobb, Phys. Rev. B 42, 8220 (1990).
M. J. P. Gingras, Phys. Rev. B 45, 7547 (1992).
D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 1, World Scientific, Singapore, 1989.
D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 2, World Scientific, Singapore, 1990.
D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 3, World Scientific, Singapore, 1992.
D. M. Ginsberg (Ed.), "Physical Properties of High Temperature Superconductors," Vol. 4, World Scientific, Singapore, 1994.
V. L. Ginzburg and L. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
V. L. Ginzburg and D. A. Kirzhnits, "High Temperature Superconductivity," Nauka, Moscow, 1977 [Engl. Transl. Consultants Bureau, New York, 1982].
S. L. Ginzburg, V. P. Khavronin, G. Yu. Logvinova, I. D. Luzyanin, J. Herrmann, B. Lippold, H. Börner and H. Schmiedel, Physica C 174, 109 (1991).
J. I. Gittleman and B. Rosenblum, J. AppI. Phys. 39, 2617 (1968).
S. H. Glarum, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 1837 (1990).
N. E. Glass and D. Rogovin, Phys. Rev. B 39, 11327 (1989).
D. Glatzer, A. Forkl, H. Theuss, H. U. Habermeier, and Kronmüller, Phys. Status Solidi 170, 549 (1992).
L. I. Glazman and A. E. Koshelev, Phys. Rev. B 43, 2835 (1991a); Physica C 173, 180 (1991b).
H. R. Glyde, L. K. Moleko, and P. Findeisen, Phys. Rev. B 45, 2409 (1992).
A. Gold and A. Ghazali, Phys. Rev. B 43, 12952 (1991).
R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Cryogenics 27, 475 (1987a); R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, in "High Temperature Superconductors" (D. U. Grubser and M. Schluter, Eds.), p. 261, Mater. Res. Soc., Pittsburgh (1987b).
D. Goldschmidt, Phys. Rev. B 39, 2372 (1989).
M. J. Goldstein and W. G. Moulton, Phys. Rev. B 40, 8714 (1989).
M. Golosovsky, D. Davidov, E. Farber, T. Tsach, and M. Schieber, Phys. Rev. B 43, 10390 (1991).
M. Golosovsky, Y. Naveh, and D. Davidov, Phys. Rev. B 45, 7495 (1992).
J. B. Goodenough and J.-S. Zhou, Phys. Rev. B 42, 4276 (1990).
J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B 47, 5275 (1993).
L. F. Goodrich, A. N. Srivastava, and T. C. Stauffer, J. Res. NIST 96, 703 (1991).
L. F. Goodrich and A. N. Srivastava, Supercond. Industry Spring, 28 (1992).
L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 36, 1918. [Sov. Phys. JETP 36, 1364] (1959).
L. P. Gor'kov, Sov. Phys. JETP 38, 830 (1973).
L. P. Gor'kov, Sov. Phys. JETP Lett. 20, 260 (1974).
U. Gottwick, R. Held, G. Sparn, F. Steglich, H. Rietschel, D. Ewert, B. Renker, W. Bauhofer, S. von Molnar, M. Wilhelm, and H. E. Hoenig, Europhys. Lett. 4, 1183 (1987).
C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell, and S. Sutton, Nature 326, 855 (1987).
M. E. Gouvêa, G. M. Wysin, A. R. Bishop, and F. G. Mertens, Phys. Rev. B 39, 11840 (1989).
G. S. Grader, P. K. Gallagher, and E. M. Gyorgy, Appl. Phys. Lett. 5l, 1115 (1987).
J. E. Gaebner, R. C. Haddon, S. V. Chichester, and S. M. Glarum, Phys. Rev. B 41, 4808 (1990).
R. Graham, M. Schlautmann, and D. L. Shepelyansky, Phys. Rev. Lett. 67, 255 (1991).
K. E. Gray, R. T. Kampwirth, and D. E. Farrell, Phys. Rev. B 41, 819 (1990).
K. E. Gray, D. H. Kim, B. W. Veal, G. T. Seidler, T. F. Rosenbaum, and D. E. Farrell, Phys. Rev. B 45, 10071 (1992).
K. E. Gray, Appl. Supercond., (D. Shi, Ed.), in press.
L. H. Green and B. G. Bagley, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 8, World Scientific, Singapore, 1990.
R. L. Greene, in "Organic Superconductivity" (V. Z. Kresin and W. A. Little, Eds.), p. 7. Plenum, New York, 1990.
E. Gregory, T. S. Kreilick, J. Wong, A. K. Ghosh, and W. B. Sampson, Cryogenics 27, 178 (1987).
V. V. Gridin, P. Pernambuco-Wise, C. G. Trendall, W. R. Datars, and J. D. Garrett, Phys. Rev. B 40, 8814 (1989).
D. G. Grier, C. A. Murray, C. A. Bolle, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 66, 2770 (1991).
R. Griessen, Phys. Rev. Lett. 64, 1674 (1990).
M. Grilli, R. Raimondi, C. Castellani, C. DiCastro, and G. Kotliar, Phys. Rev. Lett. 67, 259 (1991).
H. H. Gröbke, Phys. Rev. B 41, 11047 (1990).
N. Grønbech-Jensen, Phys. Rev. B 45, 7315 (1992).
N. Grønbech-Jensen, N. F. Pedersen, A. Davidson, and R. D. Parmentier, Phys. Rev. B 42, 6035 (1990).
N. Grønbech-Jensen, S. A. Hattel, and M. R. Samuelsen, Phys. Rev. 45, 12457 (1991).
R. Gross, P. Chaudhari, M. Kawasaki, and A. Gupta, Phys. Rev. B 42, 10735 (1990a).
R. Gross, P. Chaudhari, M. Kawasaki, M. B. Ketchen, and A. Gupta, Appl. Phys. Lett. 57, 727 (1990b).
R. Gross and D. Koelle, Rept. Prog. Phys., 57, 651 (1994).
D. Y. Gubser and M. Schluter, Eds., "High Temperature Superconductors," Proc. Symp., Spring Meet., Anaheim, CA, Apr. 1987, Mater. Res. Soc., Pittsburgh, 1987.
S. Guha, D. Peebles, and T. J. Wieting, Phys. Rev. B 43, 13092 (1991).
F. Guinea and G. Zimanyi, Phys. Rev. B 47, 501 (1993).
B. Gumhalter and V. Zlatic, Phys. Rev. B 42, 6446 (1990).
J. Guo, D. E. Ellis, E. E. Alp, and G. L. Goodman, Phys. Rev. B 42, 251 (1990).
A. Gupta, P. Esquinazi, and H. F. Braun, Physica C 184, 393 (1991).
R. P. Gupta and M. Gupta, Phys. Rev. B 47, 11635 (1993a); Phys. Rev. B 48, 16068 (1993b).
A. Gurevich and H. Küpfer, Phys. Rev. B 48, 6477 (1993).
M. Gurvitch and A. T. Fiory, Phys. Rev. Lett. 59, 1337 (1987a); Appl. Phys. Lett. 51, 1027 (1987b); in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 663, Plenum, New York, 1987c.
M. Gurvitch, A. T. Fiory, L. F. Schneemeyer, R. J. Cava, G. P. Espinosa, and J. V. Waszczak, Physica C. 153-155, 1369 (1988).
H. Gutfreund and W. A. Little, in "Highly Conducting One Dimensional Solids" (J. T. Devreese, R. P. Evrard, and V. E. van Doren, Eds.), Chap. 7, Plenum, New York, 1979.
F. Gygi and M. Schlüter, Phys. Rev. Lett. 65, 1820 (1990a); Phys. Rev. B 41, 822 (1990b); 43, 7609 (1991).
R. C. Haddon, Acc. Chem. Res. 25, 127 (1992).
S. J. Hagen, T. W. Jing, Z. Z. Wang, J. Horvath, and N. P. Ong, Phys. Rev. B 37, 7928 (1988).
S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester and J. H. Kang, Phys. Rev. B 41, 11630 (1990a).
S. J. Hagen, C. J. Lobb, R. L. Greene, M. G. Forrester and J. Talvacchio, Phys. Rev. B 42, 6777 (1990b).
R. R. Hake, Phys. Rev. 166, 471 (1968).
K. Hallberg, A. G. Rojo, and C. A. Balseiro, Phys. Rev. B 43, 8005 (1991).
J. W. Halley, (Ed.), "Theories of High Temperature Superconductivity," Addison Wesley, Reading, MA, 1988.
B. I. Halperin, Phys. Rev. Lett. 52, 1583, 2390 (1984).
N. Hamada, S. Massidda, A. J. Freeman, and J. Redinger, Phys. Rev. B 40, 4442 (1989).
D. R. Hamann and L. F. Mattheiss, Phys. Rev. B 38, 5138 (1988).
P. D. Hambourger and F. J. Di Salvo, Physica B 99, 173 (1980).
C. A. Hamilton, Phys. Rev. B 5, 912 (1972).
P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
P. C. Hammel, A. P. Reyes, Z. Fisk, M. Takigawa, J. D. Thompson, R. H. Heffner, W.-W. Cheong, and J. E. Schirber, Phys. Rev. B 42, 6781 (1990).
D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestler, Supercond. Sci. Technol. 1, 12 (1988).
S. Han, L. F. Cohen, and E. L. Wolf, Phys. Rev. B 42, 8682 (1990a).
S. Hasega

Igarasl
            and \(R\).
K. C. Has:
N. Hatakeı
    Rev. \(B\)
J. Hauck,
    Mika, \(\overline{2}\)
D. B. Havi
    Rev. Le
R. M. Haze
N. L. R
Hor, A.
7238 (19
S. G. Han, Z. V. Vardeny, K. S. Wong, and O. G. Symko, Phys. Rev. Lett. 65, 2708 (1990b).
Z. P. Han, R. Dupree, D. McK. Paul, A. P. Howes, and L. W. J. Caves, Physica C 181, 355 (1991).
Z. P. Han, R. Dupree, A. Gencten, R. S. Liu, and P. P. Edwards, Phys. Rev. Lett. 69, 1256 (1992).
S. H. Han, C. C. Almasan, M. C. de Andrade, Y. Dalichaouch, and M. B. Maple, Phys. Rev. B 46, 14290 (1992).
T. Hanaguri, T. Fukase, I. Tanaka, and H. Kojima, Phys. Rev. B 48, 9772 (1993).
M. Hangyo, N. Nagasaki, and S. Nakashima, Phys. Rev. B 47, 14595 (1993).
Z. Hao and J. R. Clem, Phys. Rev. Lett. 67, 2371 (1991).
Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P. Malozemoff, and F. Holtzberg, Phys. Rev. B 43, 2844 (1991).
Z. Hao and J. R. Clem, Phys. Rev. B 46, 5853 (1992).
J. Hara, M. Ashida, and K. Nagai, Phys. Rev. B 47, 11263 (1993).
A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).
R. K. Harris, "Nuclear Magnetic Resonance Spectroscopy," Halsted, 1986.
D. C. Harris, S. T. Herbert, D. Stroud, and J. C. Garland, Phys. Rev. Lett. 67, 3606 (1991).
D. R. Harshman, L. F. Schneemeyer, J. V. Waszczak, G. Aeppli, R. J. Cava, B. Batlogg, L. W. Rupp, E. J. Ansaldo, and D. L1. Williams, Phys. Rev. B 39, 851 (1989).
D. R. Harshman, R. N. Kleiman, R. C. Haddon, S. V. Chichester-Hicks, M. L. Kaplan, L. W. Rupp, Jr., T. Pfiz, D. Ll. Williams, D. B. Mitzi, Phys. Rev. Lett. 64, 1293 (1990).
D. R. Harshman and A. P. Mills, Jr., Phys. Rev. B 45, 10684 (1992).
M. Hase, I. Terasaki, A. Maeda, K. Uchinokura, T. Kimura, K. Kishio, I. Tanaka, and H. Kojima, Physica C 185-189, 1855 (1991).
T. Hasegawa, H. Ikuta, and K. Kitazawa, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 7, World Scientific, Singapore, 1992.
S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, M. Igarashi, T. Kobayashi, M. Naito, A. Tonomura, and R. Aoki, Phys. Rev. B 43, 7631 (1991).
K. C. Hass, Solid State Phys. 42, 213 (1989).
N. Hatakenaka, S. Kurihara, and H. Takayanagi, Phys. Rev. B 42, 3987 (1990).
J. Hauck, S. Denker, H. Hindriks, S. Ipta, and K. Mika, Z. Phys. B 84, 31 (1991).
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).
R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, H. K. Mao, C. G. Hadidiacos, P. H. Hor, A. L. Meng, and C. W. Chu, Phys. Rev. B 35, 7238 (1987).
R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. Heaney, D. R. Veblen, Z. Z. Sheng, A. El Ali, and A. M. Hermann, Phys. Rev. Lett. 60, 1657 (1988).
R. M. Hazen, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 3, World Scientific, Singapore, 1990.
A. F. Hebard, P. L. Gammel, C. E. Rice, and A. F. J. Levi, Phys. Rev. B 40, 5243 (1989).
A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).
A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, Nature, 350, 600 (1991).
A. F. Hebard, in "Proc. R. L. Orbach Symp. Random Magnetism and High \(T_{c}\) Supercond.," World Scientific, Singapore, 1994.
A. F. Hebard, in "Strongly Correlated Electronic Materials" (K. S. Bedell, Ed.), Addison-Wesley, New York, 1994.
S. E. Hebboul and J. C. Garland, Phys. Rev. B 43, 13703 (1991).
P. Hedegård and M. B. Pedersen, Phys. Rev. B 42, 10035 (1990).
R. H. Heffner, J. L. Smith, J. O. Willis, P. Birrer, C. Baines, F. N. Gygax, B. Hitti, E. Lippelt, H. R. Ott, A. Schenck, E. A. Knetsch, J. A. Mydosh, and D. E. MacLaughlin, Phys. Rev. Lett. 65, 2816 (1990).
R. Heid, Phys. Rev. B 45, 5052 (1992).
R. A. Hein, T. L. Francavilla, and D. H. Liebenberg (Eds.), "Magnetic Susceptibility of Superconductors and Other Spin Systems," Plenum, New York, 1991.
C. S. Hellberg and E. J. Mele, Phys. Rev. B 48, 646 (1993).
E. S. Hellman, B. Miller, J. M. Rosamilia, E. H. Hartford, and K. W. Baldwin, Phys. Rev. B 44, 9719 (1991).
F. Hellman and T. H. Geballe, Phys. Rev. B 36, 107 (1987).
N. F. M. Henry and K. Lonsdale, "International Tables for X-Ray Crystallography," Kynboh, Birmingham, England, 1965.
J. Heremans, D. T. Morelli, G. W. Smith, and S. C. Strite III, Phys. Rev. B 37, 1604 (1988).
F. Herman, R. V. Kasowski, and W. Y. Hsu, Phys. Rev. B 36, 6904 (1987).
A. M. Hermann and J. V. Yakhmi, "Thallium Based High Temperature Superconductors," Dekker, Basel, 1993.
S. L. Herr, K. Kamarás, D. B. Tanner, S.-W. Cheong, G. R. Stewart, and Z. Fisk, Phys. Rev. B 43, 7847 (1991).
D. W. Hess, T. A. Tokuyasu, and J. A. Sauls, Phys. Condens. Matt. 1, 8135 (1989).
H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).
H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev. Lett. 64, 2711 (1990).
H. F. Hess, R. B. Robinson, and J. V. Waszczak, Physica B 169, 422 (1991).
J. D. Hettinger and D. G. Steel, in "High Temperature Superconducting Science" (D. Shi, Ed.), Pergamon, New York, 1994.
J. M. Hettinger, A. G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn, and E. G. Burkhardt, Phys. Rev. Lett. 62, 2044 (1989).
R. E. Hetzel, A. Sudbø, and D. Huse, Phys. Rev. Lett. 69, 518 (1992).
E. T. Heyen, R. Liu, C. Thomsen, R. Kremer, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki, Phys. Rev. B 41, 11058 (1990a).
E. T. Heyen, S. N. Rashkeev, I. I. Mazin, O. K. Andersen, R. Liu, M. Cardona, and O. Jepsen, Phys. Rev. Lett. 65, 3048 (1990b).
E. T. Heyen, G. Kliche, W. Kress, W. König, M. Cardona, E. Rampf, J. Prade, U. Schröder, A. D. Kulkami, F. W. de Wette, S. Piñol, D. McK. Paul, E. Morán, and M. A. Alario-Franco, Solid State Commun. 74, 1299 (1990c).
E. Heyen, M. Cardona, J. Karpinski, E. Kaldis, and S. Rusiecki, Phys. Rev. B 43, 12958 (1991).
Y. Hidaka, Y. Enomoto, M. Suzuki, M. Oda, and T. Murakami, Jpn. J. Appl. Phys. 26, L377 (1987).
S. Hikami and A. I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
S. Hikami and A. Fujita, Prog. Theor. Phys. 83, 443 (1990a); Phys. Rev. B 41, 6379 (1990b).
S. Hikami, A. Fujita, and A. Larkin, Phys. Rev. B 44, 10400 (1991).
M. Hikita, Y. Tajima, A. Katsui, Y. Hidaka, T. Iwata, and S. Tsurumi, Phys. Rev. B 36, 7199 (1987).
M. Hikita and M. Suzuki, Phys. Rev. B 39, 4756 (1989).
G. Hilscher, H. Michor, N. M. Hong, T. Holubar, W. Perthold, M. Vybornov, and P. Rogl, in Int. Conf. Strongly Correlated Electron Systems, Amsterdam, Netherlands, Aug. 1994.
D. G. Hinks, D. R. Richards, B. Dabrowski, D. T. Marx, and A. W. Mitchell, Nature 335, 419 (1988).
D. G. Hinks, B. Dabrowski, D. R. Richards, J. D. Jorgensen, S: Pei, and J. F. Zasadzinski, Mat. Res. Soc. Symp. Proc. 156, 357 (1989).
J. E. Hirsch, Phys. Rev. B 31, 4403 (1985a); Phys. Rev. Lett. 54, 1317 (1985b).
J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).
T. Hocquet, P. Mathieu, and Y. Simon, Phys. Rev. B 46, 1061 (1992).
J. A. Hodges, P. Imbert, and G. Jéhanno, Solid State Commun. 64, 1209 (1987).
U. Hofmann and J. Keller, Z. Phys. B. Cond. Matter 74, 499 (1989).
C. Hohn, M. Galffy, A. Dascoulidou, A. Freimuth, H. Soltner, and U. Poppe, Z. Phys. B 85, 161 (1991).
K. Holczer, O. Klein, G. Grüner, J. D. Thompson, F. Deiderich, and R. L. Whetten, Phys. Rev. Lett. 67, 271 (1991).
T. Holst, J. B. Hansen, N. Grønbech-Jensen, and J. A. Blackburn, Phys. Rev. B 42, 127 (1990).
T. Holst and J. B. Hansen, Phys. Rev. B 44, 2238 (1991).
X. Q. Hong and J. E. Hirsch, Phys. Rev. B 46, 14702 (1992).
T. Honma, K. Yamaya, F. Minami, and S. Takekawa, Physica C 176, 209 (1991).
B. Hopfengärtner, B. Hensel, and G. SaemannIschenko, Phys. Rev. B 44, 741 (1991).
M. L. Horbach, F. L. J. Vos, and W. van Saarloos, Phys. Rev. B 48, 4061 (1993).
M. L. Horbach, F. L. J. Vos, and W. van Saarloos, Phys. Rev. B 49, 3539 (1994).
M. Horvatic, T. Auler, C. Berthier, Y. Berthier, P. Butaud, W. G. Clark, J. A. Gillet, P. Ségransan, and J. Y. Henry, Phys. Rev. B 47, 3461 (1993).
A. Houghton, R. A. Pelcovits, and A. Sudbø, Phys. Rev. B 40, 6763 (1989); 41, 4785(E) (1990).
A. P. Howes, R. Dupree, D. McK. Paul, and S. Male, Physica C 185-189, 1137 (1991).
T. C. Hsu and P. W. Anderson, Physica C 162-164, 1445 (1989).
Q. Hu and M. Tinkham, Phys. Rev. B 39, 11358 (1989).
Q. Hu, C. A. Mears, P. L. Richards, and F. L. Lloyd, Phys. Rev. Lett. 64, 2945 (1990).
G. Y. Hu and R. F. O'Connell, Phys. Rev. B 47, 8823 (1993).
W. F. Huang, P. J. Ouseph, K. Fang, and Z. J. Xu, Solid State Commun. 66, 283 (1988).
Z. J. Huang, Y. Y. Xue, P. H. Hor, and C. W. Chu, Physica C 176, 195 (1991a).
Z. J. Huang, H. H. Fang, Y. Y. Xue, P. H. Hor, C. W. Chu, M. L. Norton, and H. Y. Tang, Physica C 180, 331 (1991b).
M.-Z. Huang, Y.-N. Xu, and W. Y. Ching, Phys. Rev. B 46, 6572 (1992).
Z. J. Huang, Y. Y. Xue, R. L. Meng, and C. W. Chu, Phys. Rev. B 49, 4218 (1994).
J. Hubbard, Proc. Royal Soc. London A 276, 238 (1963).
J. Hubbard, Proc. Royal Soc. London A 281, 401 (1964).
R. P. Huebener, R. T. Kampwirth, and A. Seher, J. Low Temp. Phys. 2, 113 (1970).
R. P. Huebener, "Magnetic Flux Structures in Superconductors," Springer Verlag, Berlin, 1979.
R. P. Huebener, A. V. Ustinov, and V. K. Kaplunenko, Phys. Rev. B 42, 4831 (1990).
R. P. Huebener, Physica C 168,605 (1990).
H. J. Hug, A. Moser, I. Parashikov, O. Fritz, B. Stiefel, H.-J. Güntherodt, and H. Thomas, Physica, to be published.
N. H. Hur, H.-G. Lee, J.-H. Park, H.-S. Shin, and I.-S. Yang, Physica C 218, 365 (1993).
N. H. Hur, N. H. Kim, S. H. Kim, Y. K. Park, and J. C. Park, Physica C, 231, 227 (1994).
M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M. Schlüter, Phys. Rev. B 45, 10032 (1992).
T. L. Hylton and M. R. Beasley, Phys. Rev. B 41, 11669 (1990).
O. B. Hyun, D. K. Finnemore, L. Schwartzkopf, and J. R. Clem, Phys. Rev. Lett. S8, 599 (1987).
O. B. Hyun, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 40, 175 (1989).
M. Iansiti, M. Tinkham, A. T. Johnson, W. F. Smith, and C. J. Lobb, Phys. Rev. B 39, 6465 (1989).
H. Ihara, R. Sugise, K. Hayashi, N. Terada, M. Jo, M. Hirabayashi, A. Negishi, N. Atoda, H. Oyanagi, T. Shimomura, and S. Ohashi, Phys. Rev. B 38, 11952 (1988).
H. Ihara, M. Hirabayashi, H. Tanino, K. Tokiwa, H. Ozawa, Y. Akahama, and H. Kawamura, Jpn. J. Appl. Phys. 32, L1732 (1993).
J. Ihm and B. D Yu, Phys. Rev. B 39, 4760 (1989).
S. Ikegawa, T. Wada, A. Ichinose, T. Yamashita, T. Sakurai, Y. Yaegashi, T. Kaneko, M. Kosuge, H. Yamauchi, and S. Tanaka, Phys. Rev. B 41, 11673 (1990).
S. Ikegawa, T. Wada, T. Yamashita, H. Yamauchi, and S. Tanaka, Phys. Rev. B 45, 5659 (1992).
J.-M. Imer, F. Patthey, B. Dardel, W. D. Schneider, Y. Baer, Y. Petroff, and A. Zettl, Phys. Rev. Lett. 62, 336 (1989).
T. Inabe, H. Ogata, Y. Maruyama, Y. Achiba, S. Suzuki, K. Kikuchi, and I. Ikemoto, Phys. Rev. Lett. 69, 3797 (1992).
S. E. Inderhees, M. B. Salamon, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 66, 232 (1991).
Y. Inoue, Y. Shichi, F. Munakata, and M. Yamanaka, Phys. Rev. B 40, 7307 (1989).
M. Inui, P. B. Littlewood, and S. N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989).
L. Ioffe and G. Kotliar, Phys. Rev. B 42, 10348 (1990).
I. Ioffe and V. Kalmeyer, Phys. Rev. B 44, 750 (1991).
Z. Iqbal, J. C. Barry, and B. L. Ramakrishna, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Nova Sci., New York, 1989.
Z. Iqbal, G. H. Kwei, B. L. Ramakrishna, and E. W. Ong, Physica C 167, 369 (1990).
Z. Iqbal, R. H. Baughman, B. L. Ramakrishna, S. Khare, N. S. Murthy, H. J. Bornemann, and D. E. Morris, Science 254, 826 (1991).
Z. Iqbal, Supercond. Rev. 1, 49 (1992).
Z. Iqbal, T. Datta, D. Kirven, A. Longu, J. C. Barry, F. J. Owens, A. G. Rinzler, D. Yang, and F. Reidinger, Phys. Rev. B 49, 12322 (1994).
F. Irie and K. Yamafuji, J. Phys. Soc. Jpn. 23, 255 (1976).
E. D. Isaacs, D. B. McWhan, R. N. Kleiman, D. J. Bishop, G. E. Ice, P. Zschack, B. D. Gaulin, T. E. Mason, J. D. Garrett, and W. J. L. Buyers, Phys. Rev. Lett. 65, 3185 (1990).
K. Isawa, A. Tokiwa-Yamamoto, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 217, 11 (1993).
K. Isawa, A. Tokiwa-Yamamoto, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 222, 33 (1994a).
K. Isawa, T. Higuchi, T. Machi, A. Tokiwa-Yamamoto, S. Adachi, M. Murakami, and H. Yamauchi, Appl. Phys. Lett. 64, 1301 (1994b).
T. Ishida and R. B. Goldfarb, Phys. Rev. B 41, 8937 (1990).
T. Ishida, R. B. Goldfarb, S. Okayasu, and Y. Kazumata, Physica C 185-189, 2515 (1991).
T. Ishiguro and K. Yamaji, "Organic Superconductors," Springer-Verlag, Berlin, 1990.
A. Isihara, "Statistical Physics," Academic Press, New York, 1971.
Y. Ishii and J. Ruvalds, Phys. Rev. B 48, 3455 (1993).
T. Itoh and H. Uchikawa, Phys. Rev. B 39, 4690 (1989).
M. Itoh, A. Tokiwa-Yamamoto, S. Adachi, and H. Yayauchi, Physica C 212, 271 (1993).
R. Itti, F. Munakata, K. Ikeda, H. Yamauchi, N. Koshizuka, and S. Tanaka, Phys. Rev. B 43, 6249 (1991).

Yu. M. Ivanchenko, Phys. Rev. B 48, 15966 (1993).
B. I. Ivlev and N. B. Kopnin, Phys. Rev. Lett. 64, 1828 (1990).
B. I. Ivlev, N. B. Kopnin, and M. M. Salomaa, Phys. Rev. B 43, 2896 (1991a).
B. I. Ivlev, Yu. N. Ovchinnikov, and R. S. Thompson, Phys. Rev. B 44, 7023 (1991b).
B. I. Ivlev and R. S. Thompson, Phys. Rev. B 45, 875 (1992).
Y. Iwasa. K. Tanaka, T. Yasuda, T. Koda, and S. Koda, Phys. Rev. Lett. 69, 2284 (1992).
Y. Iye, T. Tamegai, T. Sakakibara, T. Goto, and N. Miura, Physica C 153-155, 26 (1988).
Y. Iye, S. Nakamura, T. Tamegai, T. Terashima, K. Yamamoto, and Y. Bundo, "High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing" (D. Christen, J. Narayan, and L. Schneemeyer, Eds.), MRS Symposia Proceedings, No. 169, p. 871. Material Research Soc., Pittsburgh, 1990.
Y. Iye, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 4, World Scientific, Singapore, 1992.
J. D. Jackson, "Classical Electrodynamics," Wiley, New York, 1975.
H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman, Phys. Rev. 40, 182 (1989).
K. P. Jain and D. K. Ray, Phys. Rev. B 39, 4339 (1989).
R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver, Phys. Rev. A 140, 1628 (1965).
G. Jakob, P. Przyslupski, C. Stölzel, C. Tomé-Rose, A. Walkenhorst, M. Schmitt, and H. Adrian, Appl. Phys. Lett. 59(13), 1626 (1991).
G. M. Japiassú, M. A. Continentino, and A. Troper, Phys. Rev. B 45, 2986 (1992).
M. Jarrell, H. R. Krishnamurthy, and D. L. Cox, Phys. Rev. B 38, 4584 (1988).
B. Jeanneret, Ph. Flückiger, J. L. Gavilano, Ch. Leemann, and P. Martinoli, Phys. Rev. B 40, 11374 (1989).
C. S. Jee, B. Andraka, J. S. Kim, H. Li, M. W. Meisel, and G. R. Stewart, Phys. Rev. B 42, 8630 (1990).
J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev. B 45, 7959 (1992).
C. D. Jeffries, Q. H. Lam, Y. Kim, C. M. Kim, A. Zettl and M. P. Klein, Phys. Rev. B 39, 11526 (1989).
H. J. Jensen, A. Brass, An-C. Shi, and A. J. Berlinsky, Phys. Rev. B 41, 6394 (1990).
H. J. Jensen and P. Minnhagen, Phys. Rev. Lett. 66, 1630 (1991).
Y. Jeon, G. Liang, J. Chen, M. Croft, M. W. Ruckman, D. Di Marizo, and M. S. Hegde, Phys. Rev. B 41, 4066 (1990).
L. Ji, R. H. Sohn, G. C. Spalding, C. J. Lobb, and M. Tinkham, Phys. Rev. B 40, 10936 (1989).
Y. X. Jia, J. Z. Liu, M. D. Lan, P. Klavins, R. N. Shelton, and H. B. Radousky, Phys. Rev. B 45, 10609 (1992).
H. Jiang, Y. Huang, H. How, S. Zhang, C. Vittoria, A. Widom, D. B. Chrisey, J. S. Horwitz, and R. Lee, Phys. Rev. Lett. 66, 1785 (1991).
C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 10670 (1992a).
C. Jiang and J. P. Carbotte, Phys. Rev. B 45, 7368 (1992b).
W. Jin, C. K. Loong, D. G. Hinks, P. Vashishta, R. K. Kalia, M. H. Degani, D. L. Price, J. D. Jorgensen, and B. Dabrowski, Mat. Res. Soc. Symp. Proc. 209, 895 (1991).
S. Jin, G. W. Kammlott, S. Nakahara, T. H. Tiefel, and J. Graebner, Science 253, 427 (1991).
S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988).
W. Jin, M. H. Dagani, R. K. Kalia, and P. Vashishta, Phys. Rev. B 45, 5535 (1992).
T. W. Jing and N. P. Ong, Phys. Rev. B 42, 10781 (1990).
R. Job and M. Rosenberg, Supercond. Sci. Technol. 5, 7 (1992).
K. H. Johnson, Phys. Rev. B 42, 4783 (1990).
M. W. Johnson, D. H. Douglass, and M. F. Bocko, Phys. Rev. B 44, 7726 (1991).
R. D. Johnson, D.S. Bethune, and C. S. Yannoni, Acc. Chem. Res. 25, 169 (1992).
C. E. Johnson, H. W. Jiang, K. Holczer, R. B. Kaner, R. L. Whetten, and F. Diederich, Phys. Rev. B 46, 5880 (1992).
D. C. Johnston, H. Prakash, W. H. Zachariasen, and R. Viswanathan, Mat. Res. Bull. 8, 777 (1973).
D. C. Johnston and J. H. Cho, Phys. Rev. B 42, 8710 (1990).

Th. Jolicoeur and J. C. LeGuillou, Phys. Rev. B 44, 2403 (1991).
M. L. Jones, D. W. Shortt, and A. L. Schawlow, Phys. Rev. B 42, 132 (1990).
J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev. B 36, 3608 (1987a); see also Schuller et al. (1987).
J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. Crabtree, A. Umezawa, L. J. Nowicki, and A. P. Paulikas, Phys. Rev. B 36, 5731 (1987b).
J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).
B. D. Josephson, Phys. Lett. 1, 251 (1962).
J. Jung, M. A.-K. Mohamed, S. C. Cheng, and J. P. Franck, Phys. Rev. B 42, 6181 (1990).
A. Junod, A. Bezinge, and J. Muller, Physica C 152, 50 (1988).
A. Junod, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 2, World Scientific, Singapore, 1990.
A. Junod, D. Sanchez, J.-Y. Genoud, T. Graf, G. Triscone, and J. Muller, Physica C 185-189, 1399 (1991).
V. V. Kabanov and O. Yu. Mashtakov, Phys. Rev. B 47, 6060 (1993).
K. K. Kadish and R. S. Ruoff, (Eds.), "Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials," Electrochemical Society, Pennington, N. J., 1994.
K. Kadowski, Y. Songliu, and K. Kitazawa, "Lorentz Force Independent Dissipation in HTSC," submitted for publication.
A. Kadin, Phys. Rev. B 41, 4072 (1990).
A. Kahan, Phys. Rev. B 43, 2678 (1991).
A. B. Kaiser, Phys. Rev. B 35, 4677 (1987).
A. B. Kaiser and C. Uher, Aust. J. Phys. 41, 597 (1988).
A. B. Kaiser, Phys. Rev. B 37, 5924 (1988).
A. B. Kaiser and C. Uher, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 7, Nova Sci., New York, 1990.
A. B. Kaiser and G. Mountjoy, Phys. Rev. B 43, 6266 (1991).
E. Kaldis, P. Fischer, A. W. Hewat, E. A. Hewat, J. Karpinski, and S. Rusiecki, Physica © 159, 668 (1989).
C. Kallin, A. J. Berlinsky, and W.-K. Wu, Phys. Rev. B 39, 4267 (1989).
V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987).
A. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399 (1990).
K. Kanoda, H. Mazaki, T. Mizutani, H. Hosoito, and T. Shinjo, Phys. Rev. B 40, 4321 (1989).
K. Kanoda, K. Akiba, K. Suzuki, T. Takahashi, and G. Saito, Phys. Rev. Lett. 65, 1271 (1990).
A. Kapitulnik and M. R. Beasley, C. Castellani, and D. DiCastro, Phys. Rev. B 37, 537 (1988).
S. G. Kaplan, T. W. Noh, A. J. Sievers, S.-W. Cheong and Z. Fisk, Phys. Rev. B 40, 5190 (1989).
V. R. Karasik, N. G. Vasil'ev, and V. G. Ershov, Zh. Eksp. Teor. Fiz. 59, 790 (1970); Sov Phys-JETP 32, 433 (1971).
K. Karlsson, O. Gunnarsson, and O. Jepsen, Phys. Rev. B 45, 7559 (1992).
K. Karraï, E. J. Choi, F. Dunmore, S. Liu, H. D. Drew, Q. Li, D. B. Fenner, Y. D. Zhu, and F.-C. Zhang, Phys. Rev. Lett. 69, 152 (1992).
H. Kasatani, H. Terauchi, Y. Hamanaka, and S. Nakashima, Phys. Rev. B 47, 4022 (1993).
A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat, F. P. Milliken, and J. P. Harbison, Phys. Rev. Lett. 67, 3026 (1991).
R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B 44, 6916 (1991).
R. Kato, Y. Enomoto, and S. Mackawa, Phys. Rev. B 47, 8016 (1993).
K. Katti and S. H. Risbud, Phys. Rev. B 45, 10155 (1992).
R. L. Kautz and J. M. Martinis, Phys. Rev. B 42, 9903 (1990).
M. Kaveh and N. H. Mott, Phys. Rev. Lett. 68, 1904 (1992).
Z. A. Kazei and I. B. Krynetskii, "Landolt-Börnstein, Group III," Solid State Physics, Vol. 27, Subvol. f2, Springer, Heidelberg, 1992.
A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).
F. J. Kedves, S. Mészáros, K. Vad, G. Halász, B. Keszei, and L. Mihály, Solid State Commun. 63, 991 (1987).
O. Keller, Phys. Rev. B 43, 10293 (1991).
P. H. Kes, C. J. van der Beek, M. P. Maley, M. E. McHenry, D. A. Huse, M. J. V. Menken, and A. A. Menovsky, Phys. Rev. Lett. 67, 2383 (1991).
I. B. Khalfin and B. Ya. Shapiro, Phys. Rev. B 46, 5593 (1992).
A. F. Khoder, M. Couach, and J. L. Jorda, Phys. Rev. B 42, 8714 (1990).
A. F. Khoder and M. Couach, in "Magnetic Susceptibility of Superconductors and Other Spin Systems" (R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds.), Plenium, New York, 1992.
A. Khurana, Phys. Rev. B 40, 4316 (1989).
R. F. Kiefl, J. W. Schneider, A. MacFarlane, K. Chow, T. L. Duty, T. L. Estle, B. Hitti, R. L. Lichti, E. J. Ansaldo, C. Schwab, P. W. Percival, G. Wei, S. Wlodek, K. Kojima, W. J. Ronamov, J. P. McCauley, Jr., N. Coustel, J. E. Fischer, and A. B. Smith III, Phys. Rev. Lett. 68, 1347 (1992).
Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. Lett. 9, 306 (1962).
Y. B. Kim, C. F. Hempstead, and A. R. Strand, Phys. Rev. 129, 528 (1963).
Y. B. Kim and M. J. Stephan, in "Superconductivity" (R. D. Parks, Ed.), Vol. 2, p. 1107, Dekker, New York, 1969.
H. K. Kim and P. S. Riseborough, Phys. Rev. B 42, 7975 (1990).
D. H. Kim, K. E. Gray, R. T. Kampwirth, K. C. Woo, D. M. McKay, and J. Stein, Phys. Rev. B 41, 11642 (1990).
D. H. Kim, K. E. Gray, R. T. Kampwirth, and D. M. McKay, Phys. Rev. B 42, 6249 (1990); 43, 2910 (1991a).
D. H. Kim, D. J. Miller, J. C. Smith, R. A. Holoboff, J. H. Kang, and J. Talvacchio, Phys. Rev. B 44, 7607 (1991b).
J.-J. Kim, H.-K. Lee, J. Chung, H. J. Shin, H. J. Lee, and J. K. Ku, Phys. Rev. B 43, 2962 (1991).
D. M. King, Z.-X. Shen, D. S. Dessau, B. O. Wells, W. E. Spicer, A. J. Arko, D. S. Marshall, J. DiCarlo, A. G. Loeser, C. H. Park, E. R. Ratner, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. Lett. 70, 3159 (1993).
K. Kinoshita, F. Izumi, T. Yamada, and H. Asano, Phys. Rev. B 45, 5558 (1992).
J. Kircher, M. K. Kelly, S. Rashkeev, M. Alouani, D. Fuchs, and M. Cardona, Phys. Rev. B 44, 217 (1991).
D. Kirillov, C. B. Eom, and T. H. Geballe, Phys. Rev. B 43, 3752 (1991).
W.P. Kirk, P. S. Kobiela, R. N. Tsumura, and R. K. Pandey, Ferroelectrics 92, 151 (1989).
T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 68, 3232 (1992).
J. R. Kirtley, R. T. Collins, Z. Schlesinger, W. J. Gallagher, R. L. Sandstrom, T. R. Dinger and D. A. Chance, Phys. Rev. B 35, 8846 (1987).
J. R. Kirtley, Phys. Rev. 41, 7201 (1990a); Int. J. Mod. Phys. B 4, 201 (1990b).
L. B. Kiss and P. Svedlindh, IEEE Trans. Electronic Devices, 41, 2112 (1994).
T. J. Kistenmacher, Phys. Rev. B 39, 12279 (1989).
Y. Kitaoka, S. Hiramatsu, T. Kohara, K. Asayama, K. Oh-ishi, M. Kikuchi, and N. Kobayashi, Jpn. J. Appl. Phys. 26, L397 (1987a).
Y. Kitaoka, S. Hiramatsu, K. Ishida, T. Kohara, and K. Asayama, J. Phys. Soc. Jpn. 56, 3024 (1987b).
Y. Kitaoka, K. Fujiwara, K. Ishida, K. Asayama, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 179, 107 (1991).
K. Kitazawa and S. Tajima, in "Some Aspects of Superconductivity," (L. C. Gupta, Ed.), Nova Sci., New York, 1990.
C. Kittel, "Introduction to Solid State Physics," Wiley, New York, 1976.
S. Kivelson, Phys. Rev. B 39, 259 (1989).
Y. S. Kivshar and T. K. Soboleva, Phys. Rev. B 42, 2655 (1990).
Y. S. Kivshar, B. A. Malomed, Z. Fei, and L. Vázquez, Phys. Rev. B 43, 1098 (1991).
A. K. Klehe, A. K. Gangopadhyay, J. Diederichs, and J. S. Schilling, Physica C 213, 266 (1992).
A. K. Klehe, J. S. Schilling, J. L. Wagner, and D. G. Hinks, Physica C 223, 313 (1994).
B. M. Klein, L. L. Boyer, D. A. Papaconsantopoulos, and L. F. Mattheiss, Phys. Rev. B 18, 6411 (1978).
B. M. Klein, L. L. Boyer, and D. A. Papaconstantopoulos, Phys. Rev. Lett. 42, 530 (1979).
U. Klein, Phys. Rev. B 40, 6601 (1989); 41, 4819 (1990).
D. J. Klein, T. G. Schmalz, M. A. García-Bach, R. Valenti, and T. P: Zivkovic, Phys. Rev. B 43, 719 (1991).
U. Klein and B. Pöttinger, Phys. Rev. B 44, 7704 (1991).
L. Kleion and A. Aharony, Phys. Rev. B 45, 9926 (1992).
R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Phys. Rev. Lett. 68, 2394 (1992).
A. Kleinhammes, C. L. Chang, W. G. Moulton, and L. R. Testardi, Phys. Rev. B 44, 2313 (1991).
A. W. Kleinsasser and T. N. Jackson, Phys. Rev. B 42, 8716 (1990).
R. A. Klemm and S. H. Liu, Phys. Rev. B 44, 7526 (1991).
R. A. Klemm, Phys. Rev. B 47, 14630 (1993).
R. A. Klemm, "Layered Superconductors," Oxford, NY, in press.
P. Knoll, C. Thomsen, M. Cardona, and P. Murugaraj, Phys. Rev. B 42, 4842 (1990).
F. Kober, H.-C. Ri, R. Gross, D. Koelle, R. P. Huebener, and A. Gupta, Phys. Rev. B 44, 11951 (1991).
J. Kober, A. Gupta, P. Esquinazi, H. F. Braun, E. H. Brandt, Phys. Rev. Lett. 66, 2507 (1991).
R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A. Gupta, and M. P. A. Fisher, Phys. Rev. Lett. 63, 1511 (1989).
B. N. Kodess, Ph.D. thesis, Perm State University, Perm. Cited as Ref. 6.130 of Vonsovsky et al. (1982).
V. G. Kogan, M. M. Fang, and S. Mitra, Phys. Rev. B 38, 11958 (1988).
V. G. Kogan, Phys. Rev. B 38, 7049 (1988).
V. G. Kogan and L. J. Campbell, Phys. Rev. Lett. 62, 1552 (1989).
V. G. Kogan, N. Nakagawa, and S. L. Thiemann, Phys. Rev. B 42, 2631 (1990).
S. Kohiki, T. Wada, S. Kawashima, H. Takagi, S. Uchida, and S. Tanaka, Phys. Rev. B 38, 7051, 8868 (1988).
S. Kohiki, S.-I. Hatta, K. Setsune, K. Wasa, Y. Higashi, S. Fukushima, and Y. Gohshi, Appl. Phys. Lett. 56, 298 (1990).
S. Koka and K. Shrivastava, Physica B 165-166, 1097 (1990).
S. Kolesnik, T. Skoskiewicz, J. Igalson, and Z. Korczak, Phys. Rev. B 45, 10158 (1992).
T. Komeda, G. D. Waddill, P. J. Benning, and J. H. Weaver, Phys. Rev. B 43, 8713 (1991).
M. Konczykowski, F. Rullier-Albenque, E. R. Yacoby, A. Shaulov, Y. Yeshurun, and P. Lejay, Phys. Rev.
B 44,7167 (1991) B 44, 7167 (1991).
J. Konior, Phys. Rev. B 47, 14425 (1993).
J. Konior, "Some Properties of Narrow Band Systems Coupled to Phonons," submitted for publication.
R. Konno and K. Ueda, Phys. Rev. B 40, 4329 (1989).
P. Koorevaar, J. Aarts, P. Berghuis, and P. H. Kes, Phys. Rev. B 42, 1004 (1990).
Y. Kopelevich, A. Gupta, P. Esquinazi, C.-P. Heidmann, and H. Müller, Physica C 183, 345 (1991).
P. Kopietz, Phys. Rev. Lett. 70, 3123 (1993).
A. E. Koshelev, G. Yu. Logvenov, V. A. Larkin, V. V. Ryazanov, and K. Ya. Soifer, Physica C 177, 129
(1991).
A. A. Koshta, Yu. N. Shvachko, A. A. Romanyukha, and V. V. Ustinov, Zh. Eksp. Teor. Fiz. 103, 629 (1993); Transl. Sov. Phys. JETP 76, 314 (1993).
I. Z. Kostadinov, V. G. Hadjiev, J. Tihov, M. Mateev, M. Mikhov, O. Petrov, V. Popov, E. Dinolova, Ts. Zheleva, G. Tyuliev, and V. Kojouharov, Physica C 156, 427 (1988).
J. M. Kosterlitz and D. Thouless, J. Phys. C 5, L124 (1972); 6, 1181 (1973).
N. Kosugi, Y. Tokura, H. Takagi and S. Uchida, Phys. Rev. B 41, 131 (1990).
V. Kovachev, "Energy Dissipation in Superconducting Materials," Clarendon, Oxford (1991).
Y. Koyama and M. Ishimaru, Phys. Rev. B 45, 9966 (1992).
H. Krakauer, W. E. Pickett, D. A. Papaconstantopoulos, and L. L. Boyer, Jpn. J. Appl. Phys. 26, Suppl. 26-3. (1987)
H. Krakauer, W. E. Pickett and R. E. Cohen, J. Supercond. 1, 111 (1988).
H. Krakauer and W. E. Pickett, Phys. Rev. Lett. 60, 1665 (1988).
V. M. Krasnov, V. A. Larkin, and V. V. Ryazanov, Physica C 174, 440 (1991).
V. M. Krasnov, Physica C 190, 357 (1992).
N. M. Kreines and V. I. Kudinov, Mod. Phys. Lett. B 6, 6 (1992).
V. Z. Kresin and S. A. Wolf, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 287, Plenum, New York, 1987.
V. Z. Kresin, and S. A. Wolf, "Fundamentals of Superconductivity," Plenum, New York, 1990.
V. Z. Kresin and W. A. Little (Eds.), "Organic Superconductivity," Plenum, New York, 1990.
V. Z. Kresin, H. Morawitz, and S. A. Wolf, "Mechanisms of Conventional and High \(T_{c}\) Superconductivity," Oxford Univ. Press, Oxford, 1993.
A. Krimmel, P. Fischer, B. Roessli, H. Maletta, C. Geibel, C. Schank, A. Grauel, A. Loidl, and F. Steglich, Z. Phys. B 86, 161 (1992).
G. Kriza, G. Quirion, O. Traetteberg, W. Kang, and D. Jérome, Phys. Rev. Lett. 66, 1922 (1991).

\title{
A. D. K
} and
H. Kun Phys
G. R. K
(1985
N. Kum.

5001
M. N. Kı
(1991.
P. J. Kun
J. Y. 1

Rev: I
S. Kuriha:
E. Z. Kur)
S. Shu,
E. Z. Kurn Int. J. ;
E. Z: Kur

Phys. B
E. Z. Kurn

Phys. 5,
H. Kuroda

Okawa,
G. Saito
A. Kussmau
P. M. T \(\epsilon\)
A. Kussmau

Gupta, P
A. L. Kuzem

Correlate
A. Krol, Z. H. Ming, Y. H. Kao, N. Nücker, G. Roth, J. Fink, G. C. Smith, K. T. Park, J. Yu, A. J. Freeman, A. Erband, G. Müller-Vogt, J. Karpinski, E. Kaldis, and K. Schönmann, Phys. Rev. B 45, 2581 (1992).
H. W. Kroto and D. R. M. Walton, in "The Fullerenes: New Horizons for the Chemistry, Physics, and Astrophysics of Carbon," Cambridge Univ. Press, New York, 1993.
E. Krüger, Phys. Stat. Sol. B 156, 345 (1989).
L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer and F. Holtzberg, Phys. Rev. B 39, 2936 (1989).
H. C. Ku, H. D. Yang, R. W. McCallum, M. A. Noack, P. Klavins, R. N. Shelton, and A. R. Moodenbaugh, in "High Temperature Superconductors" (U. Gubser and M. Schluter, Eds.), p. 177, Mater. Res. Soc., Pittsburgh, 1987.
R. Kuentzler, C. Hornick, Y. Dossmann, S. Wegner, R. El Farsi, and M. Drillon, Physica C 184, 316 (1991).
M. L. Kulic and R. Zeyher, Phys. Rev. B 49, 4395 (1994).
J. Kulik, Y. Y. Xue, Y. Y. Sun, and M. Bonvalot, J. Mater. Res. 5, 1625 (1990).
A. D. Kulkarni, J. Prade, F. W. de Wette, W. Kress, and U. Schröder, Phys. Rev. B 40, 2642 (1989).
A. D. Kulkarni, F. W. de Wette, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 41, 6409 (1990).
A. D. Kulkarni, F. W. de Wette, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B 43, 5451 (1991).
H. Kumakura, M. Uehara, and K. Togano, Appl. Phys. Lett. 51, 1557 (1987).
G. R. Kumar and P. Chaddah, Phys. Rev. B 39, 4704 (1989).
N. Kumar and A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992).
M. N. Kunchur and S. J. Poon, Phys. Rev. B 43, 2916 (1991).
P. J. Kung, M. P. Maley, M. E. McHenry, J. O. Willis, J. Y. Coulter, M. Murakami, and S. Tanaka, Phys. Rev. B 46, 6427 (1992).
S. Kurihara, Phys. Rev. B 39, 6600 (1989).
E. Z. Kurmaev, V. P. Belash, S. A. Nemnonov, and A. S. Shulakov, Phys. Stat. Solid B 61, 365 (1974).
E. Z. Kurmaev, V. I. Nefedov, and L. D. Finkelstein, Int. J. Mod. Phys. B 2, 393 (1988).
E. Z. Kurmaev and L. D. Finkelstein, Int. J. Mod. Phys. B 3, 973 (1989).
E. Z. Kurmaev and L. D. Finkelstein, Int. J. Mod. Phys. 5, 1097 (1991).
H. Kuroda, K. Yakushi, H. Tasima, A. Ugawa, Y. Okawa, A. Kobayashi, R. Kato, H. Kobayashi, and G. Saito, Synth. Metals A 27, 491 (1988).
A. Kussmaul, J. S. Moodera, G. M. Roesler, Jr., and P. M. Tedrow, Phys. Rev. B 41, 842 (1990).
A. Kussmaul, J. S. Moodera, P. M. Tedrow, and A. Gupta, Physica C 177, 415 (1991).
A. L. Kuzemsky, in Int. Conf. Supercond. and Strongly Correlated Electron Systems, Amalfi, Italy, 1993.
E. Kuzmann, Z. Homonnay, A. Vértes, M. Gál, K. Torkos, B. Csákvári, G. K. Solymos, G. Horváth, J. Bánkuti, I. Kirschner, and L. Korecz, Phys. Rev. B 39, 328 (1989).
L. S. Kuzmin, P. Delsing, T. Claeson, and K. Likharev, Phys. Rev. Lett. 62, 2539 (1989).
L. S. Kuzmin, Yu. V. Nazarov, D. B. Haviland, P. Delsing, and T. Claeson, Phys. Rev. Lett. 67, 1161 (1991).
L. S. Kuzmin and D. Haviland, Phys. Rev. Lett. 67, 2890 (1991).
M. Kvale and S. E. Hebboul, Phys. Rev. B 43, 3720 (1991).
G. H. Kwei, J. A. Goldstone, A. C. Lawson, Jr., J. D. Thompson, and A. Williams, Phys. Rev. B 39, 7378 (1989).
G. H. Kwei, R. B. Von Dreele, S.-W. Cheong, Z. Fisk, and J. D. Thompson, Phys. B 41, 1889 (1990).
W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, Y. Zheng, B. Dabroski, and D. G. Hinks, Phys. Rev. B 40, 9400 (1989).
W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, and J. Z. Liu, Phys. Rev. Lett. 64, 966 (1990a).
W. K. Kwok, U. Welp, K. D. Carison, G. W. Crabtree, K. G. Vandervoort, H. H. Wang, A. M. Kini, J. M. Williams, D. L. Stupka, L. K. Montgomery, and J. E. Thompson, Phys. Rev. B 42, 8686 (1990b).
H. S. Kwok, J. P. Zheng, and S. Y. Dong, Phys. Rev. B 43, 6270 (1991).
Y. K. Kwong, K. Lin, M. Park, M. S. Isaacson, and J. M. Parpia, Phys. Rev. B 45, 9850 (1992).
J. Labbé, Phys. Rev. 158, 647, 655 (1967a).
J. Labbé, S. Barisic, and J. Friedel, Phys. Rev. Lett. 19, 1039 (1967b).
B. M. Lairson, S. K. Streiffer, and J. C. Bravman, Phys. Rev. B 42, 10067 (1990a).
B. M. Lairson, J. Z. Sun, J. C. Bravman, and T. H. Geballe, Phys. Rev. B 42, 1008 (1990b).
B. M. Lairson, J. Z. Sun, T. H. Geballe, M. R. Beasley, and J. C. Bravman, Phys. Rev. B 43, 10405 (1991).
R. Lal and S. K. Joshi, Phys. Rev. B 45, 361 (1992).
Q. H. Lam, Y. Kim, and C. D. Jeffries, Phys. Rev. B 42, 4846 (1990).
M. D. Lan, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 44, 233 (1991).
L. D. Landau, Sov. Phys. JETP 3, 920 (1957a); 5, 101 (1957b).
C. T. Lane, "Superfluid Physics," Chap. 9, McGraw-Hill, New York, 1962.
M. Lang, N. Toyota, T. Sasaki, and H. Sato, Phys. Rev. Lett. 69, 1443 (1992a); Phys. Rev. B 46, 5822 (1992b).
J. Langen, M. Veit, M. Galffy, H. D. Jostarndt, A. Erle, S. Blumenröder, H. Schmidt, and E. Zirngiebl, Solid State Commun. 65, 973 (1988).
D. N. Langenberg, D. J. Scalapino, and B. N. Taylor, Sci. Amer. 214, 30 (May 1966).
W. Lanping, H. Jian, and W. Guowen, Phys. Rev. B 40, 10954 (1989).
D. C. Larbalestier, M. Daeumling, X. Cai, J. Suentjens, J. McKinnell, D. Hampshire, P. Lee, C. Meingast, T. Willis, H. Muller, R. D. Ray, R. G. Dillenburg, E. E. Hellstrom, and R. Joynt, J. Appl. Phys. 62, 3308 (1987a).
D. C. Larbalestier, M. Daeumling, P. J. Lee, T. F. Kelly, J. Seuntjens, C. Meingast, X. Cai, J. McKinnell, R. D. Ray, R. G. Dillenburg, and E. E. Hellstrom, Cryogenics 27, 411 (1987b).
A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 38, 854 (1974).
A. Larsen, H. D. Jensen, and J. Mygind, Phys. Rev. B 43, 10179 (1991).
R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988a).
R. B. Laughlin, Science 242, 525 (1988b).
W. E. Lawrence and S. Doniach, in "Proc. 12th Int. Conf. Low Temp. Phys. Kyoto, 1970" (E. Kanda, Ed.), p. 361. Keigaku, Tokyo, 1971.
L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, Y. J. Uemura, J. H. Brewer, T. M. Riseman, C. E. Stronach, G. Saito, H. Yamochi, H. H. Wang, A. M. Kini, K. D. Carlson, and J. M. Williams, Phys. Rev. Lett. 68, 1923 (1992).
M. A. R. LeBlanc, D. LeBlanc, A. Golebiowski, and G. Fillion, Phys. Rev. Lett. 66, 3309 (1991).
D. LeBlanc and M. A. R. LeBlanc, Phys. Rev. B 45, 5443 (1992).
K. Le Dang, J. P. Renard, P. Veillet, E. Vélu, J. P. Burger, J. N. Daou, and Y. Loreaux, Phys. Rev. B 40, 11291 (1989).
E. Lederman, L. Wu, M. L. denBoer, P. A. van Aken, W. F. Müller, and S. Horn, Phys. Rev. B 44, 2320 (1991).
T.-K. Lee, J. L. Birman, and S. J. Williamson, Phys. Rev. Lett. 39, 839 (1977a); Phys. Lett. A 64, 89 (1977b).
T.-K. Lee and J. L. Birman, Phys. Rev. B 17, 4931 (1978).
M. Lee, M. Yudkowsky, W. P. Halperin, J. Thiel, S.-J. Hwu, and K. R. Poeppelmeier, Phys. Rev. B 36, 2378 (1987).
M. Lee, Y.-Q. Song, W. P. Halperin, L. M. Tonge, T. J. Marks, H. O. Marcy, and C. R. Kannewurf, Phys. Rev. B 40, 817 (1989).
S. J. Lee and J. B. Ketterson, Phys. Rev. Lett. 64, 3078 (1990).
S.-I. Lee, Y. H. Jeong, K. H. Han, Z. S. Lim, Y. S. Song, and Y. W. Park, Phys. Rev. B 41, 2623 (1990).
W. C. Lee and D. C. Johnston, Phys. Rev. B 41, 1904 (1990).
H. C. Lee, R. S. Newrock, D. B. Mast, S. E. Hebboul, J. C. Garland, and C. J. Lobb, Phys. Rev. 44, 921 (1991).
W. C. Lee and D. M. Ginsberg, Phys. Rev. B 44, 2815 (1991).
W. C. Lee, J. H. Cho, and D. C. Johnston, Phys. Rev. B 43, 457 (1991).
T. R. Lemberger, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 6, World Scientific, Singapore, 1992.
S. Lenck, S. Wermbter, and L. Tewordt, J. Low Temp. Phys. 80, 269 (1990).
S. Lenck and J. P. Carbotte, Phys. Rev. B 49, 4176 (1994).
H. Lengfellner, A. Schnellbögl, J. Betz, W. Prettl, and K. F. Renk, Phys. Rev. B 42, 6264 (1990).
H. Lengfellner, A. Schnelbögl, J. Betz, K. Renk, and W. Prettl, Appl. Phys. Lett. 60, 1991 (1991a).
H. Lengfellner and A. Schnellbögl, Physica C 174, 373 (1991).
H. Lengfellner, G. Kremb, A. Schnellbögl, J. Betz, K. F. Renk, and W. Prettl, Appl. Phys. Lett. 60, 501 (1992).
Y. Le Page, T. Siegrist, S. A. Sunshine, L. F. Schneemeyer, D. W. Murphy, S. M. Zahurak, J. V. Waszczak, W. R. McKinnon, J. M. Tarascon, G. W. Hull, and L. H. Greene, Phys. Rev. B 36, 3617 (1987).
F. Lera, R. Navarro, C. Rillo, L. A. Angurel, A. Badia, and J. Bartolome, J. Magn. Mag. Mater. 104-107, 615 (1992).
Ph. Lerch, Ch. Leemann, R. Theron, and P. Martinoli, Phys. Rev. B 41, 11579 (1990).
J. Lesueur, L. H. Greene, W. Feldmann, and A. Inam, Physica C 191, 325 (1992).
B. G. Levi, Phys. Today 19 (May 1988), p. 19.
G. Levin, Phys. Rev. B 47, 14634 (1993).
L. Levitov, Phys. Rev. Lett. 66, 224 (1991).
J. A. Lewis, C. E. Platt, M. Wegmann, M. Teepe, J. L. Wagner, and D. G. Hinks, Phys. Rev. B 48, 7739 (1993).
J. Q. Li, C. Chen, D. Y. Yang, F. H. Li, Y. S. Yao, Z. Y. Ran, W. K. Wang, and Z. X. Zhao, Z. Phys. B. 74, 165 (1989).
J. Q. Li, X. X. Xi, X. D. Wu, A. Inam, S. Vadlamannati, W. L. McLean, T. Venkatesan, R. Ramesh, D. M. Hwang, J. A. Martinez, and L. Nazar, Phys. Rev. Lett. 64, 3086 (1990).
Z.-Z. Li and Y. Qiu, Phys. Rev. B 43, 12906 (1991).
Y.-H. Li and S. Teitel, Phys. Rev. Lett. 66, 3301 (1991).
C. Li, M. Pompa, S. D. Longa, and A. Bianconi, Physica C 178, 421 (1991).
Y.-H. Li and S. Teitel, Phys. Rev. B 45, 5718 (1992).
Q. Li, M. Suenaga, T. Hikata, and K. Sato, Phys. Rev. B 46, 5857 (1992).
Q. Li, M. Suenaga, T. Kimura, and K. Kishio, Phys. Rev. 47, 11384 (1993).
R. L. Lichti, D. W. Cooke, and C. Boekema, Phys. Rev. B 43, 1154 (1991).
A. I. Liechtenstein, I. I. Mazin, C. O. Rodriguez, O. Jepsen, O. K. Andersen, and M. Methfessel, Phys. Rev. B 44, 5388 (1991).
K. K. Likharev, "Dynamics of Josephson Junctions and Circuits," Gordon \& Breach, New York, 1986.
L. Lilly, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 65, 1379 (1990).
Z. S. Lim, K. H. Han, S.-I. Lee, Y. H. Jeong, S. H. Salk, Y. S. Song, and Y. W. Park, Phys. Rev. B 40, 7310 (1989).
S.-Y. Lin, L. Lu, H.-M. Duan, B.-H. Ma, and D.-L. Zhang, Int. J. Mod. Phys. B 3, 409 (1989).
J. J. Lin, Phys. Rev. B 44, 789 (1991).
P. A. P. Lindberg, I. Lindau, and W. E. Spicer, Phys. Rev. B 40, 6822 (1989).
F. Lindemann, Phys. Z. 11, 609 (1910).
A. P. Litvinchuk, C. Thomsen, and M. Cardona, in "Physical Properties of High Temperature Superconductors," Vol. 4, Chap. 6, World Scientific, Singapore, 1994.
W. A. Little and R. D. Parks, Phys. Rev. Lett. 9, 9 (1962).
Y. Liu, J. Y. Lee, M. J. Sumner, R. Sooryakumar, and T. R. Lemberger, Phys. Rev. B 42, 10090 (1990).
J.-X. Liu, J.-C. Wan, A. M. Goldman, Y. C. Chang, and P. Z. Jiang, Phys. Rev. Lett. 67, 2195 (1991).
J.-Z. Liu, Y. X. Jia, R. N. Shelton, and M. J. Fluss, Phys. Rev. Lett. 66, 1354 (1991).
J. Z. Liu, L. Zhang, M. D. Lan, R. N. Shelton, and M. J. Fluss, Phys. Rev. B 46, 9123 (1992).
L. Liu, J. S. Kouvel, and T. O. Brun, Phys. Rev. B 43, 7859 (1991).
R. Liu, B. W. Veal, A. P. Paulikas, J. W. Downey, H. Shi, C. G. Olson, C. Gu, A. J. Arko, and J. J. Joyce, Phys. Rev. B 45, 5614 (1992).
R. Liu, M. V. Klein, P. D. Han, and D. A. Payne, Phys. Rev. B 45, 7392 (1992).
L. Liu, J. S. Kouvel, and T. O. Brun, Phys. Rev. B 45, 3054 (1992).
C. J. Lobb, Phys. Rev. 36, 3930 (1987).
G. Yu. Logvenov, V. V. Ryazanov, A. V. Ustinov, and R. P. Huebener, Physica C 175, 179 (1991).
L. W. Lombardo, D. B. Mitzi, A. Kapitulnik, and A. Leone, Phys. Rev. B 46, 5615 (1992).
F. London and H. London, Proc. Roy. Soc. (London) A 141, 71 (1935).
P. London, "Une Conception Nouvelle de la Superconductibilité," Hermann, Paris, 1937.
F. London, "Superfluids," Wiley, New York, Vol. 1, 1950; Vol. 2, 1954, Dover, New York, 1961.
J. M. Longo and P. M. Raccah, J. Solid State Chem. 6, 526 (1973).
C.-K. Loong, P. Vashishta, R. K. Kalia, M. H. Degani, D. L. Price, D. J. Jorgensen, D. G. Hinks, B. Dabrowski, A. W. Mitchell, D. R. Richards, and Y. Zheng, Phys. Rev. Lett. 62, 2628 (1989).
C.-K. Loong, D. G. Hinks, P. Vashishta, W. Jin, R. K. Kalia, M. H. Degani, D. L. Price, J. D. Jorgensen, B. Dabrowski, A. W. Mitchell, D. R. Richards, and Y. Zheng, Phys. Rev. Lett. 66, 3217 (1991).
C.-K. Loong, P. Vashishta, R. K. Kalia, W. Jin, M. H. Degani, D. G. Hinks, D. L. Price, J. D. Jorgensen, B. Dabrowski, A. W. Mitchell, D. R. Richards, and Y. Zheng, Phys. Rev. B 45, 8052 (1992).
Y. Lou, X. Lu, G. H. Dai, W. Y. Ching, Y.-N. Xu, M.-Z. Huang, P. K. Tseng, Y. C. Jean, R. L. Meng, P. H. Hor, and C. W. Chu, Phys. Rev. B 46, 2644 (1992).
A. J. Lowe, S. Regan, and M. A. Howson, Phys. Rev. B 44, 9757 (1991).
D. H. Lowndes, D. P. Norton, and J. D. Budai, Phys. Rev. Lett. 65, 1160 (1990).
J. P. Lu, K. Arya, and J. L. Birman, Phys. Rev. B 40, 7372 (1989).
J.-T. Lue and J. S. Sheng, Phys. Rev. B 47, 5469 (1993).
G. M. Luke, L. P. Le, B. J. Stemlieb, Y. J. Uemura, J. H. Brewer, R. Kadono, R. F. Kiefi, S. R. Kreitzman, T. M. Riseman, C. E. Stronach, M. R. Davis, S. Uchida, H. Takagi, Y. Tokura, Y. Hidaka, T. Murakami, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, E. A. Early, J. T. Markert, M. B. Maple, and C. L. Seaman, Phys. Rev. B 42, 7981 (1990).
S. Lupi, P. Calvani, M. Capizzi, P. Maselli, W. Sadowski, and E. Walker, Phys. Rev. B 45, 12470 (1992).
J. Luzuriaga, M.-O. Andrè, and W. Benoit, Phys. Rev. B 45, 12492 (1992).
J. W. Lynn, T. W. Clinton, W.-H. Li, R. W. Erwin, J. Z. Liu, K. Vandervoort, and R. N. Shelton, Phys. Rev. Lett. 63, 2606 (1989).
J. W. Lynn, (Ed.), "High Temperature Superconductivity," Springer-Verlag, Berlin, 1990a.
J. W. Lynn, "High Temperature Superconductivity," Chap. 8, Springer-Verlag, Berlin, 1990b.
J. W. Lynn, I. W. Sumarlin, S. Skanthakumar, W.-H. Li, R. N. Shelton, J. L. Peng, Z. Fisk, and S.-W. Cheong, Phys. Rev. B 41, 2569 (1990).
J. W. Lynn, J. Alloys Compounds 181, 419 (1992).
E. A. Lynton, "Superconductivity," Methuen, London, 1962.
D. K. C. MacDonald, "Thermoelectricity, An Introduction To the Principles," Wiley, New York, 1962.
H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys. Lett. 27, 209 (1988).
A. Maeda, T. Shibauchi, N. Kondo, K. Uchinokura, and M. Kobayashi, Phys. Rev. B 46, 14234 (1992).
Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature 328, 512 (1987).
G. D. Mahan, Phys. Rev. B 40, 11317 (1989).
G. D. Mahan, Phys. Rev. B 48, 16557 (1993).
F. Mahini, F. S. Razavi, and Z. Altounian, Phys. Rev. B 39, 4677 (1989).
R. Mailfert, R. W. Batterman, and J. J. Hanak, Phys. Lett. A 24, 315 (1967).
A. Majhofer, L. Mankiewicz, and J. Skalski, Phys. Rev. B 42, 1022 (1990).
K. Maki, Prog. Theoret. Phys. 39, 897 (1968).
K. Maki, Phys. Rev. B 43, 1252 (1991); erratum, 43, 13685 (1991).
H. Maletta, A. P. Malozemoff, D. C. Cronemeyer, C. C. Tsuei, R. L. Greene, J. G. Bednorz, and K. A. Müller, Solid State Commun. 62, 323 (1987).
M. P. Maley, J. Appl. Phys. 70, 6189 (1991).
M. P. Maley, P. J. Kung, J. Y. Coulter, W. L. Carter, G. N. Riley, and M. E. McHenry, Phys. Rev. B 4S, 7566 (1992).
M. Mali, D. Brinkmann, L. Pauli, J. Roos, H. Zimmermann, and J. Hulliger, Phys. Lett. A 124, 112 (1987).
S. K. Malik, C. V. Tomy, D. T. Adroja, R. Nagarajan, R. Prasad, and N. C. Soni, Solid State Commun. 66(10), 1097 (1988).
B. A. Malomed, Phys. Rev. 39, 8018 (1989).
B. A. Malomed, Phys. Rev. B 41, 2616 (1990).
B. A. Malomed and A. Weber, Phys. Rev. B 44, 875 (1991).
B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. B 45, 12435 (1992).
A. P. Malozemoff, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 3, World Scientific, New York, 1989.
P. Mandal, A. Poddar, A. N. Das, B. Ghosh and P. Choudhury, Phys. Rev. B 40, 730 (1989).
V. Manivannan, J. Gopalakrishnan, and C. N. R. Rao, Phys. Rev. B 43, 8686 (1991).
Y. Maniwa, H. Sato, K. Mizoguchi, and K. Kune, Jpn. J. Appl. Phys. 29, 268 (1990).
Y. Maniwa, T. Mituhashi, K. Mizoguchi, and K. Kume, Physica C 175, 401 (1991a).
Y. Maniwa, S. Sato, T. Mituhaski, K. Mizoguchi, and K. Kume, Physica C 185-189, 1761 (1991b).
M. B. Maple, J. W. Chen, S. E. Lambert, Z. Fisk, J. L. Smith, and H. R. Ott, cited in Stewart (1984).
M. C. Marchetti and D. R. Nelson, Phys. Rev. B 41, 1910 (1990).
M. C. Marchetti, Phys. Rev. B 43, 8012 (1991).
R. Marcon, R. Fastampa, M. Giura, C. Matacotta, Phys. Rev. B 39, 2796 (1989).
R. Marcon, E. Silva, R. Fastampa, and M. Giura, Phys. Rev. B 46, 3612 (1992).
J. Marcus, C. Escribe-Filippini, C. Schlenker, R. Buder, J. Devenyi, and P. L. Reydet, Solid State Commun. 63, 129 (1987).
M. Marder, N. Papanicolaou, and G. C. Psaltakis, Phys. Rev. B 41, 6920 (1990).
L. Maritato, A. M. Cucolo, R. Vaglio, C. Noce, J. L. Makous, and C. M. Falco, Phys. Rev. B 38, 12917 (1988).
J. T. Markert, T. W. Noh, S. E. Russek, and R. M. Cotts, Solid State Commun. 63, 847 (1987).
J. T. Markert, Y. Dalichaouch, and M. B. Maple, in "Physical Properties of High Temperature Super Conductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 6, World Scientific, Singapore, 1989.
R. S. Markiewicz, Physica C 177, 171 (1991).
R. S. Markiewicz, Int. J. Mod. Phys. B 5, 2037 (1991).
P. Marsh, R. M. Fleming, M. L. Mandich, A. M. DeSantolo, J. Kwo, M. Hong, and L. J. MartinezMiranda, Nature 334, 141 (1988).
C. D. Marshall, I. M. Fishman, R. C. Dorfman, C. B. Eom, and M. D. Fayer, Phys. Rev. B 45, 10009 (1992).
F. Marsiglio and J. E. Hirsch, Phys. Rev. B 44, 11960 (1991).
F. Marsiglio, Phys. Rev. B 44, 5373 (1991).
F. Marsiglio, Phys. Rev. B 45, 956 (1992).
F. Marsiglio and J. E. Hirsch, Phys. Rev. B 49, 1366 (1994).
S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 60, 2194 (1988).
S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Copper, Phys. Rev. Lett. 62, 677, (1989); see 63,582 (1989) for comment by P. C. E. Stamp and a reply by the authors.
S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 846 (1990).
S. Martin and A. F. Hebard, Phys. Rev. B 43, 6253 (1991).
M. Martin, C. Kendziora, L. Mihaly, and R. Lefferts, Phys. Rev. B 46, 5760 (1992).
M. C. Martin, D. Koller, and L. Mihaly, Phys. Rev. B 47, 14607 (1993).
T. P. Martin, U. Näher, H. Schaber, and U. Zimmermann, Phys. Rev. Lett. 70, 3079 (1993).
C. Martin, M. Hervieu, M. Huvé, C. Michel, A. Maignan, G. van Tendeloo, and B. Raveau, Physica C 222, 19 (1994).
J. A. Martindale, S. E. Barrett, C. A. Klug, K. E. O'Hara, S. M. DeSoto, C. P. Slichter, T. A. Friedmann, and D. M. Ginsberg, Phys. Rev. Lett. 68, 702 (1992).
J. L. Martins and N. Troullier, Phys. Rev. B 46, 1766 (1992).
A. Masaki, H. Sato, S.-I. Uchida, K. Kitazawa, S. Tanaka, and K. Inoue, Jpn. J. Appl. Phys. 26, 405 (1987).
H. Mathias, W. Moulton, H. K. Ng, S. J. Pan, K. K. Pan, L. H. Peirce, L. R. Testardi, and R. J. Kennedy, Phys. Rev. B 36, 2411 (1987).
P. Mathieu and Y. Simon, Europhys. Lett. 5, 67 (1988).
I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, and T. Kawai, Phys. Rev. B 45, 7414 (1992).
Y. Matsuda, N. P. Ong, Y. F. Yan, J. M. Harris, and J. B. Peterson, Phys. Rev. B 49, 4380 (1994).
Y. Matsuda, T. Hirai, S. Komiyama, T. Terashima, Y. Bando, K. Iijima, K. Yamamoto, and K. Hirata, Phys. Rev. B 40, 5176 (1989).
Y. Matsumoto, M. Katada, and T. Nishida, Physica C 185, 1229 (1991).
T. Matsuura and K. Miyake, Jpn. J. Appl. Phys. 26, L407 (1987).


\footnotetext{
hita,
}
H. Matsuyama, T. Takahashi, H. Katayama-Yoshida, Y. Okabe, H. Takagi, and S. Uchida, Phys. Rev. B 40, 2658 (1989).
L. F. Mattheiss, Phys. Rev. B 1, 373 (1970).
L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227 (1983).
L. F. Mattheiss, Jpn. J. Appl. Phys. 24(2), 6 (1985).
L. F. Mattheiss and D. R. Hamann, Solid State Commun. 63, 395 (1987).
L. F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).
L. F. Mattheiss, E. M. Gyrogy, and D. W. Johnson, Jr., Phys. Rev. B 37, 3745 (1988).
L. F. Mattheiss and D. R. Hamann, Phys. Rev. Lett. 60, 2681 (1988).
L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 39, 4780 (1989).
L. F. Mattheiss, Phys. Rev. B 42, 359 (1990).
B. Matthias, Phys. Rev. 92, 874 (1953).
B. Matthias, Phys. Rev. 97, 74 (1955).
D. C. Mattis and M. Molina, Phys. Rev. B 44, 12565 (1991).
E. Maxwell, Phys. Rev. 78, 477 (1950).
I. I. Mazin, O. Jepsen, O. K. Andersen, A. I. Liechtenstein, S. N. Rashkeev, and Y. A. Uspenskii, Phys. Rev. B 45, 5103 (1992).
K. F. McCarty, D. S. Ginley, D. R. Boehme, R. J. Baughman, and B. Morosin, Solid State Commun. 68, 77 (1988).
K. F. McCarty, B. Morosin, D. S. Ginley, and D. R. Boehme, Physica C 157, 135 (1989).
K. F. McCarty, J. Z. Liu, R. N. Shelton, and H. B. Radousky, Phys. Rev. B 41, 8792 (1990a); 42, 9973 (1990b).
K. F. McCarty, H. B. Radousky, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 43, 13751 (1991).
K. A. McGreer, J.-C. Wan, N. Anand, and A. M. Goldman, Phys. Rev. B 39, 12260 (1989).
M. E. McHenry, S. Simizu, H. Lessure, M. P. Maley, J. Y. Coulter, I. Tanaka, and H. Kojima, Phys. Rev. B 44, 7614 (1991).
W. R. McKinnon, J. R. Morton, K. F. Preston, and L. S. Selwyn, Solid State Commun. 65, 855 (1988).
W. L. McMillan, Phys. Rev. 167, 331 (1968).
T. McMullen, Phys. Rev. B 41, 877 (1990).
G. A. Medina and M. D. N. Regueiro, Phys. Rev. B 42, 8073 (1990).
N. I. Medvedeva, S. A. Turzhevsky, V. A. Gubanov, and A. J. Freeman, Phys. Rev. B 48, 16061 (1993).
D. Mehl, A. R. Köymen, K. O. Jensen, F. Gotwald, and A. Weiss, Phys. Rev. B 41, 799 (1990).
W. Meissner and R. Ochsenfeld, Naturwissenschaft 21, 787 (1933).
K. Mendelssohn, "Cryophysics," Chap. 6, Interscience, New York, 1960.
R. L. Meng, Y. Y. Sun, J. Kulik, Z. J. Huang, F. Chen, Y. Y. Xue, and C. W. Chu, Physica C 214, 307 (1993a).
R. L. Meng, L. Beauvais, X. N. Zhang, Z. J. Huang, Y. Y. Sun, Y. Y. Zue, and C. W. Chu, Physica C 216, 21 (1993b).
M. Merkel, M. Knupfer, M. S. Golden, J. Fink, R. Seemann, and R. L. Johnson, Phys. Rev. B 47, 11470 (1993).
R. Meservey and B. B. Schwartz, in "Superconductivity" (R. D. Parks, Ed.), Vol. 1, Chap. 3, Dekker, New York, 1969.
J. Metzger, T. Weber, W. H. Fietz, K. Grube, H. A. Ludwig, T. Wolf, and H. Wühl, Physica C, 214, 371 (1993).
H. M. Meyer III, D. M. Hill, T. J. Wagener, Y. Gao, J. H. Weaver, D. W. Capone II, and K. C. Goretta, Phys. Rev. B 38, 6500 (1988).
H. M. Meyer III and J. H. Weaver, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 6, World Scientific, Singapore, 1990.
P. F. Miceli, J. M. Tarascon, L. H. Greene, P. Barboux, M. Giroud, D. A. Neumann, J. J. Rhyne, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 38, 9209 (1988).
C. Michel and B. Raveau, Rev. Chim. Miner. 21, 407 (1984).
C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost, and B. Raveau, Z. Phys. B. Cond. Matt. 68, 421 (1987).
R. Micnas, J. Ranninger, and S. Robaszkiewicz, Phys. Rev. B 36, 4051 (1987).
R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
A. R. Miedema, J. Phys. (Paris) F3, 1803 (1973).
A. R. Miedema, J. Phys. (Paris) F4, 120 (1974).
F. Mila, Europhys. Lett. 8, 555 (1989).
F. Mila and T. M. Rice, Physica C 157, 561 (1989).
S. L. Miller, K. R. Biagi, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 31, 2684 (1985).
J. H. Miller, Jr., G. H. Gunaratne, J. Huang, and T. D. Golding, Appl. Phys. Lett. 59, 3330 (1991).
A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).
A. J. Millis and S. N. Coppersmith, Phys. Rev. B 43, 13770 (1991).
A. J. Millis and H. Monien, Phys. Rev. B 45, 3059 (1992).
L. Mingzhu, T. Weihua, M. Xianren, L. Zhenjin, H. Wei, T. Qingyun, R. Yanru, and L. Zhenxing, Phys. Rev. B 41, 2517 (1990).
P. Minnhagen and P. Olsson, Phys. Rev. Lett. 67, 1039 (1991).
P. Minnhagen and P. Olsson, Phys. Rev. B 45, 5722 (1992).
N. Missert and M. R. Beasley, Phys. Rev. Lett. 63, 672 (1989).
M. G. Mitch, S. J. Chase, and J. S. Lannin, Phys. Rev. Lett. 68, 883 (1992).
L. Miu, A. Crisan, S. Popa, V. Sandu, and L. Nistor, J. Supercond. 3, 391 (1990).
L. Miu, Phys. Rev. B 45, 8142 (1992).
M. Miyazaki, J. Inoue, and S. Maekawa, Phys. Rev. B 40, 6611 (1989).
P. Mocaër, L. Tessler, M. Laguës, F. Laher-Lacour, C. Lacour, U. Dai, N. Hess, and G. Deutscher, Physica C 185-189, 2505 (1991).
M. A. K. Mohamed, J. Jung, and J. P. Franck, Phys. Rev. B 39, 9614 (1989).
M. A. K. Mohamed, J. Jung, and J. P. Franck, Phys. Rev. B 41, 4286, 6466 (1990).
M. A.-K. Mohamed and J. Jung, Phys. Rev. B 44, 4512 (1991).
R. Monaco, Int. J. Infrared. Millimeter Waves II, 533 (1990a); J. Appl. Phys. 68, 679 (1990b).
H. Monien and A. Zawadowski, Phys. Rev. Lett. 63, 911 (1989).
H. Monien and A. Zawadowski, Phys. Rev. B 41, 8798 (1990).
H. C. Montgomery, J. Appl. Phys. 42, 2971 (1971).
P. Monthoux and D. Pines, Phys. Rev. B 49, 4261 (1994).
J. S. Moodera, R. Meservey, J. E. Tkaczyk, C. X. Hao, G. A. Gibson, and P. M. Tedrow, Phys. Rev. B 37, 619 (1988).
H. A. Mook, D. McK. Paul, B. C. Sales, L. A. Boatner, and L. Cussen, Phys. Rev. B 38, 12008 (1988).
F. C. Moon, "Superconducting Levitation," Wiley, New York, 1994.
J. Moreland, A. F. Clark, H. C. Ku, and R. N. Shelton, Cryogenics 27, 227 (1987).
J. Moreland, J. W. Ekin, L. F. Gcodrich, T. E. Capobianco, A. F. Clark, J. Kwo, M. Hong, and S. H. Liou, Phys. Rev. B 35, 8856 (1987).
H. Mori, Phys. Rev. B 43, 5474 (1991).
D. E. Morris, J. H. Nickel, J. Y. T. Wei, N. G. Asmar, J. S. Scott, U. M. Scheven, C. T. Hultgren, A. G. Markelz, J. E. Post, P. J. Heaney, D. R. Veblen, and R. M. Hazen, Phys. Rev. B 39, 7347 (1988).
D. E. Morris, N. G. Asmar, J. Y. T. Wei, J. H. Nickel, R. L. Sid, J. S. Scott, and J. E. Post, Phys. Rev. B 40, 11406 (1989).
D. C. Morse and T. C. Lubensky, Phys. Rev. B 43, 10436 (1991).
A. Moser, H. J. Hug, O. Fritz, I. Parashikov, H.-J. Güntherodt, and Th. Wolf, J. Vacuum Sci. and Technol., submitted for publication.
A. Moser, H. J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H.-J. Güntherodt, and P. Chaudhari, Phys. Rev. Lett. 74, 1847 (1995).
M. Mostoller, J. Zhang, A. M. Rao, and P. C. Eklund, Phys. Rev. B 41, 6488 (1990).
M. Mück, SPIE Symp. Adv. Electronic and Optoelectronic Matter, Los Angeles, California, 1994, submitted for publication.
H. Mukaida, K. Kawaguchi, M. Nakao, H. Kumakura, D. Dietderich, and K. Togano, Phys. Rev. B 42, 2659 (1990).
K. A. Müller, M. Takashige, and J. G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987).
K.-H. Müller, Physica C 159, 717 (1989).

K-H. Müller and A. J. Pauza, Physica C 161, 319 (1989).
K.-H. Müller, IEE Trans. Magn. March (1991).
K.-H. Müller, M. Nikolo, and R. Driver, Phys. Rev. B 43, 7976 (1991).
H. Muller, M. Suenaga, and Y. Yokoyama, J. Appl. Phys. 70, 4409 (1991).
M. Murakami, H. Fujimoto, S. Gotoh, K. Yamaguchi, N. Koshizuka, and S. Tanaka, Physica C 185-189, 321 (1991).
M. Murakami, in "Studies of High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 9, Nova Sci., New York, 1991.
D. W. Murphy, S. Sunshine, R. B. van Dover, R. J. Cava, B. Batlogg, S. M. Zahurak, and L. F. Schneemeyer, Phys. Rev. Lett. 58, 1888 (1987).
P. Muzikar, D. Rainer, and J. A. Sauls, Proc. NATO Adv. Study Inst. Vortices in Superfluids, Cargèse, Corsica (N. Bontemps, Ed.), Kluwer, Dordrecht, 1994.
J. A. Mydosh, Phys. Scripta T19, 260 (1987).
T. Mzoughi, H. A. Farach, E. Quagliata, M. A. Mesa, C. P. Poole, Jr., and R. Creswick, Phys. Rev. B 46, 1130 (1992).
N. Nagaosa and P. Lee, Phys. Rev. B 43, 1233 (1991).
M. Nagoshi, Y. Fukuda, T. Suzuki, K. Ueki, A. Tokiwa, M. Kikuchi, Y. Syono, and M. Tachiki, Physica C 185, 1051 (1991).
M. Naito, A. Matsuda, K. 'Kitazawa, S. Kambe, I. Tanaka, and H. Kojima, Phys. Rev. B 41, 4823 (1990).
Y. Nakamura and S. Uchida, Phys. Rev. B 47, 8369 (1993).
K. Nakao, N. Miura, K. Tatsuhara, H. Takeya, and H. Takei, Phys. Rev. Lett. 63, 97 (1993).
A. V. Narlikar, Ed., "Studies of High Temperature Superconductors," Nova Sci., New York, 1989.
K. Nasu, Phys. Rev. B 42, 6076 (1990).
B. Nathanson, O. Entin-Wohlman, and B. Mühlschlegel, Phys. Rev. B 45, 3499 (1992).
R. Navarro and L. J. Campbeli, Phys. Rev. B 44, 10146 (1991).
D. R. Nelson, in "Fundamental Problems in Structural Mechanics V" (E. G. D. Cohen, Ed.), North-Holland, Amsterdam, 1980.
D. L. Nelson, M. S. Whittingham, and T. F. George, Eds., "Chemistry of High-Temperature Superconductors," ACS Symposium Series No. 351, American Chemical Society, Washington, DC, 1987.
D. R. Nelson and H. S. Seung, Phys. Rev. B 39, 9153 (1989).
D. R. Nelson and P. Le Doussal, Phys. Rev. B 42, 10113 (1990).
D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68, 2398 (1992).
E. Nembach, K. Tachikawa, and S. Takano, Philos. Mag. 21, 869 (1970).
R. Nemetschek, O. V. Misochko, B. Stadlober, and R. Hackl, Phys. Rev. B 47, 3450 (1993).
S. A. Nemnonov, E. Z. Kurmaev, and V. I. Minin, IMF Akad. Nauk. USSR (Kiev) 1, 87 (1969).
S. J. Nettel and R. K. MacCrone, Phys. Rev. B 47, 11360 (1993).
M. V. Nevitt, G. W. Crabtree, and T. E. Klippert, Phys. Rev. B 36, 2398 (1987).
V. L. Newhouse, in "Superconductivity" (R. D. Parks, Ed.), Vol. 2, p. 1283, Dekker, New York, 1969.
E. J. Nicol and J. P. Carbotte, Phys. Rev. B 43, 10210 (1991).
E. J. Nicol and J. P. Carbotte, Phys. Rev. B 47, 8205 (1993).

Ch. Niedermayer, H. Glückler, A. Golnik, U. Binninger, M. Rauer, E. Recknagel, J. I. Budnick, and A. Weidinger, Phys. Rev. B 47, 3427 (1993).
L. Niel and J. E. Evetts, Supercond. Sci. Technol. 5, S347 (1992).
G. Nieva, E. N. Martinez, F. de la Cruz, D. A. Esparza, and C. A. D'Ovidio, Phys. Rev. B 36, 8780 (1987).
M. Nikolo and R. B. Goldfarb, Phys. Rev. B 39, 6615 (1989).
M. Nikolo, W. Kiehl, H. M. Duan, and A. M. Hermann, Phys. Rev. B 45, 5641 (1992).
H. Ning, H. Duan, P. D. Kirven, A. M. Hermann, and T. Datta, J. Supercond. 5, 503 (1992).
T. Nishida, M. Katada, and Y. Matsumoto, Physica B 165-167, 1327 (1990a); Jpn. J. Appl. Phys. 29, 259 (1990b).
H. Nishihara, T. Ohtani, Y. Sano, and Y. Nakamura, Physica C 185-189, 2733 (1991).
T. Nitta, K. Nagase, S. Hayakawa, and Y. Iida, J. Am. Ceram. Soc. 48, 642 (1965).
R. K. Nkum and W. R. Datars, Physica C 192, 215 (1992).
C. Noce and L. Maritato, Phys. Rev. B 40, 734 (1989).
H. Noel, P. Gougeon, J. Padiou, J. C. Levet, M. Potel, O. Laborde, and P. Monceau, Solid State Commun. 63, 915 (1987).
T. Nojima and T. Fujita, Physica C 178, 140 (1991).
F. Nori, E. Abrahams, and G. T. Zimanyi, Phys. Rev. B 41, 7277 (1990).
M. R. Norman, Phys. Rev. B 42, 6762 (1990).
D. P. Norton, D. H. Lowndes, S. J. Pennycook, and J. D. Budai, Phys. Rev. Lett. 67, 1358 (1991).
D. L. Novikov, V. A. Gubanov, and A. J. Freeman, Physica C 191, 399 (1992).
P. Nozières and W. F. Vinen, Philos. Mag. 14, 667 (1966).
N. Nücker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, Phys. Rev. B 37, 5158 (1988).
N. Nücker, H. Romberg, X. X. Xi, J. Fink, B. Gegenheimer, and Z. X. Zhao, Phys. Rev. B 39, 6619 (1989).
N. Nücker, H. Romberg, M. Alexander, and J. Fink, in "Studies of High Temperature Superconductors" (A. V. Narlika, Ed.), Nova Sci., New York, 1992.
B.-H. O and J. T. Markert, Phys. Rev. B 47, 8373 (1993).
S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46, 14928 (1992).
B. Obst, Phys. Status Solidi B 45, 467 (1971).
S. P. Obukhov and M. Rubinstein, Phys. Rev. Lett. 65, 1279 (1990).
Y. Oda, H. Fujita, H. Toyoda, T. Kaneko, T. Kohara, I. Nakada, and K. Asayama, Jpn. J. Appl. Phys. 26, L1660 (1987).
T. Oguchi, Jpn. J. Appl. Phys. 26, L417 (1987).
A. Oguri and S. Maekawa, Phys. Rev. B 41, 6977 (1990).
I. Ohana, A. Kazeroonian, D. Heiman, M. Dresselhaus, and P. J. Picone, Phys. Rev. B 40, 2255, 2562 (1989).
K. Ohbayashi, N. Ogita, M. Udagawa, Y. Aoki, Y. Maeno, and T. Fujita, Jpn. J. Appl. Phys. 26, L423 (1987).
F. J. Ohkawa, Phys. Rev. B 42, 4163 (1990).
Y. Ohta and S. Maekawa, Phys. Rev. B 41, 6524 (1990).
T. Ohtani, Mater. Res. Bull. 24, 343 (1989).
N. Okazaki, T. Hasegawa, K. Kishio, K. Kitazawa, A. Kishi, Y. Ikeda, M. Takano, K. Oda, H. Kitaguchi, J. Takada, and Y. Miura, Phys. Rev. B 41, 4296 (1990).
E. Oldfield, C. Coretsopoulos, S. Yang, L. Reven, H. C. Lee, J. Shore, O. H. Han, E. Ramli, and D. Hicks, Phys. Rev. B 40, 6832 (1989).
O. H. Olsen and M. R. Samuelsen, Phys. Rev. B 43, 10273 (1991).
N. P. Ong, Z. Z. Wang, J. Clayhold, J. M. Tarascon, L. H. Greene, and W. R. McKinnon, Phys. Rev. B 35, 8807 (1987).
N. P. Ong, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 2, Chap. 7, World Scientific, Singapore, 1990.
N. P. Ong, Phys. Rev. 43, 193 (1991).
H. Kamerlingh Onnes, Leiden Commun., 120b, 122b, 124c (1911).
M. Onoda, S. Shamoto, M. Sato, and S. Hosoya, Jap. J. Appl. Phys. 26, L363 (1987).
J. Orenstein, G. A. Thomas, A. J. Millis, S. L. Cooper, D. H. Rapkine, T. Timusk, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 42, 6342 (1990).
T. P. Orlando and K. A. Delin, "Foundations of Applied Superconductivity," Addison-Wesley, Reading, MA, 1991.
K. Osamura, Ed., "Composite Superconductors," Dekker, New York, 1993.
J. A. Osborn, Phys. Rev. 67, 351 (1945).
S. B. Oseroff, D. C. Vier, J. F. Smyth, C. T. Salling, S. Schultz, Y. Dalichaouch, B. W. Lee, M. B. Maple, Z. Fisk, J. D. Thompson, J. L. Smith, and E. Zirngiebl, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 679, Plenum, New York, 1987.
M. S. Osofsky, H. Rakoto, J. C. Ousset, J. P. Ulmet, J. Leotin, S. Askenazy, D. B. Crisey, J. S. Horwitz, E. F. Skelton, and S. A. Wolf, Physica C 182, 257 (1991).
J. G. Ossandon, J. R. Thompson, D. K. Christen, B. C. Sales, Y. Sun, and K. W. Lay, Phys. Rev. B 46, 3050 (1992).
J. G. Ossandon, J. R. Thompson, D. K. Christen, B. C. Sales, H. R. Kerchner, J. O. Thomson, Y. R. Sun, K. W. Lay, and J. E. Tkaczyk, Phys. Rev. B 45, 12534 (1992).
S. B. Ota, Phys. Rev. B 35, 8730 (1987).
S. B. Ota, V. S. Sastry, E. Gmelin, P. Murugaraj, and J. Maier, Phys. Rev. B 43, 6147 (1991).
C. E. Otis and R. W. Dreyfus, Phys. Rev. Lett. 67, 2102 (1991).
H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 50, 1595 (1983).
H. R. Ott, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 187, Plenum, New York.
H. R. Ott, "Ten Years of Superconductivity: 1980-1990," Kluwer, 1993.
M. Oussena, S. Senoussi, G. Collin, J. M. Broto, H. Rakoto, S. Askenazy, and J. C. Ousset, Phys. Rev. B 36, 4014 (1987).
Yu. N. Ovchinnikov and B. I. Ivlev, Phys. Rev. B 43, 8024 (1991).
A. W. Overhauser, Phys. Rev. Lett. 4, 462 (1960).
A. W. Overhauser, Phys. Rev. 128, 1437 (1962).
A. W. Overhauser and L. L. Daemen, Phys. Rev. Lett. 62, 1691 (1989).
F. J. Owens, Physica C 178, 456 (1991).
F. J. Owens, Physica C 195, 225 (1992).
M.-A. Ozaki and K. Machida, Phys. Rev. B 39, 4145 (1989).
S. Pagano, B. Ruggiero, and E. Sarnelli, Phys. Rev. B 43, 5364 (1991).
E. J. Pakulis, Phys. Rev. B 42, 10746 (1990).
T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh; Coles (1987); Phys. Rev. B 33, 6527 (1988).
T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
T. T. M. Palstra, B. Batlogg, R. B. Van Dover, L. F. Schneemeyer, and J. V. Waszczak, Appl. Phys. Lett. 54, 763 (1989).
T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, J. V. Waszczak, Phys. Rev. Lett. 64, 3090 (1990).
T. T. M. Palstra, R. C. Haddon, A. F. Hebard, and J. Zaanen, Phys. Rev. Lett. 68, 1054 (1992).
T. T. M. Paistra and R. C. Haddon, Solid State Commun., 92, 71 (1994).
M. Palumbo, P. Muzikar, and J. A. Sauls, Phys. Rev. B 42, 2681 (1990a).
M. Palumbo, C. H. Choi, and P. Muzikar, Physica B 165-166, 1095 (1990b).
W. Pan and S. Doniach, Phys. Rev. B 49, 1192 (1994).
D. A. Papaconstantopoulos, A. Pasturel, J. P. Julien, and F. Cyrot-Lackmann, Phys. Rev. B 40, 8844 (1989).
M. Paranthaman, J. R. Thompson, Y. R. Sun, and J. Brynestad, Physica C 213, 271 (1993).
M. Paranthaman, Physica C 222, 7 (1994).
G. S. Park, C. E. Cunningham, B. Cabrera, and M. E. Huber, Phys. Rev. Lett. 68, 1920 (1992).
R. D. Parks and W. A. Little, Phys. Rev. 133, A97 (1964).
R. D. Parks, Ed. "Superconductivity," Vols. 1 and 2, Dekker, New York, 1969.
Y. S. Parmar and J. K. Bhattacharjee, Phys. Rev. B 45, 814 (1992).
F. Parmigiani, Z. X. Shen, D. B. Mitzi, I. Lindau, W. E. Spicer, and A. Kapitulnik, Phys. Rev. B 43, 3085 (1991).
P. C. Pattnaik, C. L. Kane, D. M. Newns, and C. C. Tsuei, Phys. Rev. B 45, 5714 (1992).
D. McK. Paul, H. A. Mook, A. W. Hewat, B. C. Sales, L. A. Boatner, J. R. Thompson, and M. Mostoller, Phys. Rev. B 37, 2341 (1988).
D. McK. Paul, H. A. Mook, L. A. Boatner, B. C. Sales, J. O. Ramey, and L. Cussen, Phys. Rev. B 39, 4291 (1989).
L. Pauling and E. B. Wilson, "Introduction to Quantum Mechanics," McGraw-Hill, New York, 1935.
L. M. Paulius, C. C. Almasan, and M. B. Maple, Phys. Rev. B 47, 11627 (1993).
S. D. Peacor and C. Uher, Phys. Rev. B 39, 11559 (1989).
S. D. Peacor, R. Richardson, J. Burm, C. Uher, and A. Kaiser, Phys. Rev. B 42, 2684 (1990).
S. D. Peacor, J. L. Cohn, and C. Uher, Phys. Rev. B 43, 8721 (1991).
S. D. Peacor, R. A. Richardson, F. Nori, and C. Uher, Phys. Rev. B 44, 9508 (1991).
W. B. Pearson, "Handbook of Lattice Spacings and Structures of Metals," p. 79, Pergamon, New York, 1958.
M. J. Pechan and J. A. Horvath, Am. J. Phys. 58, 642 (1990).
N. F. Pedersen and A. Davidson, Phys. Rev. B 41, 178 (1990).
S. Pei, J. D. Jorgensen, B. Dabrowski, D. G. Hinks, D. R. Richards, A. W. Mitchell, J. M. Newsam, S. K. Sinha, D. Vaknin, and A. J. Jacobson, Phys. Rev. B 41, 4126 (1990).
K. E. Peiponen and E. Vartiainen, Phys. Rev. B 44, 8301 (1991).
M. Pekala, K. Pekala, and A. Pajaczkowska, Phys. Status Solidi B 152, K1 (1989).
M. T. Pencarinha, C. P. Poole, Jr., H. A. Farach, and O. A. Lopez, J. Phys. Chem. Solids 56, 301 (1995).
D. R. Penn and M. L. Cohen, Phys. Rev. B 46, 5466 (1992).
T. Penney, S. von Molnár, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev. B 38, 2918 (1988).
C. H. Pennington, D. J. Durand, D. B. Zax, C. P. Slichter, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 37, 7944 (1988).
C. H. Pennington, D. J. Durand, C. P. Slichter, J. P. Rice, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 39, 274, 2902 (1989).
W. E. P:

Singh
M. W. Pj
S. W. Pie
(1992
C. G. S. J
W. Pint :
(1991)
L. Pintsch

Chevri B 40, :
L. Pintsch.
erties c
M. Gin
tific, Si)
C. H. Pennington and C. P. Slichter, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Chap. 5, World Scientific, Singapore, 1990.
C. H. Pennington and C. P. Slichter, Phys. Rev. Lett. 66, 381 (1991).
S. J. Pennycook, M. F. Chisholm, D. E. Jesson, D. P. Norton, D. H. Lowndes, R. Feenstra, H. R. Kerchner, and J. O. Thomson, Phys. Rev. Lett. 67, 765 (1991).
F. Perez, X. Obradors, J. Fontcuberta, M. Vallet, and J. Gonzalez-Calbet, Physica C 185-189, 1843 (1991).
A. Pérez-González and J. P. Carbotte, Phys. Rev. B 45, 9894 (1992).
A. Pérez-González, E. J. Nicol, and J. P. Carbotte, Phys. Rev. B 45, 5055 (1992).
R. L. Peterson and J. W. Ekin, Physica C 157, 325 (1989).
R. L. Peterson and J. W. Ekin, Phys. Rev. B 42, 8014 (1990).
M. F. Petras and J. E. Nordman, Phys. Rev. B 39, 6492 (1989).
B. W. Pfalzgraf and H. Spreckels, J. Phys. C 27, 4359 (1987).
T. Pham, M. W. Lee, H. D. Drew, U. Welp, and Y. Fang, Phys. Rev. B 44, 5377 (1991).
J. C. Phillips, Phys. Rev. B 36, 861 (1987).
J. C. Phillips, "Physics of High-T \({ }_{c}\) Superconductors," Academic Press, New York, 1989a.
J. C. Phillips, Phys. Rev. B 40, 7348,8774 (1989b).
J. C. Phillips, Mater. Lett. 18, 106 (1993).
J. M. Phillips, in "High Temperature Superconducting Thin Films" (D. Shi, Ed.), Pergamon, New York, 1994.
N. E. Phillips, Phys. Rev. 114, 676 (1959).
N. E. Phillips, R. A. Fisher, and J. E. Gordon, Prog. Low Temp. Phys. 19 (1991).
T. Pichler, M. Matus, J. Kürti, and H. Kuzmany, Phys. Rev. B 45, 13841 (1992).
W. E. Pickett, H. Krakauer, D. A. Papaconstantopoulos, and L. L. Boyer, Phys. Rev. B 35, 7252 (1987).
W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
W. E. Pickett, R. E. Cohen, and H. Krakauer, Phys. Rev. B 42, 8764 (1990).
W. E. Pickett, H. Krakauer, R. E. Cohen, and D. J. Singh, Science 255, 46 (1992).
M. W. Pieper, Physica C 190, 261 (1992).
S. W. Pierson and O. T. Valls, Phys. Rev. B 45, 2458 (1992).
C. G. S. Pillai, Solid State Commun. 80, 277 (1991).
W. Pint and E. Schachinger, Phys. Rev. B 43, 7664 (1991).
L. Pintschovius, J. M. Bassat, P. Odier, F. Gervais, G. Chevrier, W. Reichardt, and F. Gompf, Phys. Rev. B 40, 2229 (1989).
L. Pintschovius and W. Reichardt, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 4, Chap. 5, World Scientific, Singapore, 1994.
A. B. Pippard, Proc. R. Soc. London A 216, 547 (1953).
M. Pissas, G. Kallias, A. Simopoulos, D. Niarchos, and A. Kostikas, Phys. Rev. B 46, 14119 (1992).
F. Pistolesi and G. C. Strinati, Phys. Rev. B 49, 6356 (1994).
B. Plaçais and Y. Simon, Phys. Rev. B 39, 2151 (1989).
B. B. Plapp and A. W. Hübler, Phys. Rev. Lett. 65, 2302 (1990).
I. Poberaj, D. Mihailovic, and S. Bernik, Phys. Rev. B 42, 393 (1990).
A. Poddar, P. Mandal, K. G. Ray, A. N. Das, B. Ghosh, P. Choudhury, and S. Lahiri, Physica C 159, 226 (1989).
D. Poilblanc and E. Dagotto, Phys. Rev. B 42, 4861 (1990).
D. M. Poirier and J. H. Weaver, Phys. Rev. B 47, 10959 (1993).
C. Politis, V. Buntar, W. Krauss, and A. Gurevich, Europhys. Lett. 17, 175 (1992).
E. Polturak, G. Koren, D. Cohen, E. Aharoni, and G. Deutscher, Phys. Rev. Lett. 67, 3038 (1991).
A. Pomar, A. Díaz, M. V. Ramallo, C. Torrón, J. A. Veira, and F. Vidal, Physica C 218, 257 (1993).
M. Pompa, C. Li, A. Bianconi, A. C. Castellano, S. Dalla Longa, A. M. Flank, P. Lagarde, and D. Udron, Physica C 184, 51 (1991a).
M. Pompa, P. Castrucci, C. Li, D. Udron, A. M. Flank, P. Lagarde, H. Katayamaa-Yoshida, S. Dalla Longa, and A. Bianconi, Physica C 184, 102 (1991b).
C. P. Poole, Jr., and H. A. Farach, "Relaxation in Magnetic Resonance," Academic Press, New York, 1971.
C. P. Poole, Jr., "Electron Spin Resonance," 2nd ed., Wiley, New York, 1983.
C. P. Poole, Jr., and H. A. Farach, "Theory of Magnetic Resonance," 2nd ed., Wiley, New York, 1987.
C. P. Poole, Jr., T. Datta, and H. A. Farach, "Copper Oxide Superconductors," Wiley, New York, 1988.
C. P. Poole, Jr. and H. A. Farach, Magn. Reson. Relat. Phenom., Proc. 24th Ampere Congr., Poznan, p. 601 (1988).
C. P. Poole, Jr., T. Datta, and H. A. Farach, J. Supercond. 2, 369 (1989).
C. P. Poole, Jr., and H. A. Farach, Eds., "Handbook of Electron Spin Resonance," Amer. Inst. Phys., New York, 1994.
A. Pöppl, L. Kevan, H. Kimura, and R. N. Schwartz, Phys. Rev. B 46, 8559 (1992).
A. M. Portis, K. W. Blazely, and F. Waldner, Physica C 153-155, 308 (1988).
A. M. Portis, "Electrodynamics of High Temperature Superconductors," World Scientific, Singapore, 1993.
J. Prade, A. D. Kulkarni, and F. W. de Wette, U. Schröder, and W. Kress, Phys. Rev. B 39, 2771 (1989).
A. K. Prạdhan, S. J. Hazell, J. W. Hodby, C. Chen, Y. Hu, and B. M. Wanklyn, Phys. Rev. B 47, 11374 (1993).
R. Prange and S. Girvin, Eds., "The Quantum Hall Effect," Springer-Verlag, Heidelberg, 1987.
K. Prassides, J. Tomkinson, C. Christides, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddon, Nature 354, 462 (1991).
K. Prassides, M. J. Rosseinsky, A. J. Dianoux, and P. Day, J. Phys. Condens. Matter 4, 965 (1992).
N. W. Preyer, M. A. Kastner, C. Y. Chen, R. J. Birgeneau, and Y. Hidaka, Phys. Rev. B 44, 407 (1991).
D. Prost, L. Fruchter, I. A. Campbell, N. Motohira, and M. Konczykowski, Phys. Rev. B 47, 3457 (1993).
T. Puig, L. M. Martinez, M. T. Aurell, A. Sanchez, D.-X. Chen, and J. S. Muñoz, in "Physics and Materials Science of High-Temperature Superconductivity" (R. Kossowsky, S. Methfessel, and D. Wohlbeben, Eds.), p. 467, Kluwer Academic, Dordrecht, 1990.
B. Pümpin, H. Keller, W. Kündig, W. Odermatt, B. D. Patterson, J. W. Schneider, H. Simmler, S. Connell, K. A. Müller, J. G. Bednorz, K. W. Blazey, I. Morgenstern, C. Rossel, and I. M. Savic, Z. Phys. B 72, 175 (1988).
B. Pümpin, H. Keller, W. Kündig, W. Odermatt, I. M. Savic, J. W. Schneider, H. Simmler, P. Zimmermann, E. Kaldis, S. Rusiecki, Y. Maeno, and C. Rossel, Phys. Rev. B 42, 8019 (1990).
P. Pureur and J. Schaf, Solid State Commun. 78, 723 (1991).
S. N. Putilin, I. Bryntse, and E. V. Antipov, Mater. Res. Bull. 26, 1299 (1991).
S. N. Putilin, E. V. Antipov, E. V. Chmaissem, and M. Marezio, Nature 362, 266 (1993).
D. S. Pyun and T. R. Lemberger, Phys. Rev. B 44, 7555 (1991).
K. F. Quader and E. Abrahams, Phys. Rev. B 38, 11977 (1988).
R. M. Quick, C. Esebbag, and M. de Llano, Phys. Rev. B 47, 11512 (1993).
M. Rabinowitz and T. McMullen, Chem. Phys. Lett. 218, 437 (1994).
H. B. Radousky, J. Mater. Res. 7, 1917 (1992).
R. J. Radtke, K. Levin, H.-B. Shüttler, and M. R. Norman, Phys. Rev. B 48, 653 (1993).
H. Raffy, S. Labdi, O. Laborde, and P. Monceau, Phys. Rev. Lett. 66, 2515 (1991).
D. Rainer and J. A. Sauls, in "Proc. 1992 Spring School on Cond. Mat. Phys., Trieste, Italy," World Scientific, Singapore, 1994, to be published.
D. Rainer and J. A. Sauls, "Proc. 1992 Spring School on Cond. Matter Phys., Trieste, Italy," World Scientific, Singapore, 1994.
A. K. Rajagopal and S. D. Mahanti, Phys. Rev. B 44, 10210 (1991).
F. Reif, "Fundamentals of Statistical and Thermal Physics," McGraw-Hill, New York, 1965.
Y. T. Ren, J. Clayhold, F. Chen, Z. J. Huang, X. D. Qiu, Y. Y. Sun, R. L. Meng, Y. Y. Xue, and C. W. Chu, Physica C 217, 6 (1993).
Y. T. Ren, H. Chang, Q. Xiong, Y. Y. Xue, and C. W. Chu, Physica C, 226, 209 (1994).
B. Renker, F. Gompf, E. Gering, D. Ewert, H. Rietschel, and A. Dianoux, Z. Phys. B 73, 309 (1988).
Ch. Renner, A. D. Kent, Ph. Niedermann, \(\varnothing\). Fischer, and F. Lévy, Phys. Rev. Lett. 67, 1650 (1991).
L. Reven, J. Shore, S. Yang, T. Duncan, D. Schwartz, J. Chung, and E. Oldfield, Phys. Rev. B 43, 10466 (1991).
C. M. Rey and L. R. Testardi, Phys. Rev. B 44, 765 (1991).
A. P. Reyes, D. E. MacLaughlin, M. Takigawa, P. C. Hammel, R. H. Heffner, J. D. Thompson, J. E. Crow, A. Kebede, T. Mihalisin, and J. Schwegler, Phys. Rev. B 42, 2688 (1990).
A. P. Reyes, D.E. MacLaughlin, M. Takigawa, P. C. Hammel, R. H. Heffner, J. D. Thompson, and J. E. Crow, Phys. Rev. B 43, 2989 (1991).
C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, Phys. Rev. 78, 487 (1950).
H.-C. Ri, F. Kober, R. Gross, R. P. Huebener, and A. Gupta, Phys. Rev. B 43, 13739 (1991).
H.-C. Ri, J. Kober, A. Beck, L. Alff, R. Gross, and R. P. Huebener, Phys. Rev. B 47, 12312 (1993).
J. K. Rice, S. W. McCauley, A. P. Baronavski, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B 47, 6086 (1993).
J. P. Rice, N. Rigakis, D. M. Ginsberg, and J. M. Mochel, Phys. Rev. B 46, 11050 (1992).
P. L. Richards and M. Tinkham, Phys. Rev. 119, 575 (1960).
R. A. Richardson, S. D. Peacor, F. Nori, and C. Uher, Phys. Rev. Lett. 67, 3856 (1991).
C. T. Riecke, Th. Wölkhausen, D. Fay, and L. Tewordt, Phys. Rev. B 39, 278 (1989).
E. Riedel, Z. Naturforsch A. 190, 1634 (1964).
E. K. Riedel, H.-F. Cheung, and Y. Gefen, Phys. Scr. T 25, 357 (1989).
P. S. Riseborough, Phys. Rev. B 45, 13984 (1992).
B. Roas, L. Schultz, and G. Saemann-Ischenko, Phys. Rev. Lett. 64, 479 (1990).
B. W. Roberts, J. Phys. Chem. Ref. Data 5, 581 (1976).
G. I. Rochlin, Am. J. Phys. 43, 335 (1975).
C. O. Rodriguez, Phys. Rev. B 49, 1200 (1994).
E. Rodriguez, J. Luzuriaga, C. D'Ovidio, and D. A. Esparza, Phys. Rev. B 42, 10796 (1990).
J. P. Rodriguez, Phys. Rev. B 36, 168 (1987).
J. P. Rodriguez and B. Douçot, Phys. Rev. B 42, 8724 (1990).
J. P. Rodriguez and B. Douçot, Phys. Rev. B 45, 971 (1992).
C. T. Rogers, K. E. Myers, J. N. Eckstein, and I. Bozovic, Phys. Rev. Lett. 69, 160 (1992).
D. S. Rokhsar, Phys. Rev. Lett. 65, 1506 (1990).
D. B. Romero, G. L. Carr, D. B. Tanner, L. Forro, D. Mandrus, L. Mihaly, and G. P. Williams, Phys. Rev. B 44, 2818 (1991).
M. Rona, Phys. Rev. 42, 4183 (1990).
A. C. Rose-Innes and E. H. Rhoderick, "Introduction to Superconductivity," Pergamon, Oxford, 1994.
P. A. Rosenthal, M. R. Beasley, K. Char, M. S. Colclough, and G. Zaharchuk, Appl. Phys. Lett. 59, 3482 (1991).
J. Rossat-Mignod, P. Burlet, M. J. G. M. Jurgens, J. Y. Henry, and C. Vettier, Physica C 152, 19 (1988).
M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, and A. V. Makhija, Phys. Rev. Lett. 66, 2830 (1991).
C. Rossel, Y. Maeno, and I. Morgenstein, Phys. Rev. Lett. 62,681 (1989a); C. Rossel, Y. Maeno, and F. H. Holtzberg, IBM J. Res. Dev. 33, 328 (1989b).
C. Rossel, O. Peña, H. Schmitt, and M. Sergent, Physica C 181, 363 (1991).
S. J. Rothman, J. L. Routbort, U. Welp, and J. E. Baker, Phys. Rev. B 44, 2326 (1991).
L. D. Rotter, Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Field, U. W. Welp, G. W. Crabtree, J. Z. Liu, Y. Fang, K. G. Vandervoort, and S. Fleshler, Phys. Rev. Lett. 67, 2741 (1991).
J. L. Routbort and S. J. Rothman, Appl. Phys. Rev., submitted for publication.
V. A. Rowe and R. P. Huebener, Phys. Rev. 185, 666 (1969).
J. M. Rowell and R. C. Dynes, in "Phonons" (M. A. Nusimovici, Ed.), Flammarion, Sciences, Paris, 1972.
G. J. Rozing, P. E. Mijnarends, A. A. Menovsky, and P. F. de Châtel, Phys. Rev. B 43, 9523 (1991).
A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, Phys. Rev. B 36, 857 (1987); reprinted in "Theories of High Temperature Superconductivity" (J. W. Halley, Ed.), p. 137. Addison-Wesley, Reading, MA, 1988.
S. Ryu, S. Doniach, G. Deutscher, and A. Kapitulnik, Phys. Rev. Lett. 68, 710 (1992).
M. S. Rzchowski, L. L. Sohn, and M. Tinkham, Phys. Rev. B 43, 8682 (1991).
S. Sachdev and Z. Wang, Phys. Rev. B 43, 10229 (1991).
S. Sachdev, Phys. Rev. B 45, 389 (1992).
E. Sacher and J. E. Klemberg-Sapieha, Phys. Rev. B 39, 1461 (1989).
C. A. R. Sá de Melo and S. Doniach, Phys. Rev. B 41, 6633 (1990).
C. A. R. Sá de Melo, Z. Wang, and S. Doniach, Phys. Rev. Lett. 68, 2078 (1992).
H. Safar, C. Durán, J. Guimpel, L. Civale, J. Luzuriaga, E. Rodriguez, F. de la Cruz, C. Fainstein, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 40, 7380 (1989).
H. Safar, H. Pastoriza, F. de la Cruz, D. J. Bishop, L. F. Schneemeyer, and J. Waszczak, Phys. Rev. B 43, 13610 (1991).
H. Safar, P. L. Gammel, D. J. Bishop, D. B. Mitzi, and A. Kapitulnik, Phys. Rev. Lett. 68, 2672 (1992).
H. Safer, P. L. Gammel, D. A. Huse, D. J. Bishop, W. C. Lee, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev. Lett. 70, 3800 (1993).
L. Sagdahl, S. Gjølmesli, T. Laegreid, K. Fossheim, and W. Assmus, Phys. Rev. B 42, 6797 (1990).
L. Sagdahl, T. Laegreid, K. Fossheim, M. Murkami, H. Fujimoto, S. Gotoh, K. Yamaguchi, H. Yamauchi, N. Koshizuka, and S. Tanaka, Physica C 172, 495 (1991).
N. Sahoo, S. Markert, T. P. Das, and K. Nagamine, Phys. Rev. B 41, 220 (1990).
D. Saint-James and P. D. de Gennes, Phys. Lett. 7, 306 (1963).
D. Saint-James, E. J. Thomas, and G. Sarma, "Type II Superconductivity," Pergamon, Oxford, 1969.
K. Saitoh and T. Nishino, Phys. Rev. B 44, 7070 (1991).
S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).
K. Salama, Y. H. Zhang, M. Mironova, and D. F. Lee, "Proc. Sixth US-Japan Joint Workshop on High \(T_{\mathrm{c}}\) Superconductivity," Houston, Texas, December 1993.
M. B. Salamon and J. Bardeen, Phys. Rev. Lett. 59, 2615 (1987).
M. B. Salamon, in "Physical Properties of High Temperature Superconductors," (D. M. Ginsberg, Ed.), Vol. 1, Chap. 2, World Scientific, Singapore, 1989.
S. Salem-Sugui, Jr., E. E. Alp, S. M. Mini, M. Ramanathan, J. C. Campuzano, G. Jennings, M. Faiz, S. Pei, B. Dabrowski, Y. Zheng, D. R. Richards, and D. G. Hinks, Phys. Rev. B 43, 5511 (1991).
A. V. Samoilov, A. A. Yurgens, and N. V. Zavaritsky, Phys. Rev. B 46, 6643 (1992).
B. A. Sanborn, P. B. Allen, and D. A. Papaconstantopoulos, Phys. Rev. B 40, 6037 (1989).
A. Sanchez and D.-X. Chen, in "Susceptibility of Superconductors and Other Spin Systems" (T. Francavilla, R. A. Hein, and D. Leiberger, Eds.), Plenum, New York, 1991.
A. Sanchez, D.-X. Chen, J. Muñoz, and Y.-Z. Li, Physica C 175, 33 (1991).
P. Santhanam and C. C. Chi, Phys. Rev. B 38, 11843 (1988).
A. Santoro, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 4, Springer-Verlag, Berlin, 1990.
J. Sapriel, J. Schneck, J. F. Scott, J. C. Tolédano, L. Pierre, J. Chavignon, C. Daguet, J. P. Chaminade, and H. Boyer, Phys. Rev. B 43, 6259 (1991).
E. Sardella, Phys. Rev. B 45, 3141 (1992).
D. D. Sarma, P. Sen, C. Carbone, R. Cimino, and W. Gudat, Phys. Rev. B 3912387 (1989).
W. M. Saslow, Phys. Rev. B 39, 2710 (1989).
J. S. Satchell, R. G. Humphreys, N. G. Chew, J. A. Edwards, and M. J. Kane, Nature 334, 331 (1988).
N. Sato, T. Sakon, N. Takeda, T. Komatsubara, C. Geibei, and F. Steglich, J. Phys. Soc. Jpn. 61, 32 (1992).
S. Satpathy and R. M. Martin, Phys. Rev. B 36, 7269 (1987).
C. B. Satterthwaite, Phys. Rev. 125, 873 (1962).
A. Saul and M. Weissmann, Phys. Rev. B 42, 4196 (1990).
J. A. Sauls, APS Fall Mtg. Symp. Kondo Lattices and Heavy Fermions, to be published.
D. J. Scalapino, Phys. Reports, to be published.
J. Schaf, P. Pureur, and J. V. Kunzler, Phys. Rev. B 40, 6948 (1989).
H. J. Scheel in "Adv. in Supercond.," Springer-Verlag, Berlin, New York, to be published.
S. Scheidl and G. Hackenbroich, Phys. Rev. B 46, 14010 (1992).
A. Schenck, P. Birrer, F. N. Gygax, B. Hitti, E. Lippelt, M. Weber, P. Böni, P. Fischer, H. R. Ott, and Z. Fisk, Phys. Rev. Lett. 65, 2454 (1990).
A. Schenstrom, M-F. Xu, Y. Hong, D. Bein, M. Levy, B. K. Sarma, S. Adenwalla, Z. Zhao, T. Tokuyasu, D. W. Hess, J. B. Ketterson, J. A. Sauls, and D. G. Hinks, Phys. Rev. Lett. 62, 332 (1989).
A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993).
A. Schilling, M. Catoni, O. Jeandupeux, J. D. Guo, and H. R. Ott, in "Advances in Superconductivity" (T. Fujita and Y. Shiohara, Eds.), Vol. 6, Springer-Verlag, Berlin, 1994a.
A. Schilling, O. Jeandupeux, S. Büchi, H. R. Ott, and C. Rossel, Physica C 235, in press (1994b).
J. E. Schirber, D. L. Overmyer, K. D. Carlsan, J. M. Williams, A. M. Kini, H. H. Wang, H. A. Charlier, B. J. Love, D. M. Watkins, and G. A. Yaconi, Phys. Rev. B 44, 4666 (1991).
Z. Schlesinger, R. L. Greene, J. G. Bednorz, and K. A. Müller, Phys. Rev. B 35, 5334 (1987).
Z. Schlesinger, R. T. Collins, J. A. Calise, D. G. Hinks, A. W. Mitchell, Y. Zheng, B. Dabrowski, N. E. Bickers, and D. J. Scalapino, Phys. Rev. B 40, 6862 (1989).
Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, G. Koren, and A. Gupta, Phys. Rev. B 41, 11237 (1990a).
Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, S. H. Blanton, U. Welp, G. W. Crabtree, Y. Fang, and J. Z. Liu, Phys. Rev. Lett. 65, 801 (1990b).
D. Schmeltzer, Phys. Rev. B 49, 6944 (1994).
A. Schmid, Phys. Kondens. Mat: \&, 129 (1968).
J. M. Schmidt, A. N. Cleland and J. Clarke, Phys. Rev. B 43, 229 (1991).
P. Schmitt, P. Kummeth, L. Schultz, and G. Saemann-Ischenko, Phys. Rev. Lett. 67, 267 (1991).
H. Schnack and R. Griessen, Phys. Rev. Lett. 68, 2706 (1992).
L. F. Schneemeyer, J. K. Thomas, T. Siegrist, B. Batlogg, L. W. Rupp, R. L. Opila, R. J. Cava, and D. W. Murphy, Nature 335, 421 (1988).
T. Schneider, Z. Phys. B 85, 187 (1991).
T. Schneider, Z. Gedik, and S. Ciraci, Z. Phys. B 83, 313 (1991).
T. Schneider, Physica C 195, 82 (1992).
T. Schneider and H. Keller, Phys. Rev. Lett. 69, 3374 (1992).
A. J. Schofield and Wheatley, Phys. Rev. B 47, 11607 (1993).
K. Schönhammer, Phys. Rev. B 42, 2591 (1990).
J. R. Schrieffer, "Theory of Superconductivity," Addi-son-Wesley, New York, 1964.
J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang, Phys. Rev. Lett. 60, 944 (1988).
E. A. Schuberth, B. Strickler, and K. Andres, Phys. Rev. Lett. 68, 117 (1992).
I. K. Schuller, D. G. Hinks, M. A. Beno, S. W. Capone II, L. Soderholm, J. P. Locquet, Y. Bruynseraede, C. U. Segre, and K. Zhang, Solid State Commun. 63, 385 (1987).
L. Schultz, E. Hellstern, and A. Thomä, Europhys. Lett. 3, 921 (1987).
H. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).
J. Schwartz, S. Nakamae, G. W. Raban, Jr., J. K. Heuer, S. Wu, J. L. Wagner, and D. G. Hinks, Phys. Rev. B 48, 9932 (1994).
H. Schwenk, F. Gross, C. P. Heidmann, K. Andres, D. Schweitzer, and H. Keller, Mol. Cryst. Liq. Cryst. 119, 329 (1985); Phys. Rev. B 31, 3138 (1985).
P. Seidel, E. Heinz, M. Siegel, F. Schmidl, K. J. Zach, and H.-J. Köhler, in "Proc. 4th Int. Conf. on Superconducting and Quantum Effect Devices and Their Applications," Berlin, June 1991.
G. T. Seidler, T. F. Rosenbaum, D. L. Heinz, J. W. Downey, A. P. Paulikas, and B. W. Veal, Physica C 183, 333 (1991).
G. T. Seidler, T. F. Rosenbaum, and B. W. Veal, Phys. Rev. B 45, 10162 (1992).
K. Semba, T. Ishii, and A. Matsuda, Phys. Rev. Lett. 67, 769 (1991).
S. Sengupta, C. Dasgupta, H. R. Krishnamurthy, G. I. Menon, and T. V. Ramakrishnan, Phys. Rev. Lett. 67, 3444 (1991).
S. Sengupta and D. Shi, in "High Temperature Superconducting Materials Science and Engineering," to be published.
S. Senoussi, M. Oussena, and S. Hadjoudi, J. Appl. Phys. 63, 4176 (1988).
A. Sequeira, H. Rajagopal, P. V. P. S. S. Sastry, J. V. Yakhmi, R. M. Iyer, and B. A. Dasannacharya, Physica B 180-181, 429 (1992).
M. Sera, S. Shamoto, and M. Sato, Solid State Commun. 68, 649 (1988).
S. Sergeenkov and M. Ausloos, Phys. Rev. B 47, 14476 (1993).
R. D. Shannon and P. E. Bierstedt, J. Am. Ceram. Soc. 58, 635 (1970).
C. Shao-Chun, Z. Dong-Ming, Z. Dian-Lin, H. M. Duan, and A. M. Hermann, Phys. Rev. B 44, 12571 (1991).
B. Ya. Shapiro, Phys. Rev. B 48, 16722 (1993).
S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
R. P. Sharma, L. E. Rehn, and P. M. Baldo, Phys. Rev. B 43, 13711 (1991).
B. S. Shastry and B. I. Shraiman, Int. J. Mod. Phys. 5, 365 (1991).
T. P. Sheahen, "Introduction to High \(T_{c}\) Superconductivity," Plenum, New York, 1994.
V. Sh. Shekhtman, Ed., The Real Structure of High- \(T_{c}\) Superconductors, Springer-Verlag, Berlin, 1993.
S.-Q. Shen and W. Lu, Phys. Rev. B 48, 1105 (1993).
Z.-X. Shen, P. A. P. Lindberg, B. O. Wells, D. S. Dessau, A. Borg, I. Lindau, W. E. Spicer, W. P. Ellis, G. H. Kwei, K. C. Ott, J.-S. Kang, and J. W. Allen, Phys. Rev. B 40, 6912 (1989).
Z.-X. Shen, R. S. List, D. S. Dessau, F. Parmigiani, A. J. Arko, R. Bartlett, B. O. Wells, I. Lindau, and W. E. Spicer, Phys. Rev. B 42, 8081 (1990).
Z.-X. Shen, W. E. Spicer, D.M. King, D. S. Dessau, and B. O. Wells, Science 267, 343 (1995).
Z.-Y. Shen, "High Temperature Superconducting Microwave Circuits," Artech House, Norwood, Massachusetts, 1994.
Z. Z. Sheng, A. M. Hermann, A. El Ali, C. Almasan, J. Estrada, T. Datta, and R. J. Matson, Phys. Rev. Lett. 60, 937 (1988).
Z. Z. Sheng and A. M. Hermann, Nature 332, 55 (1988).
D.-N. Sheng, Z.-B. Su, and L. Yu, Phys. Rev. B 42, 8732 (1990).
D. Shi, M. S. Boley, U. Welp, J. G. Chen, and Y. Liao, Phys. Rev.B 40, 5255 (1989).
D. Shi, M. Xu, M. M. Fang, J. G. Chen, A. L. Cornelius, and S. G. Lanan, Phys. Rev. B 41, 8833 (1990a).
D. Shi, M. Xu, A. Umezawa, and R. F. Fox, Phys. Rev. B 42, 2062 (1990b).
D. Shi, X. S. Ling, M. Xu, M. M. Fang, S. Luo, J. I. Budnick, B. Dabrowski, D. G. Hinks, D. R. Richards, and Y. Zheng, Phys. Rev. B 43, 3684 (1991).
D. Shi and M. Xu, Phys. Rev. B 44, 4548 (1991).
D. Shi, Ed., "High Temperature Superconducting Materials Science and Engineering," Elsevier, Oxford, 1994.
J. S. Shier and D. M. Ginsberg, Phys. Rev. 147, 384 (1966).
E. Shimizu and D. Ito, Phys. Rev. B 39, 2921 (1989).
E. Shimshoni, Y. Gefen, and S. Levit, Phys. Rev. 40, 2147 (1989).
E. Shimshoni and E. Ben-Jacob, Phys. Rev. B 43, 2705 (1991).
S. L. Shindé, J. Morrill, D. Goland, D. A. Chance, and T. McGuire, Phys. Rev. B 41, 8838 (1990).
T. Shinjo, T. Mizutani, N. Hosoito, T. Kusuda, T. Takabatake, K. Matsukuma, and H. Fujii, Physica C 159, 869 (1989).
T. Shinjo and S. Nasu, in "Mechanisms of High Temperature Superconductivity" (H. Kamimura and A. Oshiyama, Eds.), p. 166, Springer Series in Material Science, Springer-Verlag, Heidelberg, 1989.
G. Shirane, R. J. Birgeneau, Y. Endoh, P. Gehring, M. A. Kastner, K. Kitazawa, H. Kojima, I. Tanaka, T. R. Thurston, and K. Yamada, Phys. Rev. Lett. 63, 330 (1989).
G. Shirane, J. Als-Nielsen, M. Nielsen, J. M. Tranquada, H. Chou, S. Shamoto, and M. Sato, Phys. Rev. B 41, 6547 (1990).
K. N. Shrivastava and K. P. Sinha, "Magnetic Superconductors: Model Theories and Experimental Properties of Rare-Earth Compounds," NorthHolland, Amsterdam, 1984.
K. N. Shrivastava, Phys. Rev. B 41, 11168 (1990).
J. D. Shore, M. Huang, A. T. Dorsey, and J. P. Sethna, Phys. Rev. Lett. 62, 3089 (1989).
L. Shu-yuan, L. Li, and Z. Dian-lin, H. M. Duan, W. Kiel, and A. M. Hermann, Phys. Rev. B 47, 8324 (1993).

Yu. N. Shvachko, A. A. Koshta, A. A. Romanyukha, V. V. Ustinov, and A. I. Akimov, Physica C 174, 447 (1991).
Q. Si and G. Kotliar, Phys. Rev. Lett. 70, 3143 (1993).
M. Siegel, F. Schmdl, K. Zach, E. Heinz, J. Borck, W. Michalke, and P. Seidel, Physica C 180, 288 (1991).
T. Siegrist, S. Sunshine, D. W. Murphy, R. J. Cava, and S. M. Zahurak, Phys. Rev. B 35, 7137 (1987).
T. Siegrist, S. M. Zahurak, D. W. Murphy, and R. S. Roth, Nature 334, 231 (1988).
M. Sigrist, T. M. Rice, and K. Ueda, Phys. Rev. Lett. 63, 1727 (1989).
P. Simon, J. M. Bassat, S. B. Oseroff, Z. Fisk, S.-W. Cheong, A. Wattiaux, and S. Schultz, Phys. Rev. Lett. 48, 4216 (1993).
R. R. P. Singh, P. A. Fleury, K. B. Lyons, and P. E. Sulewski, Phys. Rev. Lett. 62, 2736 (1989).
D. Singh, W. E. Pickett, E. C. von Stetten, and S. Berko, Phys. Rev. B 42, 2696 (1990).
D. J. Singh, Physica C 212, 228 (1993a).
D. J. Singh, Phys. Rev. B 48, 3571 (1993b).
D. J. Singh and W. E. Pickett, Phys. Rev. Lett., 73, 476 (1994).
K. Sinha, Ind. J. Phys. 66A, 1 (1992) in K. P. Sinha, "Magnetic Superconductors; Recent Developments," Nova, New York, 1989.
S. Skanthakumar, H. Zhang, T. W. Clinton, W.-H. Li, J. W. Lynn, Z. Fisk, and S.-W. Cheong, Physica C 160, 124 (1989).
H. L. Shriver and I. Mertig, Phys. Rev. B 41, 6553 (1990).
V. Skumryev, R. Puzniak, N. Karpe, H. Zheng-he, M. Pout, H. Medelius, D.-X. Chen, and K. V. Rao, Physica C 152, 315 (1988).
V. Skumryev, M. R. Koblischka, and H. Kronmüller, Physica C 184, 332 (1991).
F. Slakey, S. L. Cooper, M. V. Klein, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 39, 2781 (1989).
F. Slakey, M. V. Klein, J. P. Rice, and D. M. Ginsburg, Phys. Rev. B 43, 3764 (1991).
A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. 17, 27 (1975).
A. W. Sleight, Am. Chem. Soc. Symp. Ser. 351, 2 (1987).
L. C. Smedskjaer, A. Bansil, U. Welp, Y. Fang, and K. G. Bailey, Phys. Rev. B 46, 5868 (1992).
H. H. A. Smit, M. W. Dirken, R. C. Thiel, and L. J. de Jongh, Solid State Commun. 64, 695 (1987).
M. G. Smith, A. Manthiram, J. Zhou, J. B. Goodenough, and J. T. Markert, Nature 351, 549 (1991).
M. G. Smith, J. B. Goodenough, A. Manthiram, R. Taylor, W. Peng, C. Kimball, J. Solid State Chem. 98, 181 (1992).
R. Sobolewski, L. Shi, T. Gong, W. Xiong, X. Weng, Y. Kostoulas, and P. M. Fauchet, "Proc. High Temperature Supercond. Detectors," 2159, to be published.
J. O. Sofo, C. A. Balseiro, and H. E. Castillo, Phys. Rev. B 45, 9860 (1992).
L. L. Sohn, M. S. Rzchowski, J. U. Free, S. P. Benz, M. Tinkham, and C. J. Lobb, Phys. Rev. B 44, 925 (1991).
L. L. Sohn, M. S. Rzchowski, J. U. Free, M. Tinkham, and C. J. Lobb, Phys. Rev. 45, 3003 (1992).
P. R. Solomon and F. A. Otter, Phys. Rev. 164, 608 (1967).
S. N. Song, Q. Robinson, S.J. Hwu, D. L. Johnson, K. R. Poeppelmeier, and J. B. Ketterson, Appl. Phys. Lett. 51, 1376 (1987).
Y. S. Song, H. Park, Y. S. Choi, Y. W. Park, M. S. Jang, H. C. Lee, and S. I. Lee, J. Korean Phys. Soc. 23, 492 (1990).
Y. Song and J. R. Gaines, J. Phys. Condens. Matter. 3, 7161 (1991).
Y.-Q. Song, M. Lee, W. P. Halperin, L. M. Tonge, and T. J. Marks, Phys. Rev. B 44, 914 (1991a).
Y.-Q. Song, M. A. Kennard, M. Lee, K. R. Poeppelmeier, and W. P. Halperin, Phys. Rev. B 44, 7159 (1991b).
Y. Song, A. Misra, P. P. Crooker, and J. R. Gaines, Phys. Rev. B 45, 7574 (1992).
Y.-Q. Song, W. P. Halperin, L. Tonge, T. J. Marks, M. Ledvij, V. G. Kogan, and L. N. Bulaevskii, Phys. Rev. Lett. 70, 3127 (1993).
J. Spalek and P. Gopalan, J. Phys. France 50, 2869 (1989).
J. Spalek and J. M. Honig, in "Studies in High Temperature Superconductors" (A. V. Narlikar, Ed.), Vol. 8, Chap. 1. Nova Sci., New York (1991).
J. Spalek and W. Wojcik, Phys. Rev. B 45, 3799 (1992).
G. Sparn, J. D. Thompson, R. L. Whetten, S.-M. Huang, R. B. Kaner, F. Diederich, G. Grüner, and K. Holczer, Phys. Rev. Lett. 68, 1228 (1992).
P. N. Spathis, M. P. Soerensen; and N. Lazarides, Phys. Rev. B 45, 7360 (1992).
S. Spielman, J. S. Dodge, L. W. Lombardo, C. B. Eom, M. M. Fejer, T. H. Geballe, and A. Kapitulnik, Phys. Rev. 68, 3472 (1992).
Z. M. Stadnik, G. Stroink and R. A. Dunlap, Phys. Rev. B 39, 9108 (1989).
Z. M. Stadnik, G. Stroink, and T. Arakawa, Phys. Rev. B 44, 12552 (1991).
B. W. Statt and A. Griffin, Phys. Rev. B 48, 619 (1993).
T. Staufer, R. Nemetschek, R. Hackl, P. Müller, and H. Veith, Phys. Rev. Lett. 68, 1069 (1992).
D. G. Steel and J. M. Graybeal, Phys. Rev. B 45, 12643 (1992).
F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).
P. Steiner, V. Kinsinger, I. Sander, B. Siegwart, S. Hüfner, and C. Politis, Z. Phys. B Cond. Mat. 67, 19 (1987).
C. H. Stephan and B. W. Maxfield, J. Low Temp. Phys. 10, 185 (1973).
W. Stephan and J. P. Carbotte, Phys. Rev. B 43, 10236 (1991).
G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
G. R. Stewart, Z. Fisk, J. O. Willis, and T. J. Smith, Phys. Rev. Lett. B 52, 679 (1984).
G. R. Stewart, J. O'Rourke, G. W. Crabtree, K. D. Carlson, H. H. Wang, J. M. Williams, F. Gross, and K. Andres, Phys. Rev. B 33, 2046 (1986).
S. T. Stoddart, H. I. Mutlu, A. K. Geim, and S. J. Bending, Phys. Rev. B 47, 5146 (1993).
E. C. Stoner, Phil. Mag. 36, 803 (1945).
H. T. C. Stoof, Phys. Rev. B 47, 7979 (1993).
J. A. Stratton, "Electromagnetic Theory," McGraw Hill, New York, 1941.
S. K. Streiffer, B. M. Lairson, C. B. Eom, B. M. Clemens, J. C. Bravman, and T. H. Geballe, Phys. Rev. B 43, 13007 (1991).
A. R. Strnad, C. F. Hempstead, and Y. B. Kim, Phys. Rev. Lett. 13, 794 (1964).
S. E. Stupp, M. E. Reeves, D. M. Ginsberg, D. G. Hinks, B. Dabrowski, and K. G. Vandervoort, Phys. Rev. B 40, 10878 (1989).
S. E. Stupp, T. A. Friedmann, J. P. Rice, R. A. Schweinfurth, D. J. Van Harlingen, and D. M. Ginsberg, Phys. Rev. B 43, 13073 (1991).
C. K. Subramanian, M. Paranthaman, and A. B. Kaiser, Physica C 222, 47 (1994).
M. A. Subramanian, C. C. Torardi, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 239,1015 (1988a).
M. A. Subramanian, J. C. Calabrese; C. C. Torardi, J. Gopalakrishnan, T. R. Askew, R. B. Flippen, K. J. Morrissey, U. Chowdhry, and A. W. Sleight, Nature 332, 420 (1988b).
A. Sudbø and E. H. Brandt, Phys. Rev. B 43, 10482 (1991a); Phys. Rev. Lett. 67, 3176 (1991b).
M. Suenaga, A. K. Ghosh, Y. Xu, and D. O. Welch, Phys. Rev. Lett. 66, 1777 (1991).
R. Sugano, T. Onogi, and Y. Murayama, Phys. Rev. B 45, 10789 (1992).
J. Sugiyama, S. Tokuono, S.-I. Koriyama, H. Yamauchi, and S. Tanaka, Phys. Rev. B 43, 10489 (1991).
J. Sugiyama, K. Matsuura, M. Kosuge, H. Yamauchi, and S. Tanaka, Phys. Rev. B 45, 9951 (1992).
S. B. Sulaiman, N. Sahoo, T. P. Das, O. Donzelli, E. Torikai, and K. Nagamine, Phys. Rev. B 44, 7028 (1991).
S. B. Sulaiman, N. Sahoo, T. P. Das and O. Donzelli, Phys. Rev. B 45, 7383 (1992).
P. E. Sulewski, A. J. Sievers, R. A. Buhrman, J. M. Tarascon, L. H. Greene, and W. A. Curtin, Phys. Rev. B 35, 8829 (1987).
P. E. Sulewski, P. A. Fleury, K. B. Lyons, S.-W. Cheong, and Z. Fisk, Phys. Rev. B 41, 225 (1990).
J. Z. Sun, D. J. Webb, M. Naito, K. Char, M. R. Hahn, J. W. P. Hsu, A. D. Kent, D. B. Mitzi, B. Oh, M. R. Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik, Phys. Rev. Lett. 58, 1574 (1987).
K. Sun, J. H. Cho, F. C. Chou, W. C. Lee, L. L. Miller, D. C. Johnston, Y. Hidaka and T. Murakami, Phys. Rev. B 43, 239 (1991).
C. S. Sundar, A. Bharathi, Y. C. Jean, P. H. Hor, R. L. Meng, Z. J. Huang, and C. W. Chu, Phys. Rev. B 42, 426 (1990a).
C. S. Sundar, A. Bharathi, W. Y. Ching, Y. C. Jean, P. H. Hor, R. L. Meng, Z. J. Huang and C. W. Chu, Phys. Rev. B 42, 2193 (1990b).
C. S. Sundar, A. Bharathi, W. Y. Ching, Y. C. Jean, P. H. Hor, R. L. Meng, Z. J. Huang, and C. W. Chu, Phys. Rev. B 43, 13019 (1991).
C. Sürgers, H. v. Löhneysen, and L. Schultz, Phys. Rev. B 40, 8787 (1989).
Y. Suwa, Y. Tanaka, and M. Tsukada, Phys. Rev. B 39, 9113 (1989).
M. Suzuki, Y. Enemoto, T. Murakami, and T. Inamura, "Proc. 3rd Meeting Ferroelectric Materials and Their Applications," Kyoto, 1981a.
M. Suzuki, Y. Enemoto, T. Murakami, and T. Inamura, Jpn. J. Appl. Phys. 20, Suppl. 20-24, 13 (1981b).
M. Suzuki and M. Hikita, Jpn. J. Appl. Phys. 28, L1368 (1989).
M. Suzuki and M. Hikita, Phys. Rev. B 41, 9566 (1990).
M. Suzuki and M. Hikita, Phys. Rev. B 44, 249 (1991).
S. Suzuki, T. Takahashi, T. Kusunoki, T. Morikawa, S. Sato, H. Katayama-Yoshida, A. Yamanaka, F. Minami, and S. Takekawa, Phys. Rev. B 44, 5381 (1991).
H. Svensmark and L. M. Falicov, Phys. Rev. B 42, 9957 (1990).
A. Szasz, J. Hajdu, J. Kojnok, Z. Dankhazi, W. Krasser, T. Trager, and J. Bankuti, J. Supercond. 3, 425 (1990).
B. Szpunar and V. Smith, Jr., Phys. Rev. B 45, 10616 (1992).
M. Tachiki and S. Takahashi, Solid State Commun. 70, 291 (1989).
A. Tagliacozzo, F. Ventriglia, and P. Apell, Phys. Rev. B 40, 10901 (1989).
L. Taillefer, in "Hyperfine Interactions," to be published.
S. Tajima, S. Uchida, A. Masaki, H. Takaki, K. Kitazawa, S. Tanaka, and A. Katsui, Phys. Rev. B 32, 6302 (1985).
S. Tajima, S. Uchida, H. Ishii, H. Takagi, S. Tanaka, U. Kawabe, H. Hasegawa, T. Aita, and T. Ishiba, Mod. Phys. Lett. B 1, 353 (1988).
Y. Tajima, M. Hikita, T. Ishii, H. Fuke, K. Sugiyama, M. Date, A. Yamagishi, A. Katsui, Y. Hidaka, T. Iwata, and S. Tsurumi, Phys. Rev. B 37, 7956 (1988).
S. Tajima and K. Kitazawa, in "Some Aspects of Superconductivity" (L. C. Gupta, Ed.) Nova Scientific Publ., New York, 1990.
J. Takada, T. Terashima, Y. Bando, H. Mazaki, K. Ijima, K. Yamamoto, and K. Hirata, Phys. Rev. B 40, 4478 (1989).
Y. Takada, Phys. Rev. B 39, 11575 (1989).
H. Takagi, H. Eisaki, S. Uchida, A. Maeda, S. Tajima, K. Uchinokura, and S. Tanaka, Nature 332, 236 (1988).
T. Takahashi, H. Matsuyama, H. Katamaya-Yoshida, Y. Okabe, S. Hosoya, K. Seki, H. Fujimoto, M. Sato, and H. Inokuchi, Phys. Rev. B 39, 6636 (1989).
T. Takahashi, S. Sukuki, T. Morikawa, H. KatayamaYoshida, S. Hasegawa, H. Inokuchi, K. Seki, K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba, Phys. Rev. Lett. 68, 1232 (1992).
I. Takeuchi, J. S. Tsai, Y. Shimakawa, T. Manako, and Y. Kubo, Physica C 158, 83 (1989).
M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B 43, 247 (1991).
M. Takigawa, J. L. Smith, and W. L. Hults, Phys. Rev. B 44, 7764 (1991).
J. L. Tallon, Proc. 7th Intl. Workshop Critical Currents in "Superconductors, Tyrol, Austria," World Scientific, Singapore, 1994.
K. Tamasaku, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 69, 1455 (1992).
T. Tamegai, K. Koga, K. Suzuki, M. Ichihara, F. Sadai, and Y. Iye, Jpn. J. Appl. Phys. Lt. 2, 28, L112 (1989).
Z. Tan, J. I. Budnick, W. Q. Chen, D. L. Brewe, S.-W. Cheong, A. S. Cooper, and L. W. Rupp, Jr., Phys. Rev. B 42, 4808 (1990).
Z. Tan, J. I. Budnick, S. Luo, W. Q. Chen, S.-W. Cheong, A. S. Cooper, P. C. Canfield, and Z. Fisk, Phys. Rev. B 44, 7008 (1991).
Y. Tanaka and M. Tsukada, Phys. Rev. B 40, 4482 (1989a); Solid State Commun. 69, 195, 491 (1989b).
Y. Tanaka and M. Tsukada, Phys. Rev. B 42, 2066 (1990).
Y. Tanaka and M. Tsukada, Phys. Rev. B 44, 7578 (1991).
S. Tanda, M. Honma, and T. Nakayama, Phys. Rev. B 43, 8725 (1991).
C. Q. Tang, B. R. Li, and A. Chen, Phys. Rev. B 42, 8078 (1990).
X. X. Tang, D. E. Morris, and A. P. B. Sinha, Phys. Rev. B 43, 7936 (1991).
T. Tani, T. Itoh and S. Tanaka, J. Phys. Soc. Jpn. Suppl. A 49, 309 (1980).
S. Tanigawa, Y. Mizuhara, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Mater. Res. Soc. Symp. Proc. 99, 57 (1988).
D. B. Tanner and T. Timusk, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 5, World Scientific, Singapore, 1992.
H. J. Tao, A. Chang, F. Lu, and E. L. Wolf, Phys. Rev. B 45, 10622 (1992).
J. M. Tarascon, L. H. Greene, W. R. McKinnon, and G. W. Hull, Phys. Rev. B 35, 7115 (1987a).
J. M. Tarascon, W. R. McKinnon, L. H. Greene, G. W. Hull, and E. M. Vogel, Phys. Rev. B 36, 226 (1987b).
J. M. Tarascon, L. H. Greene, W. R. McKinnon, G. W. Hull, and T. H. Geballe, Science 235, 1373 (1987c).
J. M. Tarascon, P. Barboux, P. F. Miceli, L. H. Greene, D. W. Hull, M. Eibschutz, and S. A. Sunshine, Phys. Rev. B 37, 7458 (1988a).
J. M. Tarascon, Y. LePage, P. Barboux, B. G. Bagley, L. H. Greene, W. R. McKinnon, G. W. Hull, M. Giroud, and D. M. Hwang, Phys. Rev. 37, 9382 (1988b).
J. M. Tarascon, E. Wang, L. H. Greene, B. G. Bagley, G. W. Hull, S. M. D'Egidio, P. F. Miceli, Z. Z. Wang, T. W. Jing, J. Clayhold, D. Brawner, and N. P. Ong, Phys. Rev. B 40, 4494 (1989a).
J. M. Tarascon, Y. LePage, W. R. McKinnon, E. Tselepis, P. Barboux, B. G. Bagley, and R. Ramesh, in "Proc. Mater. Res. Soc. Symp.," San Diego, Apr. 23-28, 1989b.
V. V. Tatarskii, M. Paranthaman, and A. M. Hermann, Phys. Rev. B 47, 14489 (1993).
Y. Taur, P. L. Richards, and T. Auracher, Low Temp. Phys. 3, 276 (1974).
W. M. Temmerman, G. M. Stocks, P. J. Durham, and P. A. Sterne, J. Phys. F 17, L135 (1987).
M. A. Teplov, O. N. Bakharev, A. V. Dooglav, A. V. Egorov, M. V. Eremin, M. S. Tagirov, A. G. Volodin, and R. Sh. Zhdanov, Physica C 185-189, 1107 (1991).
I. Terasaki, T. Nakahashi, S. Takebayashi, A. Maeda and K. Uchinokura, Physica C 165, 152 (1990a).
I. Terasaki, S. Tajima, H. Eisaki, H. Takigi, K. Uchinokura, and S. Uchida, Phys. Rev. B 41, 865 (1990b).
T. Terashima, K. Shimura, Y. Bando, Y. Matsuda, A. Fujiyama, and S. Komiyama, Phys. Rev. Lett. 67, . 1362 (1991).
B. M. Terzijska, R. Wawryk, D. A. Dimitrov, Cz. Marucha, V. T. Kovachev, and J. Rafalowicz, Cryogenics 32, 53 (1992).
Z. Tesanovic and M. Rasolt, Phys. Rev. B 39, 2718 (1989).
Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. B 43, 288 (1991).
Z. Tesanovic, Phys. Rev. B 44, 12635 (1991).
L. R. Tessler, J. Provost, and A. Maignan, Appl. Phys. Lett. 58, 528 (1991).
L. Tewordt, S. Wermbter, and Th. Wölkhausen, Phys. Rev. B 40, 6878 (1989).
L. Tewordt and Th. Wölkhausen, Solid State Commun. 70, 839 (1989).
T. D. Thanh, A. Koma, and S. Tanaka, Appl. Phys. 22, 205 (1980).
S. Theodorakis and Z. Tesanovic, Phys. Rev. B 40, 6659 (1989).
S. L. Thiemann, Z. Radovic, and V. G. Kogan, Phys. Rev. B 39, 11406 (1989).
T. Thio, T. R. Thurston, N. W. Preyer, P. J. Picone, M. A. Kastner, H. P. Jenssen, D. R. Gabbe, C. Y. Chen, R. J. Birgeneau, and A. Aharony, Phys. Rev. B 38, 905 (1988).
G. Thomas, M. Capizzi, J. Orenstein, D. Rapkine, A. Millis, P. Gammel, L. Gammel, L. F. Schneemeyer, and J. Waszczak, in "Proceedings of the International Symposium on the Electronic Structure of High \(T_{c}\) Superconductors," p. 67, (A. Bianconi, Ed.) Pergamon Press, Oxford, 1988.
R. S. Thompson, Phys. Rev. B 1, 327 (1970).
J. R. Thompson, J. Brynestad, D. M. Kroeger, Y. C. Kim, S. T. Sekula, D. K. Christen, and E. Specht, Phys. Rev. B 39, 6652 (1989).
J. R. Thompson, D. K. Christen, H. A. Deeds, Y. C. Kim, J. Brynestad, S. T. Sekula, and J. Budai, Phys. Rev. B 41, 7293 (1990).
J. R. Thompson, J. G. Ossandon, D. K. Christen, B. C. Chakoumakos, Y. R. Sun, M. Paranthaman, and J. Brynestad, Phys. Rev. B 48, 14031 (1993).
C. Thomsen and M. Cardona, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 8, World Scientific, Singapore, 1989.
R. J. Thorn, ACS Symp. Ser. 351, Chap. 3, (1987).
C. Tien and l. M. Jiang, Phys. Rev. B 40, 229 (1989).
T. S. Tighe, M. T. Tuominen, J. M. Hergenrother, and M. Tinkham, Phys. Rev. B 47, 1145 (1993).
D. R. Tilley and J. Tilley, "Superfluidity and Superconductivity," Hilger, Boston (1986).
T. Timusk and D. B. Tanner, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 1, Chap. 7, World Scientific, New York (1989)
M. Tinkham, Phys. Rev. Lett. 13, 804 (1964).
M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 1366 (1972).
M. Tinkham, "Introduction to Superconductivity," Krieger, FL (1985).
M. Tinkham and C. J. Lobb, Solid State Phys. 42, 91 (1989).
J. E. Tkaczyk, R. H. Arendt, M. F. Garbauskas, H. R. Hart, K. W. Lay, and F. E. Luborsky, Phys. Rev. B 45, 12506 (1992).
J. G. Tobin, C. G. Olson, C. Gu, J. Z. Liu, F. R. Solal, M. J. Fluss, R. H. Howell, J. C. O'Brien, H. B. Radousky, and P. A. Sterne, Phys. Rev. B 45, 5563 (1992).
B. H. Toby, T. Egami, J. D. Jorgensen, and M. A. Subramanian, Phys. Rev. Lett. 64, 2414 (1990).
K. Togano, H. Kumakura, K. Fukutomi, and K. Tachikawa, Appl. Phys. Lett. 51, 136 (1987).
A. Tokiwa, M. Nagoshi, and Y. Syono, Physica C 170, 437 (1990).
A. Tokiwa, Y. Syono, T. Oku, and M. Nagoshi, Physica C 185-189, 619 (1991).
A. Tokiwa-Yamamoto, K. Isawa, M. Itoh, S. Adachi, and H. Yamauchi, Physica C 216, 250 (1993).
A. Tokumitu, K. Miyake, and K. Yamada, Phys. Rev. B 47, 11988 (1993).
M. Tokumoto, H. Bando, H. Anzai, G. Saito, K. Murata, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Jpn. 54, 869 (1985).
T. A. Tokuyasu, D. W. Hess, and J. A. Sauls, Phys. Rev. B 41, 8891 (1990); T. A. Tokuyasu and J. A. Sauls, Physica B 165-166, 347 (1990).
J. C. Tolédano, A. Litzler, J. Primot, J. Schneck, L. Pierre, D. Morin, and C. Daguet, Phys. Rev. B 42, 436 (1990).
H. Tolentino, M. Medarde, A. Fontaine, F. Baudelet, E. Dartyge, D. Guay, and G. Tourillon, Phys. Rev. B 45, 8091 (1992).
I. Tomeno, M. Yoshida, K. Ikeda, K. Tai, K. Takamuku, N. Koshizuka, S. Tanaka, K. Oka, and H. Unoki, Phys. Rev. B 43, 3009 (1991).
J. Toner, Phys. Rev. Lett. 66, 2523 (1991a).
J. Toner, Phys. Rev. Lett. 67, 2537 (1991b); see comment by T. Nattermann and I. Lyuksyutov, and reply 68,3366 (1992).
C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 240, 631 (1988a).
C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, E. M. McCarron, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Phys. Rev. B 38, 225 (1988b).
J. B. Torrance, J. Solid State Chem. 96, 59 (1992).
J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B 45, 8209 (1992).
H. Totsuji, Phys. Rev. B 43, 5287 (1991).
M. Touminen, A. M. Goldman, Y. Z. Chang, and P. Z. Jiang, Phys. Rev. B 42, 412 (1990).
S. W. Tozer, A. W. Kleinsasser, T. Penney, D. Kaiser, and F. Holtzberg, Phys. Rev. Lett. 59, 1768 (1987).
J. M. Tranquada, G. Shirane, B. Keimer, S. Shamoto, and M. Sato, Phys. Rev. B 40, 4503 (1989).
J. M. Tranquada, in "Early and Recent Aspects of Superconductivity" (J. G. Bednorz and K. A. Müller, Eds.), p. 422, Springer-Verlag, Berlin, 1990.
J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Phys. Rev. B 46, 5561 (1992).
A. Tressaud, K. Amine, J. P. Chaminade, J. Etourneau, T. M. Duc, and A. Sartre, J. Appl. Phys. 68, 248 (1990).
J.-M. Triscone, \(\emptyset\). Fischer, O. Brunner, L. Antognazza, A. D. Kent, and M. G. Karkut, Phys. Rev. Lett. 64, 804 (1990).
V. N. Trofimov, A. V. Kuznetsov, P. V. Lepeschkin, K. A. Bolschinskov, A. A. Ivanov, and A. A. Mikhailov, Physica C 183, 135 (1991).
A. Trokiner, R. Mellet, A-M. Pougnet, D. Morin, Y. M. Gao, J. Primot, and J. Schneck, Phys. Rev. B 41, 9570 (1990).
A. Trokiner, L. LeNoc, J. Schneck, A. M. Pougnet, R. Mellet, J. Primot, H. Savary, Y. M. Gao, and S. Aubry, Phys. Rev. B 44, 2426 (1991).
N. Troullier and J. L. Martins, Phys. Rev. B 46, 1754 (1992).
S. A. Trugman, Phys. Rev. Lett. 65, 500 (1990).
J.-S. Tsai, A. K. Jain, and J. E. Lukens, Phys. Rev. Lett. 51, 316 (1983).
S.-F. Tsay, S.-Y. Wang, and T. J. W. Yang, Phys. Rev. B 43, 13080 (1991).
C. C. Tsuei, A. Gupta, and G. Koren, Physica C 161, 415 (1989).
M. Touminen, A. M. Goldman, Y. Z. Chang, and P. Z. Jiang, Phys. Rev. B 42, 412 (1990).
M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. B 47, 11599 (1993).
I. Tüttö, L. M. Kahn and J. Ruvalds, Phys. Rev. B 20, 952 (1979).
I. Tüttö and A. Zawadowski, Phys. Rev. B 45, 4842 (1992).
R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, A. P. Ramirez, and J. C. Tully, Science 253, 884 (1991).
R. Tycko, G. Dabbagh, M. J. Rosseinsky, D. W. Murphy, A. P. Ramirez, and R. M. Fleming, Phys. Rev. Lett. 68, 1912 (1992).
S. Uchida, H. Takagi, K. Kitazawa and S. Tanaka, Jpn. J. Appl. Phys. 26, L1 (1987).
S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura and S. Tajima, Phys. Rev. B 43, 7942 (1991).
Y. J. Uemura, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, J. H. Brewer, T. M. Riseman, C. L. Seaman, M. B. Maple, M. Ishikawa, D. G. Hinks, J. D. Jorgensen, G. Saito and H. Yamochi, Phys. Rev. Lett. 66, 2665 (1991).
A. Ugawa, K. Iwasaki, A. Kawamoto, K. Yakushi, Y. Yamashita, and T. Suzuki, Phys. Rev. B 43, 14718 (1991).
C. Uher and W.-N. Huang, Phys. Rev. B 40, 2694 (1989).
C. Uher, J. Supercond. 3, 337 (1990).
C. Uher, in "Physical Properties of High Temperature Superconductors" (D. M. Ginsberg, Ed.), Vol. 3, Chap. 3, World Scientific, Singapore, 1992.
S. Ullah, A. T. Dorsey, and L. J. Buchholtz, Phys. Rev. B 42, 9950 (1990).
S. Ullah and A. T. Dorsey, Phys. Rev. Lett. 65, 2066 (1990).
S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991).
J. S. Urbach, D. B. Mitzi, A. Kapitulnik, J. Y. T. Wei, and D. E. Morris, Phys. Rev. B 39, 12391 (1989).
A. V. Ustinov, T. Doderer, R. P. Huebener, N. F. Pederson, B. Mayer, and V. A. Oboznov, Phys. Rev. Lett. 69, 1815 (1992).
P. P. Vaishnava, C. A. Taylor, II, and C. L. Foiles, Phys. Rev. B 41, 4195 (1990).
J. M. Valles, Jr., R. C. Dynes, and J. P. Garno, Phys. Rev. B 40, 6680 (1989).
J. M. Valles, Jr., R. C. Dynes, A. M. Cucolo, M. Gurvitch, L. F. Schneemeyer, J. P. Garno, and J. V. Waszczak, Phys. Rev. B 44, 11986 (1991).
J. van den Berg, C. J. van der Beek, P. H. Kest, J. A. Mydosh, M. J. V. Menken, and A. A. Menovsky, Supercond. Sci. Tech. I, 249 (1989).
J. van den Berg, C. J. van der Beek, P. H. Kes, J. A. Mydosh, G. J. Nieuwenhuys, and L. J. de Jongh, Solid State Commun. 64, 699 (1987).
A. M. van den Brink, G. Schön, and L. Geerligs, Phys. Rev. Lett. 67, 3030 (1991).
D. Van Der Marel, Physica C 165, 35 (1990).
H. P. van der Meulen, A. de Visser, J. J. M. Franse, T. T. J. M. Berendschot, J. A. A. J. Perenboom, H. van Kempen, A. Lacerda, P. Lejay, and J. Fouquet, Phys. Rev. B 44, 814 (1991).
H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, and J. E. Mooij, Phys. Rev. Lett. 66, 2531 (1991).
K. G. Vandervoort, U. Welp, J. E. Kessler, H. Claus, G. W. Crabtree, W. K. Kwok, A. Umezawa, B. W. Veal, J. W. Downey, A. P. Paulikas, and J. Z. Liu, Phys. Rev. B 43, 13042 (1991).
H. S. J. van der Zant, F. C. Fritschy, T. P. Orlando, and J. E. Mooij, Phys. Rev. B 47, 295 (1993).
R. B. VanDover, E. M. Gyorgy, A. E. White, L. F. Schneemeyer, R. J. Felder, and J. V. Waszczak, Appl. Phys. Lett. 56, 2681 (1990).
T. Van Duzer and C. W. Turner, "Principles of Superconductive Devices and Circuits," Elsevier, New York (1981).
A. G. Van Vijfeijkenand and A. K. Niessen, Philips Res. Rep. 20, 505 (1965a); Phys. Lett. 16, 23 (1965b).
B. J. van Wees, K.-M. H. Lenssen, and C. J. P. M. Harmans, Phys. Rev. B 44, 470 (1991).
C. M. Varma, S. Schmitt-Rink, and E. Abrahams, in "Theories of High Temperature Superconductivity" (J. W. Halley, Ed.), p. 211, Addison Wesley, Reading, MA, 1988.
C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).
B. V. Vasiliev, J. Supercond. 4, 271 (1991).
D. R. Veblen, P. J. Heaney, R. J. Angel, L. W. Finger, R. M. Hazen, C. T. Prewitt, N. L. Ross, C. W. Chu, P. H. Hor, and R. L. Meng, Nature 332, 334 (1988).
A. J. Vega, W. E. Farneth, E. M. McCarron, and R. K. Bordia, Phys. Rev. B 39, 2322 (1989a).
A. J. Vega, M. K. Crawford, E. M. McCarron, and W. E. Farneth, Phys. Rev. B 40, 8878 (1989b).
E. L. Venturini, D. S. Ginley, J. F. Kwak, R. J. Baughman, J. E. Schirber, and B. Morosin, in "High Temperature Superconductors" (D. U. Gubser and M. Schluter, Eds.), p. 97, Mater. Res. Soc., Pittsburgh, 1987.
R. Vijayaraghavan, A. K. Ganguli, N. Y. Vasanthacharya, M. K. Rajumon, G. U. Kulkarni, G. Sankar, D. D. Sarma, A. K. Sood, N. Chandrabhas, and C. N. R. Rao, Supercond. Sci. Technol. 2, 195 (1989).
P. Villars and J. C. Phillips, Phys. Rev. B 37, 2345 (1988).
L. Ya. Vinnikov and I. V. Grigor'eva, JETP Lett. 47, 106 (1988).
V. M. Vinokur, M. V. Feigel'man, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 65, 259 (1990).
V. M. Vinokur, M. V. Feigel'man, and V. B. Geshkenbein, Phys. Rev. Lett. 67, 915 (1991).
A. Virosztek and J. Ruvalds, Phys. Rev. Lett. 67, 1657 (1991).
V. M. Virosztek and J. Ruvalds, Phys. Rev. B 45, 347 (1992).
P. Visani, A. C. Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990).
J. P. Vithayathil, D. E. MacLaughlin, E. Koster, D. Ll. Williams, and E. Bucher, Phys. Rev. B 44, 4705 (1991).
B. M. Vlcek, M. C. Frischherz, S. Fleshler, U. Welp, J. Z. Liu, J. Downey, K. G. Vandervoort, G. W. Crabtree, M. A. Kirk, J. Giapintzakis, and J. Farmer, Phys. Rev. Lett. 46, 6441 (1992).
N. V. Volkenshteyn et al., Fiz. Met. Metalloved 45, 1187 (1978).
A. R. von Hippel, "Dielectrics and Waves," p. 255, MIT Press, Cambridge, MA, 1954.
S. von Molnár, A. Torresson, D. Kaiser, F. Holtzberg, and T. Penney, Phys. Rev. B 37, 3762 (1988).
F. von Oppen and E. K. Riedel, Phys. Rev. Lett. 66, 84 (1991).
S. V. Vonsovsky, Yu. A. Izyumov, and E. Z. Kurmaev, "Superconductivity in Transition Metals," Springer, New York (1982).
A. Wadas, O. Fritz, H. J. Hug, and H.-J. Güntherodt, Z. Phys. B 88, 317 (1992).
S. F. Wahid and N. K. Jaggi, Physica C 184, 88 (1991).
D. R. Wake, F. Slakey, M. V. Klein, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 67, 3728 (1991).
M. Wallin, Phys. Rev. B 41, 6575 (1990).
R. E. Walstedt and W. W. Warren, Jr., Science 248, 1082 (1990).
R. E. Walstedt, W. W. Warren, Jr., R. F. Bell, R. J. Cava, G. P. Espinosa, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 41, 9574 (1990).
R. E. Walstedt, R. F. Bell, and D. B. Mitzi, Phys. Rev. B 44, 7760 (1991).
R. E. Walstedt, R. F. Bell, L. F. Schneemeyer, J. V. Waszczak, and G. P. Espinosa, Phys. Rev. B 45, 8074 (1992).
B. L. Walton, B. Rosenblum, and F. Bridges, Phys. Rev. Lett. 32, 1047 (1974).
Z. Wang, N. Zou, J. Pang, and C. Gong, Solid State Commun. 64, 531 (1987).
Z. Z. Wang, J. Clayhold, N. P. Ong, J. M. Tarascon, L. H. Greene, W. R. McKinnon, and G. W. Hull, Phys. Rev. 36, 7222 (1987).
S. J. Wang, S. V. Naidu, S. C. Sharma, D. K. De, D. Y. Jeong, T. D. Black, S. Krichene, J. R. Reynolds, and J. M. Owens, Phys. Rev. B 37, 603 (1988).
Y. R. Wang, Phys. Rev. B 40, 2698 (1989).

C-P. S. Wang, in "High Temperature Superconductivity" (J. W. Lynn, Ed.), Chap. 5, Springer-Verlag, Berlin, 1990.
Y.-Y. Wang, G. Feng, and A. L. Ritter, Phys. Rev. B 42, 420 (1990).
T. Wang, K. M. Beauchamp, D. D. Berkley, B. R. Johnson, J.-X. Liu, J. Zhang, and A. M. Goldman, Phys. Rev. B, 43, 8623 (1991).
Z. Wang, Y. Bang, and G. Kotliar, Phys. Rev. Lett. 67, 2733 (1991).
Y. Wang, A. M. Rao, J.-G. Zhang, X.-X. Bi, P. C. Eklund, M. S. Dresselhaus, P. P. Nguyen, J. S. Moodera, G. Dresselhaus, H. B. Radousky, R. S. Glass, M. J. Fluss, and J. Z. Liu, Phys. Rev. B 45, 2523 (1992).
K-A. Wang, Y. Wang, P. Zhou, J. M. Holden, S.-L. Ren, G. T. Hager, H. F. Ni, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 1955 (1992).
Z. D. Wang and C. S. Ting, Phys. Rev. Lett. 69, 1435 (1992a).
Z. D. Wang and C. S. Ting, Phys. Rev. 46, 284 (1992b).
Z. D. Wang and C.-R. Hu, Phys. Rev. B 44, 11918 (1991).
C. A. Wang, R. L. Wang, H. C. Li, H. R. Yi, C. G. Cui, S. L. Li, X. N. Jing, J. Li, P. Xu, and L. Li, Physica C 191, 52 (1992).
Z. H. Wang, A. W. P. Fung, G. Dresselhaus, M. S. Dresselhaus, K. A. Wang, P. Zhou, and P. C. Eklund, Phys. Rev. B 47, 15354 (1993).
N. L. Wang, Y. Chong, C. Y. Wang, D. J. Huang, Z. Q. Mao, L. Z. Cao, and Z. J. Chen, Phys. Rev. B '47, 3347 (1993).
Y. Watanabe, Z. Z. Wang, S. A. Lyon, D. C. Tsui, N. P. Ong, J. M. Tarascon, and P. Barboux, Phys. Rev. B 40, 6884 (1989).
Y. Watanabe, D. C. Tsui, J. T. Birmingham, N. P. Ong, and J. M. Tarascon, Phys. Rev. B 43, 3026 (1991).
K. Watanabe, S. Awaji, N. Kobayashi, H. Yamane, T. Hirai, and Y. Muto, J. Appl. Phys. 69, 1543 (1991).
J. H. P. Watson, J. Appl. Phys. 39, 3406 (1968).
H. L. Watson and R. P. Huebener, Phys. Rev. B 10, 4577 (1974).
C. H. Watson, D. A. Browne, J.-C. Xu, and R. G. Goodrich, Phys. Rev. B 40, 8885 (1989).
W. J. Wattamaniuk, J. P. Tidman, and R. F. Frindt, Phys. Rev. Lett. 35, 62 (1975).
B. D. Weaver, J. M. Pond, D. B. Chrisey, J. S. Horwitz, H. S. Newman, and G. P. Summers, Appl. Phys. Lett. 58, 1563 (1991).
W. Weber, Phys. Rev. Lett. 58; 1371 (1987).
W. Weber, Z. Phys. B 70, 323 (1988).
H. Weber and P. Minnhagen, Phys. Rev. B 38, 8730 (1988).
W. H. Weber, C. R. Peters, B. M. Wanklyn, C. Chen, and B. E. Watts, Phys. Rev. 38, 917 (1988).
W. H. Weber, C. R. Peters, and E. M. Logothetis, J. Opt. Soc. Am. B 6, 455 (1989).
W. H. Weber and G. W. Ford, Phys. Rev. B 40, 6890 (1989).
H. Weber and H. J. Jensen, Phys. Rev. B 44, 454 (1991).
M. Weger, Rev. Mod. Phys. 36, 175 (1964).
H. Weinstock, IEEE Trans. Magn. 27, 3231 (1991).
B. O. Weils, Z.-X. Shen, D. S. Dessau, W. E. Spicer, C. G. Olson, D. B. Mitzi, A. Kapitulnik, R. S. List, and A. Arko, Phys. Rev. Lett. 65, 3056 (1990).
U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Liu, Phys. Rev. Lett. 62, 1908 (1989); Phys. Rev. B 40, 5263 (1989).
U. Welp, S. Fleshler, W. K. Kwok, J. Downey, Y. Fang, G. W. Crabtree, and J. Z. Liu, Phys. Rev. B 42, 10189 (1990).
Z. Y. Weng, C. S. Ting, and T. K. Lee, Phys. Rev. B 41, 1990 (1990).
F. Wenger and S. Östlund, Phys. Rev. B 47, 5977 (1993).
F. Werfel, G. Dräger, J. A. Leiro, and K. Fischer, Phys. Rev. B 45, 4957 (1992).
S. Wermbter and L. Tewordt, Phys. Rev. B 44, 9524 (1991); Physica C 183, 365 (1991).
N. R. Werthamer, Phys. Rev. 132, 2440 (1963).
M.-H. Whangbo and C. C. Torardi, Acct. Chem. Res. 24, 127 (1991).
J. M. Wheatley, T. C. Hsu, and P. W. Anderson, Phys. Rev. B 37, 5897 (1988).
A. Widom, Y. N. Srivastava, C. Vittoria, H. How, R. Karim, and H. Jiang, Phys. Rev. B 46, 1102 (1992).
R. J. Wijngaarden, E. N. van Eenige, J. J. Scholtz, and R. Griessen, High Pressure Res. 3, 105 (1990).
F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982a).
F. Wilczek, Phys. Rev. Lett. 49, 957 (1982b).
N. K. Wilkin and M. A. Moore, Phys. Rev. B 48, 3464 (1993).
G. P. Williams, R. C. Budhani, C. J. Hirschmugl, G. L. Carr, S. Perkowitz, B. Lou, and T. R. Yang, Phys. Rev. B 41, 4752 (1990).
P. J. Williams and J. P. Carbotte, Phys. Rev. B 43, 7960 (1991).
M. N. Wilson, "Superconducting Magnets," Clarendon Press, Oxford, 1983.
A. Wittlin, L. Genzel, M. Cardona, M. Bauer, W. König, E. Garcia, M. Barahona, and M. V. Cabañas, Phys. Rev. B 37, 652 (1988).
T. Wittmann and J. Stolze, Phys. Rev. B 48, 3479 (1993).
S. A. Wolf and V. Z. Kresin, Eds., "Novel Superconductivity," Plenum, New York, 1987.
Y. Wolfus, Y. Yeshurun, I. Felner, and H. Sompolinsky, Phys. Rev. B 40, 2701; see B 39, 11690 (1989).
H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994).
R. F. Wood and J. F. Cooke, Phys. Rev. B 45, 5585 (1992).
F. Wooten, "Optical Properties of Solids," p. 244, Academic Press, New York, 1972.
R. Wördenweber, Phys. Rev. B 46, 3076 (1992).
A. H. Worsham, N. G. Ugras, D. Winkler, D. E. Prober, N. R. Erickson, and P. F. Goldsmith, Phys. Rev. Lett. 67, 3034 (1991).
T. K. Worthington, W. J. Gallagher, and T. R. Dinger, Phys. Rev. Lett. 59, 1160 (1987).
W. H. Wright, D. J. Holmgren, T. A. Friedmann, M. P. Maher, B. G. Pazol, and D. M. Ginsberg, J. Low Temp. Phys. 68, 109 (1987).
M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).
J. Z. Wu, C. S. Ting, and D. Y. Xing, Phys. Rev. B 40, 9296 (1989).
D.-H. Wu and S. Sridhar, Phys. Rev. Lett. 65, 2074 (1990).
J. Z. Wu, C. S. Ting, W. K. Chu, and X. X. Yao, Phys. Rev. B 44, 411 (1991a).
J. Z. Wu, P. Y. Hsieh, A. V. McGuire, D. L. Schmidt, L. T. Wood, Y. Shen, and W. K. Chu, Phys. Rev. B 44, 12643 (1991b).
Z. Y. Wu, M. Benfatto, and C. R. Natoli, Phys. Rev. B 45, 531 (1992).
D. H. Wu, J. Mao, S. N. Mao, J. L. Peng, X. X. Xi, T. Venkatesan, R. L. Greene, and S. M. Anlage, Phys. Rev., Lett. 70, 85 (1993).
R. W. G. Wyckoff, "Crystal Structures," Vol. 1, Wiley, New York, 1963.
R. W. G. Wyckoff, "Crystal Structures," Vol. 2, Wiley, New York, 1964.
R. W. G. Wyckoff, "Crystal Structures," Vol. 3, Wiley, New York, 1965.
R. W. G. Wyckoff, "Crystal Structures," Vol. 4, Wiley, New York, 1968.
D. G. Xenikos and T. R. Lemberger, Phys. Rev. B 41, 869 (1990).
T.-K. Xia and D. Stroud, Phys. Rev. B 39, 4792 (1989).
W. Xia and P. L. Leath, Phys. Rev. Lett. 63, 1428 (1989).
G. Xiao, F. H. Streitz, A. Gavrin, Y. W. Du, and C. L. Chien, Phys. Rev. B 35, 8782 (1987a).

\section*{REfERENCES}
G. Xiao, F. H. Streitz, A. Gavrin, M. Z. Cieplak, J. Childress, M. Lu, A. Zwicker, and C. L. Chien, Phys. Rev. B 36, 2382 (1987b).
G. Xiao, M. Z. Cieplak, and C. L. Chien, Phys. Rev. B 40, 4538 (1989).
D. Y. Xing and M. Liu, Phys. Rev. B 43, 3744 (1991).
Q. Xiong, Y. Y. Xue, Y. Cao, F. Chen, Y. Y. Sun, J. Gibson, L. M. Liu, A. Jacobson, and C. W. Chu, Phys. Rev. Lett., in press (1994).
Y. Xu, M. Suenaga, A. R. Moodenbaugh, and D. O. Welch, Phys. Rev. B 40, 10882 (1989).
Y. Xu, M. Suenaga, Y. Gao, J. E. Crow, and N. D. Spencer, Phys. Rev. B 42, 8756 (1990).
M. Xu, D. Shi, and R. F. Fox, Phys. Rev. B 42, 10773 (1990).
Y. Xu and M. Suenaga, Phys. Rev. B 43, 5516 (1991).
Y.-N. Xu, M.-Z. Huang, and W. Y. Ching, Phys. Rev. B 44, 13171 (1991).
X-Q. Xu, S. J. Hagen, W. Jiang, J. L. Peng, Z. Y. Li, and R. Greene, Phys. Rev. B 45, 7356 (1992).
J. V. Yakhmi and R. M. Iyer, in "High Temperature Superconductors" (S. K. Malik and S. S. Shah, Eds.), Nova Sci., New York, 1992.
J. V. Yakhmi, "Chemistry and Physics of Fullerenes," in "Atomic and Molecular Physics," (S. A. Ahmad, Ed.) Narosa Publishing, New Delhi, India,
1994.
K. Yamada, K. Kakurai, Y. Endoh, T. R. Thurston, M. A. Kaster, R. J. Birgeneau, G. Shirane, Y. Hidaka, and T. Murakami, Phys. Rev. B 40, 4557 (1989).
K. Yamamoto, H. Mazaki, H. Yasuoka, S. Katsuyama, and K. Kosuge, Phys. Rev. 46, 1122 (1992).
K. Yamamoto, H. Mazaki, and H. Yasuoka, Phys. Rev. B 47, 915 (1993).
H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, and K. Kajimura, Phys. Rev. Lett. 70, 3331 (1993).
Y. Yan and M. G. Blanchin, Phys. Rev. B 43, 13717 (1991).
K. N. Yang, J. M. Ferreira, B. W. Lee, M. B. Maple, W.-H. Li, J. W. Lynn, and R. W. Erwin, Phys. Rev. B 40, 10963 (1989).
C. Y. Yang, A. R. Moodenbaugh, Y. L. Wang, Y. Xu, S. M. Heald, D. O. Welch, D. A. Fischer, and J. E. Penner-Hahn, Phys. Rev. B 42, 2231 (1990).
I.-S. Yang, G. Burns, F. H. Dacol, and C. C. Tsuei, Phys. Rev. B 42, 4240 (1990).
S. Yarlagadda and S. Kurihara, Phys. Rev. B 48, 10567 (1993).
Z. Ye and S. Sachdev, Phys. Rev. B 44, 10173 (1991).
Z. Ye, H. Umezawa, and R. Teshima, Phys. Rev. B 44, 351 (1991).
W.-J. Yeh, L. Chen, F. Xu, B. Bi, and P. Yang, Phys. Rev. B 36, 2414 (1987).
N.-C. Yeh and C. C. Tsuei, Phys. Rev. B 39, 9708 (1989); N.-C. Yeh, Phys. Rev. B 40, 4566 (1989).
J.-J. Yeh, L. Lindau, J.-Z. Sun, K. Char, M. Missert, A. Kapitulnik, T. H. Geballe, and M. R. Beasley, Phys. Rev. B 42, 8044 (1990).
N.-C. Yeh, Phys. Rev. B 42, 4850 (1990).
N.-C. Yeh, Phys. Rev. B 43, 523 (1991).
J.-J. Yeh, Phys. Rev. B 45, 10816 (1992).
N.-C. Yeh, W. Jiang, D. S. Reed, A. Gupta, F. Holtzberg, and A. Kussmaul, Phys. Rev. B 45, 5710 (1992b).
N.-C. Yeh, D. S. Reed, W. Jinag, U. Kriplani, F. Holtzberg, A. Gupta, B. D. Hunt, R. P. Vasquez, M. C. Foote, and L. Bajuk, Phys. Rev. B 45, 5654
(1992a). (1992a).
Y. Yeshurun, A. P. Malozemoff, F. Holtzberg, and T. R. Dinger, Phys. Rev. B 38, 11828 (1988).
S.-K. Yip, O. F. DeA. Bonfim, and P. Kumar, Phys. Rev. B 41, 11214 (1990).
F. Yndurain and G. Martinez, Phys. Rev. B 43, 3691
(1991).
M. Yoshimoto, H. Koinuma, T. Hashimoto, J. Tanaka, S. Tanabe, and N. Soga, Physica C 181, 284 (1991).
M. Yoshimura, H. Shigekawa, H. Nejoh, G. Saito, Y. Saito, and A. Kawazu, Phys. Rev. B 43, 13590 (1991).
J. Yu, A. J. Freeman, and S. Massidda, in "Novel Superconductivity" (S. A. Wolf and V. Z. Kresin, Eds.), p. 367, Plenum, New York, 1987.
R. C. Yu, M. J. Naughton, X. Yan, P. M. Chaikin, F. Holtzberg, R. L. Greene, J. Stuart, and P. Davies, Phys. Rev. B 37, 7963 (1988).
G. Yu, C. H. Lee, A. J. Heegar, N. Herron, and E. M. McCarron, Phys. Rev. Lett. 67, 2581 (1990).
J. Yu, A. J. Freeman, R. Podloucky, P. Herzig, and P. Weinberger, Phys. Rev. B 43, 532 (1991).
X.-J. Yu and M. Sayer, Phys. Rev. B 44, 2348 (1991).
R. C. Yu, J. M. Williams, H. H. Wang, J. E. Thompson, A. M. Kini, K. D. Carlson, J. Ren, M.-H. Whangbo, and P. M. Chaikin, Phys. Rev. B 44, 6932 (1991).
W. Yu, E. B. Harris, S. E. Hebboul, J. C. Garland, and D. Stroud, Phys. Rev. B 45, 12624 (1992).
B. D. Yu, H. Kim, and J. Ihm, Phys. Rev. B 45, 8007 (1992).
G. Yu, C. H. Lee, A. J. Heeger, N. Herron, E. M. McCarron, L. Cong, G. C. Spalding, C. A. Nordman, and A. M. Goldman, Phys. Rev. B 45, 4964 (1992).
R. C. Yu, M. B. Salamon, J. P. Lu, and W. C. Lee, Phys. Rev. Lett. 69, 1431 (1992).
J. Yuan, L. M. Brown, W. Y. Liang, R. S. Liu, and P. P. Edwards, Phys. Rev. B 43, 8030 (1991).
B. J. Yuan and J. P. Whitehead, Phys. Rev. B 44, 6943 (1991).
K. Yvon and M. François, Z. Phys. B 76, 413 (1989).
A. A. Zakhidov, A. Ugawa, K. Imaeda, K. Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto, S. Suzuki, and Y. Achiba, Solid State Commun. 79, 939
(1991).
M. Zeh, H.-C. Ri, F. Kober, R. P. Huebener, J. Fischer, R. Gross, H. Müller, T. Sermet, A. V. Ustinov, and H.-G. Wener, Physica C 167, 6
(1990).

REFERENCES
E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino, and M. W. McElfresh, Phys. Rev. Lett. 62, 3093 (1989).
H. R. Zeller and I. Giaever, Phys. Rev. 181, 789 (1969).
X. C. Zeng, D. Stroud, and J. S. Chung, Phys. Rev. B 43, 3042 (1991).
R. Zeyher, Phys. Rev. B 44, 10404 (1991).
F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
L. Zhang, M. Ma, and F. C. Zhang, Phys. Rev. B 42, 7894 (1990).
J.-G. Zhang, X.-X. Bi, E. McRae, P. C.-Eklund, B. C. Sales, and M. Mostoller, Phys. Rev. B 43, 5389 (1991a).
Z. Zhang, C.-C. Chen, and C. M. Lieber, Science 254, 1619 (1991).
H. Zhang, J. W. Lynn and D. E. Morris, Phys. Rev. B 45, 10022 (1992).
L. Zhang, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 4978 (1992).
L. Zhang, J. K. Jain, and V. J. Emery, Phys. Rev. B 47, 3368 (1993).
Z. Zhang and C. M. Lieber, Phys. Rev. B 47, 3423 (1993).
H. Zhang and H. Sato, Phys. Rev. Lett. 70, 1697 (1993).
Z. Zhao, L. Chen, Q. Yang, Y. Huang, G. Chen, R. Tang, G. Liu, C. Cui, L. Chen, L. Wang, S. Guo, S. Li, and J. Bi, in "Cooper Oxide Superconductors" (C. P. Poole, Jr., T. Datta, and H. A. Farach, Eds.), p. 274, Wiley, New York, 1987.
Z. Zhao, F. Behrooze, S. Adenwalla, Y. Guan, J. B. Ketterson; B. K. Sarma, and D. G. Hinks, Phys. Rev. B 43, 13720 (1991). -
B.-R. Zhao, S.-I. Kuroumaru, Y. Horie, E. Yanada, T. Aomine, X.-G. Qiu, Y.-Z. Zhang, Y.-Y. Zhao, P. Xu, L. Li, H. Ohkubo, and S. Mase, Physica C 179, 138 (1991).
G. L. Zhao and J. Callaway, Phys. Rev. B 49, 6424 (1994).
C. Zhaojia, Z. Yong, Y. Hongshun, C. Zuyao, Z. Donquin, Q. Yitai, W. Baimei, and Z. Qirui, Solid State Commun. 64, 685 (1987).
H. Zheng, M. Avignon, and K. H. Bennemann, Phys. Rev. B 49, 9763 (1994).
X. Zhengping, J. Chunlin, and Z. Lian, J. Supercond. 3, 421 (1990).
H. Zhou, J. Rammer, P. Schleger, W. N. Hardy, and J. F. Carolan, Phys. Rev. B 43, 7968 (1991).
P. Zhou, K.-A. Wang, A. M. Rao, P. C. Eklund, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 45, 10838 (1992).
J. Zhou and S. G. Chen, Phys. Rev. B 47, 8301 (1993).
D.-M. Zhu, A. C. Anderson, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B 40, 841 (1989).
D.-M. Zhu, A. C. Anderson, T. A. Friedmann, and D. M. Ginzberg, Phys. Rev. B 41, 6605 (1990).
S. Zhu, D. K. Christen, C. E. Klabunde, J. R. Thompson, E. C. Jones, R. Feenstra, D. H. Lowndes, and D. P. Norton, Phys. Rev. B 46, 5576 (1992).
Y. Zhu in "High Temperature Superconducting Materials Science and Engineering," (D. Shi, Ed.), Pergamon, New York, 1994.
G. T. Zimanyi and K. S. Bedell, Phys. Rev. B 48, 6575 (1993).
P. Zolliker, D. E. Cox, J. B. Parise, E. M. McCarron III, and W. E. Farneth, Phys. Rev. B 42, 6332 (1990).
X. Zotos, P. Prelovšek, and I. Sega, Phys. Rev. B 42, 8445 (1990).
Z. Zou and P. W. Anderson, Phys. Rev. B 37, 627 (1988); (reprinted in Halley, 1988, p. 163).
V. E. Zubkus, E. E. Tornau, S. Lapinskas, and P. J. Kundrotas, Phys. Rev. B 43, 13112 (1991).
F. Zuo, M. B. Salamon, T. Datta, K. Ghiron, H. Duan, and A. M. Hermann, Physica C 176, 541 (1991).
W. Zwerger, Phys. Rev. B 42, 2566 (1990) .

Hars excel
of su
othe, sever prese table Para rame ties, Stanc plots lated ature shoul ences

\title{
This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record
}

\section*{BEST AVAILABLE IMAGES}

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

\(\square\) IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FFADED TEXT OR DRAWING
\(\square\) BLURRED OR ILLEGIBLE TEXT OR DRAWING
\(\square\) SKEWED/SLANTED IMAGES
\(\square\) COLOR OR BLACK AND WHITE PHOTOGRAPHS
\(\square\) GRAY SCALE DOCUMENTS
\(\square\) LINES OR MARKS ON ORIGINAL DOCUMENT
\(\square\) REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
\(\square\) other: \(\qquad\)

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.```


[^0]:    

    ## BRIEF ATTACHMENT B

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Date: March 1, 2005
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    Docket: YO987-074BZ
    Group Art Unit: 1751

    For. NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT B

    # Introduction to Ceramics <br> Second Edition 

    W. D. Kingery

    PROFESSOR OF CERAMICS
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY

    ## H. K. Bowen

    ASSOCIATE PROFESSOR OF CERAMICS
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    D. R. Uhlmann

    PROFESSOR OF CERAMICS AND POLYMERS
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY

    A Wiley-Interscience Publication
    JOHN WILEY \& SONS, New York • Chichester • Brisbane • Toronto

    Copyright © 1960, 1976 by John Wiley \& Sons, Inc.
    All rights reserved. Published simultaneously in Canada.
    Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley \& Sons, Inc.

    Library of Congress Cataloging in Publication Data:
    Kingery, W. D.
    Introduction to ceramics.
    (Wiley series on the science and technology of materials)
    "A Wiley-Interscience publication."
    Includes bibliographical references and index.

    1. Ceramics. 1. Bowen, Harvey Kent, joint author.
    II. Uhimann, Donald Robert, joint author. III. Title.
    $\begin{array}{ll}\text { TP807.K52 } 1975 \\ \text { ISBN 0-471-47860-1 } & 666 \quad \text { ! }\end{array}$
    ISBN 0-471-47860-1
    Printed in the United States of America
    1098765

    During the fifte published, the : ticed. However, developing new modifications in new material.
    In particular, noncrystalline s new insight ints spinodal decom recognition of $t$ ment of glass-ce sintering phenor transmission el، microstructure, and a myriad , magnetic cerami these advances competence.

    The necessary the recent availal turing methods [ (1970); F. H. Nol Norton, Elemem (1974); F. V. Ti Ogden Publ. Ci
    
    or prepare fine particles, shape them, and then stick them back together by heating. The second basic process is to melt the material to form a liquid and then shape it during cooling and solidification; this is most widely practiced in forming glasses. For completeness, we should also mention forming shapes in a mold or by dipping a form with a slurry containing a ceramic binder such as portland cement or ethyl silicate.

    Raw Materials. The types of minerals found in nature are controlled mainly by the abundance of the elements and their geochemical characteristics. Since oxygen, silicon, and aluminum together account for $90 \%$ of the elements in the earth's crust, as shown in Fig. 1.1, it is not surprising that the dominant minerals are silicates and aluminum silicates. These, together with other mineral compounds of oxygen, constitute the great bulk of naturally occurring ceramic raw materials.

    The mineral raw materials used in the ceramic industry are mainly
    

    Fig. 1.1 Abundance of common elements in the earth's crust.
    
    

    CERAMIC PROCESSES AND PRODUCTS

    Table 1.1. Ideal Chemical Formulas of the Clay Minerals

    | Kaolinite | $\mathrm{Al}_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)(\mathrm{OH})_{4}$ |
    | :--- | :--- |
    | Halloysite | $\mathrm{Al}_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)(\mathrm{OH})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |
    | Pyrophyllite | $\mathrm{Al}_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)_{2}(\mathrm{OH})_{2}$ |
    | Montmorillonite | $\left(\mathrm{Al}_{1.67} \mathrm{Na}_{0.33} \mathrm{Mg}_{0.33}\right)\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)_{2}(\mathrm{OH})_{2}$ |
    | Mica | $\mathrm{Al}_{2} \mathrm{~K}\left(\mathrm{Si}_{\left.1.5 \mathrm{Al}_{0.5} \mathrm{O}_{5}\right)_{2}(\mathrm{OH})_{2}}\right.$ |
    | Illite | $\mathrm{Al}_{2-x} \mathrm{Mg}_{5} \mathrm{~K}_{1-x-y}\left(\mathrm{Si}_{1.5-\nu} \mathrm{Al}_{0.5+\gamma} \mathrm{O}_{6}\right)_{2}(\mathrm{OH})_{2}$. |
    |  |  |

    A related material is talc, a hydrous magnesium silicate with a layer structure similar to the clay minerals and having the ideal formula $\mathrm{Mg}_{3}\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)_{2}(\mathrm{OH})_{2}$. Talc is an important raw material for the manufacture of electrical and electronic components and for making tile. Asbestos minerals are a group of hydrous magnesium silicates which have a fibrous structure. The principal variety is chrysotile, $\mathrm{Mg}_{3} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}$.

    In addition to the hydrous silicates already discussed, anhydrous silica and silicate materials are basic raw materials for much of the ceramic industry. $\mathrm{SiO}_{2}$ is a major ingredient in glass, glazes, enamels, refractories, abrasives, and whiteware compositions. It is widely used because it is inexpensive, hard, chemically stable, and relatively infusable and has the ability to form glasses. There is a variety of mineral forms in which silica occurs, but by far the most important as a raw material is quartz. It is used as quartzite rock, as quartz sand, and as finely ground potter's flint. The major source of this material is sandstone, which consists of lightly bonded quartz grains. A denser quartzite, gannister, is used for refractory brick. Quartz is also used in the form of large, nearly perfect crystals, but these have been mostly supplanted by synthetic crystals, manufactured by a hydrothermal process.

    Together with quartz, which serves as a refractory backbone constituent, and clay, which provides plasticity, traditional triaxial porcelains (originally invented in China) include feldspar, an anhydrous aluminosilicate containing $\mathrm{K}^{+}, \mathrm{Na}^{+}$, or $\mathrm{Ca}^{2+}$ as a flux which aids in the formation of a glass phase. The major materials of commercial interest are potash feldspar (microcline or orthoclase), $\mathrm{K}\left(\mathrm{AlSi}_{3}\right) \mathrm{O}_{8}$, soda feldspar (albite), $\mathrm{Na}\left(\mathrm{AlSi}_{3}\right) \mathrm{O}_{8}$, and lime feldspar (anorthite), $\mathrm{Ca}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right) \mathrm{O}_{8}$. Other related. materials sometimes used are nepheline syenite, a quartzfree igneous rock composed of nephelite, $\mathrm{Na}_{2}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right) \mathrm{O}_{8}$, albite, and microcline; also wollastonite, $\mathrm{CaSiO}_{3}$. One 'group of silicate minerals, the sillimanite group, having the composition $\mathrm{Al}_{2} \mathrm{SiO}_{3}$, is used for the manufacture of refractories.
    
    
    toward the increasing use of mechanical, physical, and chemical purification and upgrading of raw materials together with special control of particle size and particle-size distribution and away from the sole reliance on materials in the form found in nature.

    Forming and Firing. The most critical factors affecting forming and firing processes are the raw materials and their preparation. We have to be concerned with both the particle size and the particle-size distribution of the raw materials. Typical clay materials have a particle-size distribution which ranges from 0.1 to 50 microns for the individual particles. For the preparation of porcelain compositions the fint and feldspar constituents have a substantially larger particle size ranging between 10 and 200 microns. The fine-particle constituents, which for special ceramics may be less than 1 micron, are essential for the forming process, since colloidal suspensions, plastic mixes with a liquid-phase binder, and dry pressing all depend on very small particles flowing over one another or remaining in a stable suspension. For suspensions, the settling tendency is directly proportional to the density and particle size. For plastic forming the coherence of the mass and its yield point are determined by the capillarity of the liquid between particles; this force is inversely proportional to the particle size. However, if all the material were of a uniformly fine particle size, it would not be feasible to form a high concentration of solids. Mixing in a coarser material allows the fines to fill the interstices between the coarse particles such that a maximum particle-packing density is achieved at a ratio of about $70 \%$ coarse and $30 \%$ fine material when two particle sizes are used. In addition, during the drying process, shrinkage results from the removal of water films between particles. Since the number of films increases as the particle size decreases, bodies prepared with a liquid binder and all fine-particle materials have a high shrinkage during drying and the resultant problems of warping and distortion.

    In addition to a desired particle size and particle-size distribution, intimate mixing of material is necessary for uniformity of properties within a body and for the reaction of individual constituents during the firing process. For preparing slurries or a fine-grain plastic mass, it is the usual practice to use wet mixing, with the raw materials placed together in ball mills or a blunger. Shearing stresses developed in the mixing process improve the properties of a plastic mix and ensure the uniform distribution of the fine-grain constituent. For dewatering the wet-milled mix, either a filter press may be used, or more commonly spray-drying, in which droplets of the slurry are dried with a countercurrent of warm air to maintain their uniform composition during drying. The resulting aggregates, normally 1 mm or so in size, flow and deform readily in subsequent forming.
    
    

    This may be done under hand pressure such as building ware with coils, free-forming ware, or hand throwing on a potter's wheel. The process can be mechanized by soft-plastic pressing between porous plaster molds and also by automatic jiggering, which consists of placing a lump of soft plastic clay on the surface of a plaster-of-paris mold and rotating it at about 400 rpm while pulling a profile tool down on the surface to spread the clay and form the upper surface.
    When a larger amount of water is added, the clay remains sticky plastic until a substantial amount has been added. Under a microscope it is seen that individual clay particles are gathered in aggregates or flocs. However, if a small quantity of sodium silicate is added to the system, there is a remarkable change, with a substantial increase in fluidity resulting from the individual particles being separated or deflocculated. With proper controls a fluid suspension can be formed with as little as $20 \%$ liquid, and a small change in the liquid content markedly affects the fluidity. When a suspension such as this is cast into a porous plaster-of-paris mold, the mold sucks liquid from the contact area, and a hard layer is built on the surface. This process can be continued until the entire interior of the mold is filled (solid casting) or the mold can be inverted and the excess liquid poured out after a suitable wall thickness is built up (drain casting).

    In each of the processes which require the addition of some water content, the drying step in which the liquid is removed must be carefully controlled for satisfactory results, more so for the methods using a higher liquid content. During drying, the initial drying rate is independent of the water content, since in this period there is a continuous film of water at the surface. As the liquid evaporates, the particles become pressed more closely together and shrinkage occurs until they are in contact in a solid structure free from water film. During the shrinkage period, stresses, warping, and possibly cracks may develop because of local variations in the liquid content; during this period rates must be carefully controlled. Once the particles are in contact, drying can be continued at a more rapid rate without difficulty. For the dry-pressing or hydrostatic molding process, the difficulties associated with drying are avoided, an advantage for these methods
    After drying, ceramic ware is normally fired to temperatures ranging from 700 to $1800^{\circ} \mathrm{C}$, depending on the composition and properties desired. Ware which is to be glazed or decorated may be fired in different ways. The most common procedure is to fire the ware without a glaze to a sufficiently high temperature to mature the body; then a glaze is applied and fired at a low temperature. Another method is to fire the ware initially to a low temperature, a bisque fire; then apply the glaze and mature the body and glaze together at a higher temperature. A third method is to

    ## INTRODUCTION TO CERAMICS

    apply the glaze to the unfired ware and heat them together in a one-fire process.

    During the firing process, either a viscous liquid or sufficient atomic mobility in the solid is developed to permit chemical reactions, grain growth, and sintering; the last consists of allowing the forces of surface tension to consolidate the ware and reduce the porosity. The volume shrinkage which occurs is just equal to the porosity decrease and varies from a few to 30 or 40 vol\%, depending on the forming process and the ultimate density of the fired ware. For some special applications, complete density and freedom from all porosity are required, but for other applications some residual porosity is desirable. If shrinkage proceeds at an uneven rate during firing or if part of the ware is restrained from shrinking by friction with the material on which it is set, stresses, warping, and cracking can develop. Consequently, care is required in setting the ware to avoid friction. The rate of temperature rise and the temperature uniformity must be controlled to avoid variations in porosity and shrinkage. The nature of the processes taking place is discussed in detail in Chapters 11 and 12.
    Several different types of kilns are used for firing ware. The simplest is a skove kiln in which a benchwork of brick is set up inside a surface coating with combustion chambers under the material to be fired. Chamber kilns of either the up-draft or down-draft type are widely used for batch firing in which temperature control and uniformity need not be too precise. In order to achieve uniform temperatures and maximum use of fuel, chamber kilns in which the air for combustion is preheated by the cooling ware in an adjacent chamber, the method used in ancient China, is employed. The general availability of more precise temperature controls for gas, oil, and electric heating and the demands for ware uniformity have led to the increased use of tunnel kilns in which a temperature profile is maintained constant and the ware is pushed through the kiln to provide a precise firing schedule under conditions such that effective control can be obtained.

    Melting and Solidification. For most ceramic materials the high volume change occurring during solidification, the low thermal conductivity, and the brittle nature of the solid phase have made melting and solidification processes comparable with metal casting and foundry practice inappropriate. Recently, techniques have been developed for unidirectional solidification in which many of these difficulties can be substantially avoided. This process has mainly been applied to forming controlled structures of metal alloys which are particularly attractive for applications such as turbine blades for high-temperature gas turbines. So far as we are aware, there is no large scale manufacture of ceramics in this way,
    
    

    CERAMIC PROCESSES and PRODUCTS

    --fire
    omic
    зrain
    face
    ume
    aries
    I the
    :om-
    ,ther
    Is at
    rom
    sing, the ture rinil in
    st is
    :ace
    red.
    ised
    $t$ be
    use
    the
    a, is
    rols
    ity
    , file
    'ide
    can
    'OI-
    ity,
    ca-
    ice
    ec-
    tlly
    led
    ca-
    as
    ay,
    but we anticipate that the development of techniques for the unidirectional solidification of ceramics will be an area of active research during the next decade.

    Another case in which these limitations do not apply is that of glass-forming materials in which the viscosity increases over a broad temperature range so that there is no sharp volume discontinuity during solidification and the forming processes can be adjusted to the fluidity of the glass. Glass products are formed in a high-temperature viscous state by five general methods: (1) blowing, (2) pressing, (3) drawing, (4) rolling, and (5) casting. The ability to use these processes depends to a large extent on the viscous flow characteristics of the glass and its dependence on temperature. Often surface chilling permits the formation of a stable shape while the interior remains sufficiently fluid to avoid the buildup of dangerous stresses. Stresses generated during cooling are relieved by annealing at temperatures at which the force of gravity is insufficient to cause deformation. This is usually done in an annealing oven or lehr which, for many silicate glasses, operates at temperatures in the range of 400 to $500^{\circ} \mathrm{C}$.

    The characteristics most impressive about commercial glass-forming. operations are the rapidity of forming and the wide extent of automation. Indeed, this development is typical of the way in which technical progress affects an industry. Before the advent of glass-forming machinery, a major part of the container industry was based on ceramic stoneware. Large numbers of relatively small stoneware potters existed solely for the manufacture of containers. The development of automatic glass-forming machinery allowing the rapid and effective production of containers on a continuous basis has eliminated stoneware containers from common use.

    Special Processes. In addition to the broadly applicable and widely used processes discussed thus far, there is a variety of special processes which augment, modify, extend, or replace these forming methods. These include the application of glazes, enamels, and coatings, hot-pressing materials with the combined application of pressure and temperature, methods of joining metals to ceramics, glass crystallization, finishing and machining operations, preparation of single crystals, and vapordeposition processes.

    Much ceramic ware is coated with a glaze, and porcelain enamels are commonly applied on a base of sheet steel or cast iron as well as for special jewelry applications. Glazes and enamels are normally prepared in a wet process by milling together the ingredients and then applying the coating by brushing, spraying, or dipping. For continuous operation, spray coating is most frequently used, but for some applications more satisfactory coverage can be obtained by dipping or painting. For

    ## INTRODUCTION TO CERAMICS

    porcelain enamels on cast iron, large castings heated in a furnace are coated with a dry enamel powder which must be distributed uniformly over the surface, where it fuses and sticks. In addition to these widely used processes, special coatings for technical ware have been applied by flame spraying to obtain a refractory dense layer; vacuum-deposited coatings have been formed by evaporation or cathodic sputtering; coatings have been applied by chemical vapor deposition; electrophoretic deposition has been applied; and other specialized techniques have had some limited applications.
    To obtain a high density together with fine particle size, particularly for materials such as carbides and borides, the combination of pressure with high temperature is an effective technique mostly used for small samples of a simple configuration. At lower temperatures, glass-bonded mica is formed in this way for use as an inexpensive insulation. One of the main advantages of the hot-pressing method is that material preparation is less critical than for the sintering processes, which require a high degree of material uniformity for successful applications of the highest-quality products. The main difficulties with hot-pressing techniques are applying the method to large shapes and the time required for heating the mold and sample, which makes the method slow and expensive.
    For many applications, joining processes are necessary to form fabricated units. In manufacturing teacups, for example, the handie is normally molded separately, dipped in a slip, and stuck on the body of the cup. Sanitary fixtures of complex design are similarly built up from separately formed parts. For many electronic applications requiring pressure-tight seals, it is necessary to form a bond between metals and ceramics. For glass-metal seals, the main problem is matching the expansion coefficient of the glass to that of the metal and designing the seal so that large stresses do not develop in use; special metal alloys and sealing glasses have been designed for this purpose. For crystalline ceramics, the most widely applied method has been to use a molybdenummanganese layer which, when fired under partially oxidizing conditions, forms an oxide that reacts with the ceramic to give an adhesive bonding layer. In some cases, reactive metal brazes containing titanium or zirconium have been used.
    One of the most important developments in ceramic forming has been to use a composition which can be formed as a glass and then transformed subsequent to forming into a product containing crystals of controlled size and amount. Classic examples of this are the striking gold-ruby glasses, in which the color results from the formation of colloidal gold particles. During rapid initial cooling, nucleation of the metal particles
    
    occurs; subsequent reheating into the growth region develops proper crystallite sizes for the colloidal ruby color. In the past 10 years there has been extensive development of glasses in which the volume of crystals formed is much larger than the volume of the residual glass. By controlled nucleation and growth, glass-ceramics are made in which the advantage of automatic glass-forming processes is combined with some of the desirable properties of a highly crystalline body.

    For most forming operations, some degree of finishing or machining is required which may range from fettling the mold lines from a slip-cast shape to diamond-grinding the final contour of a hard ceramic. For hard materials such as aluminum oxide, as much machining as feasible is done in the unfired state or the presintered state, with final finishing only done on the hard, dense ceramic where required.

    A number of processes have been developed for the formation of ceramics directly from the vapor phase. Silica is formed by the oxidation of silicon tetrachloride. Boron and silicon carbide fibers are made by introducing a volatile chloride with a reducing agent into a hot zone, where deposition occurs on a fine tungsten filament. Pyrolytic graphite is prepared by the high-temperature deposition of graphite layers on a substrate surface by the pyrolytic decomposition of a carbon-containing gas. Many carbides, nitrides, and oxides have been formed by similar processes. For electronic applications, the development of single-crystal films by these techniques appears to have many potential applications.

    Thin-wafer substrates are formed by several techniques, mostly from alumina. A widely used development is the technique in which a fluid body is prepared with an organic binder and uniformly spread on a moving nonporous belt by a doctor blade to form thin, tough films which can subsequently be cut to shape; holes can be introduced in a high-speed punch press.

    There is an increasing number of applications in which it is necessary or desirable to have single-crystal ceramics because of special optical, electrical, magnetic, or strength requirements. The most widespread method of forming these is the Czochralski process, in which the crystal is slowly pulled from a molten melt, a process used for aluminum oxide, ruby, garnet, and other materials. In the Verneuil process a liquid cap is maintained on a growing boule by the constant-rate addition of powdered material at the liquid surface. For magnetic and optical applications thin single-crystal films are desirable which have been prepared by epitaxial growth from the vapor phase. Hydrothermal growth from solution is widely used for the preparation of quartz crystals, largely replacing the use of natural mineral crystals for device applications.

    ## INTRODUCTION TO CERAMICS

    ### 1.3 Ceramic Products

    The diversity of ceramic products, which range from microscopic single-crystal whiskers, tiny magnets, and substrate chips to multiton refractory furnace blocks, from single-phase closely controlled compositions to multiphase multicomponent brick, and from porefree transparent crystals and glasses to lightweight insulating foams is such that no simple classification is appropriate. From the point of view of historical development and tonnage produced, it is convenient to consider the mineral-rawmaterial products, mostly silicates, separately from newer nonsilicate formulations.

    Traditional Ceramics. We can define traditional ceramics as those comprising the silicate industries-primarily clay products, cement, and silicate glasses.

    The art of making pottery by forming and burning clay has been practiced from the earliest civilizations. Indeed, the examination of pottery fragments has been one of the best tools of the archeologist. Burnt clayware has been found dating from about 6500 B.C. and was well developed as a commercial product by about 4000 b.c.
    Similarly, the manufacture of silicate glasses is an ancient art. Naturally occurring glasses (obsidian) were used during the Stone Age, and there was a stable industry in Egypt by about 1500 b.C.

    In contrast, the manufacture of portland cement has only been practiced for about 100 years. The Romans combined burned lime with volcanic ash to make a natural hydraulic cement; the art seems then to have disappeared, but the hydraulic properties of lightly burned clayey limes were rediscovered in England about 1750, and in the next 100 years the manufacturing process, essentially the same as that used now, was developed.

    By far the largest segment of the silicate ceramic industry is the manufacture of various glass products. These are manufactured mostly as sodium-calcium-silicate glasses. The next largest segment of the ceramic industry is lime and cement products. In this category the largest group of materials is hydraulic cements such as those used for building construction. A much more diverse group of products is included in the classification of whitewares. This group includes pottery, porcelain, and similar fine-grained porcelainlike compositions which comprise a wide variety of specific products and uses. The next classification of traditional ceramics is porcelain enamels, which are mainly silicate glasslike coatings on metals. Another distinct group is the structural clay products, which consist mainly of brick and tile but include a variety of similar products such as sewer pipe. A particularly important group of the traditional
    
    ceramics industry is refractories. About $40 \%$ of the refractory industry consists of fired-clay products, and another $40 \%$ consists of heavy nonclay refractories such as magnesite, chromite, and similar compositions. In addition there is a sizable demand for various special refractory compositions. The abrasives industry produce mainly silicon carbide and aluminum oxide abrasives. Finally, a segment of the ceramic industry which does not produce ceramic products as such is concerned with the mineral preparation of ceramic and related raw materials.

    Most of these traditional ceramics could be adequately defined as the silicate industries, which indeed was the description originally proposed for the American Ceramic Society in 1899. The silicate industries still compose by far the largest part of the whole ceramic industry, and from this point of view they can be considered the backbone of the field.

    New Ceramics. In spite of its antiquity, the ceramic industry is not stagnant. Although traditional ceramics, or silicate ceramics, account for the large bulk of material produced, both in tonnage and in dollar volume, a variety of new ceramics has been developed in the last 20 years. These are of particular interest because they have either unique or outstanding properties. Either they have been developed in order to fulfill a particular need in greater temperature resistance, superior mechanical properties, special electrical properties, and greater chemical resistivity, or they have been discovered more or less accidentally and have become an important part of the industry. In order to indicate the active state of development, it may be helpful to describe briefly a few of these new ceramics.

    Pure oxide ceramics have been developed to a high state of uniformity and with outstanding properties for use as special electrical and refractory components. The oxides most often used are alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, zirconia $\left(\mathrm{ZrO}_{2}\right)$, thoria $\left(\mathrm{ThO}_{2}\right)$, beryllia ( BeO ), magnesia ( MgO ), spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$, and forsterite $\left(\mathrm{Mg}_{2} \mathrm{SiO}_{4}\right)$.

    Nuclear fuels based on uranium dioxide $\left(\mathrm{UO}_{2}\right)$ are widely used. This material has the unique ability to maintain its good properties after long use as a fuel material in nuclear reactors.

    Electrooptic ceramics such as lithium niobate $\left(\mathrm{LiNbO}_{3}\right)$ and lanthanum-modified lead zirconate titanate (PLZT) provide a medium by which electrical information can be transformed to optical information or by which optical functions can be performed on command of an electrical signal.

    Magnetic ceramics with a variety of compositions and uses have been developed. They form the basis of magnetic memory units in large computers. Their unique electrical properties are particularly useful in high-frequency microwave electronic applications.

    Single crystals. of a variety of materials are now being manufactured,

    ## INTRODUCTION TO CERAMICS

    either to replace natural crystals which are unavailable or for their own unique properties. Ruby and garnet laser crystals and sapphire tubes and substrates are grown from a melt; large quartz crystals are grown by a hydrothermal process.
    Ceramic nitrides with unusually good properties for special applications have been developed. These include aluminum nitride, a laboratory refractory for melting aluminum; silicon nitrides and SiAION, commercially important new refractories and potential gas turbine components; and boron nitride, which is useful as a refractory.

    Enamels for aluminum have been developed and have become an important part of the architectural industry.

    Metal-ceramic composites have been developed and are now an important part of the machine-tool industry and have important uses as refractories. The most important members of this group are various carbides bonded with metals and mixtures of a chromium alloy with aluminum oxide.

    Ceramic carbides with unique properties have been developed. Silicon carbide and boron carbide in particular are important as abrasive materials.
    Ceramic borides have been developed which have unique properties of high-temperature strength and oxidation resistance.
    Ferroelectric ceramics such as barium titanate have been developed which have extremely high dielectric constants and are particularly important as electronic components.
    Nonsilicate glasses have been developed and are particularly useful for infrared transmission, special optical properties, and semiconducting devices.
    Molecular sieves which are similar to, but are more controlled than, natural zeolite compositions are being made with controlled structures so that the lattice spacing, which is quite large in these compounds, can be used as a means of separating compounds of different molecular sizes.

    Glass-ceramics are a whole new family of materials based on fabricating ceramics by forming as a glass and then nucleating and crystallizing to form a highly crystalline ceramic material. Since the original introduction of Pyroceram by the Corning Glass Works the concept has been extended to dozens of compositions and applications.

    Porefree polycrystalline oxides have been made based on alumina, yttria, spinel, magnesia, ferrites, and other compositions.
    Literally dozens of other new ceramic materials unknown 10 or 20 years ago are now being manufactured and used. From this point of view the ceramic industry is one of our most rapidly changing industries, with new products having new and useful properties constantly being de-
    veloped. These ceramics are being developed because there is a real need for new materials to transform presently available designs into practical, serviceable products. By far the major hindrance to the development of many new technologically feasible structures and systems is the lack of satisfactory materials. New ceramics are constantly filling this need.
    New Uses for Ceramics. In the same way that the demand for new and better properties has led to the development of new materials, the availability of new materials had led to new uses based on their unique properties. This cycle of new ceramics-new uses-new ceramics has accelerated with the attainment of a better understanding of ceramics and their properties.

    One example of the development of new uses for ceramics has occurred in the field of magnetic ceramic materials. These materials have hysteresis loops which are typical for ferromagnetic materials. Some have very nearly the square loop that is most desirable for electronic computer memory circuits. This new use for ceramics has led to extensive studies and development of materials and processes.

    Another example is the development of nuclear power, which requires uranium-containing fuels having large fractions of uranium (or sometimes thorium), stability against corrosion, and the ability to withstand the fissioning of a large part of the uranium atoms without deterioration. For many applications $\mathrm{UO}_{2}$ is an outstanding material for this fuel. Urania ceramics have become an important part of reactor technology.

    In rocketry and missile development two critical parts which must withstand extreme temperatures and have good erosion resistance are the nose cone and the rocket throat. Ceramic materials are used for both.

    For machining metals at high speeds it has long been known that oxide ceramics are superior in many respects as cutting tools. However, their relatively low and irregular strength makes their regular use impossible. The development of alumina ceramics with high and uniform strength levels has made them practicable for machining metals and has opened up a new field for ceramics.

    In 1946 it was discovered that barium titanate had a dielectric constant 100 times larger than that of other insulators. A whole new group of these ferroelectric materials has since been discovered. They allow the manufacture of capacitors which are smaller in size but have a larger capacity than other constructions, thus improving electronic circuitry and developing a new use for ceramic materials.

    In jet aircraft and other applications metal parts have had to be formed from expensive, and in wartime unobtainable, alloys to withstand the moderately high temperatures encountered. When a protective ceramic coating is applied, the temperature limit is increased, and either higher
    temperatures can be reached or less expensive and less critical alloys can be substituted.

    Many further applications of ceramics which did not even exist a few years ago can be cited, and we may expect new uses to develop that we cannot now anticipate.

    ## Suggested Reading

    1. F. H. Norton, Elements of Ceramics, 2d ed., Addison Wesley Publishing Company, Inc., Reading, Mass:, 1974.
    2. F. H. Norton, Fine Ceramics, McGraw-Hill Book Company, New York, 1970.
    3. F. H. Norton, Refractories, 4th ed., McGraw-Hill Book Company, New York, 1968.
    4. Institute of Ceramics Textbook Series:
    (a) W. E. Worrall, Raw Materials, Maclaren \& Sons, Ltd., London, 1964.
    (b) F. Moore, Rheology of Ceramic Systems, Maclaren \& Sons, Ltd., London, 1965.
    (c) R. W. Ford, Drying, Maclaren \& Sons, Ltd., London, 1964.
    (d) W. F. Ford, The Effect of Heat on Ceramics, Maclaren \& Sons, Ltd., London, 1967.
    5. "Fabrication Science," Proc. Brit. Ceram. Soc., No. 3 (September, 1965).
    6. "Fabrication Science: 2," Proc. Brit. Ceram. Soc., No. 12 (March, 1969).
    7. J. E. Burke, Ed., Progress in Ceramic Science, Vols. 1-4, Pergamon Press, Inc., New York, 1962-1966.
    8. W. D. Kingery, Ed., Ceramic Fabrication Processes, John Wiley \& Sons, Inc., New York, 1958.
    9. F. V. Tooley, Ed., Handbook of Glass Manufacture, 2 Vols., Ogden Publishing Company, New York, 1961.
    10. A. Davidson, Ed., Fabrication of Non-metals: Handbook of Precision Engineering, Vol. 3, McGraw-Hill Book Company, New York, 1971.
    

    ## Ceramic PhaseEquilibrium Diagrams

    At equilibrium a system is in its lowest free energy state for the composition, temperature, pressure, and other imposed conditions. When a given set of system parameters is fixed, there is only one mixture of phases that can be present, and the composition of each of these phases is determined. Phase-equilibrium diagrams provide a clear and concise method of graphically representing this equilibrium situation and are an invaluable tool for characterizing ceramic systems. They record the composition of each phase present, the number of phases present, and the amounts of each phase present at equilibrium.
    The time that it takes to reach this equilibrium state from any arbitrary starting point is highly variable and depends on factors other than the final equilibrium state. Particularly for systems rich in silica the high viscosity of the liquid phase leads to slow reaction rates and very long times before equilibrium is established; equilibrium is rarely achieved. For these systems and for others, metastable equilibrium, in which the system tends to a lower but not the lowest free energy state, becomes particularly important.

    It is obvious that the phases present and their composition are an essential element in analysing, controlling, improving, and developing ceramic materials. Phase diagrams are used for determining phase and composition change occurring when the partial pressure of oxygen or other gases is changed, for evaluating the effects of heat treatments on crystallization and precipitation processes, for planning new compositions, and for many other purposes. We have already seen the importance of thermodynamic equilibrium in our discussions of single-phase systems: crystalline solid solutions (Chapter 2), crystalline imperfections (Chapter 4), structure of glasses (Chapter 3), and surfaces and interfaces (Chapter 5). In this chapter we concentrate our attention on equilibria involving two or more phases.

    ## INTRODUCTION TO CERAMICS

    ### 7.1 Gibbs's Phase Rule

    When a system is in equilibrium, it is necessary that the temperature and pressure be uniform throughout and that the chemical potential or vapor pressure of each constituent be the same in every phase. Otherwise there would be a tendency for heat or material to be transferred from one part of the system to some other part. In 1874 J . Willard Gibbs* showed that these equilibrium conditions can occur only if the relationship

    $$
    \begin{equation*}
    P+V=C+2 \tag{7.1}
    \end{equation*}
    $$

    is satisfied. This is known as the phase rule, with $P$ being the number of phases present at equilibrium, $V$ the variance or number of degrees of freedom, and $C$ the number of components. This relationship is the basis for preparing and using phase-equilibrium diagrams.

    A phase is defined as any part of the system which is physically homogeneous and bounded by a surface so that it is mechanically separable from other parts of the system. It need not be continuous; that is, two ice cubes in a drink are one phase. The number of degrees of freedom or the variance is the number of intensive variables (pressure, temperature, composition) that can be altered independently and arbitrarily without bringing about the disappearance of a phase or the appearance of a new phase. The number of components is the smallest number of independently variable chemical constituents necessary and sufficient to express the composition of each phase present. The meaning of these terms will become clearer as they are applied to specific systems in the following sections.
    Deduction of the phase rule follows directly from the requirement that the chemical potential $\mu_{i}$ of each constituent $i$ be the same in every phase present at equilibrium. The chemical potential is equal to the partial molar free energy $\overline{\boldsymbol{G}}_{\boldsymbol{i}}$,

    $$
    \bar{G}_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T . P_{n}, n_{1}, n_{2} \ldots} .
    $$

    which is the change in free energy of a system at constant temperature and pressure resulting from the addition of one mole of constituent $i$ to such a large quantity of the system that there is no appreciable change in the concentration. In a system with $C$ components we have an independent equation for each component representing the equality of chemical potentials. For a system containing $P$ phases, we have

    $$
    \begin{equation*}
    \mu_{1}^{a}=\mu_{1}^{b}=\mu_{1}^{c}=\cdots=\mu_{1}{ }^{p} \tag{7.2}
    \end{equation*}
    $$


    which $C$ ( ${ }^{-}$ C-1 phases impose
    v
    which i
    The equilibr and het equilibr that eqı conforn

    ### 7.2 Or

    In a liquid, differen graphic reviewe The ind phases: it boils; water v changes present

    Since and diff practice usually 7.2d. AI one as pressurs
    
    erature itial or terwise om one howed lip
    lber of sees of e basis
    'sically nically s; that ees of essure, bitrararance ber of ient to these in the
    nt that phase molar
    rature It $i$ to nge in lepen:mical
    which constitute $C(P-1)$ independent equations which serve to fix $C(P-1)$ variables. Since the composition of each phase is defined by $C-1$ concentration terms, completely defining the composition of $P$ phases requires $P(C-1)$ concentration terms, which together with the imposed conditions of temperature and pressure give

    $$
    \begin{gather*}
    \text { Total number of variables }=P(C-1)+2  \tag{7.4}\\
    \text { Variables fixed by equality of chemical potentials }=C(P-1)  \tag{7.5}\\
    \text { Variables remaining to be fixed }=P(C-1)+2-C(P-1)  \tag{7.6}\\
    \qquad V=C-P+2 \tag{7.7}
    \end{gather*}
    $$

    which is Gibbs's phase rule (Eq. 7.1).
    The main limitation on the phase rule is that it applies only to equilibrium states, requiring homogeneous equilibrium within each phase and heterogeneous equilibrium between phases. Although a system in equilibrium always obeys the phase rule (and nonconformance proves that equilibrium does not exist), the reverse is not always true. That is, conformation with the phase rule is not a demonstration of equilibrium.

    ### 7.2 One-Component Phase Diagrams

    In a single-component system the phases that can occur are vapor, liquid, and various polymorphic forms of the solid. (The energy of different polymorphic forms as related to temperature and crystallographic structure has been discussed in Section 2.10, and might well be reviewed by the reader, since it is closely related to the present section.) The independent variables that cause appearance or disappearance' of phases are temperature and pressure. For example, when we heat water, it boils; if we cool it, it freezes. If we put it in an evacuated chamber, the water vapor pressure quickly reaches some equilibrium value. These changes can be diagrammatically represented by showing the phases present at different temperatures and pressures (Fig. 7.1).

    Since this is a one-component system, even the air phase is eliminated, and different phase distributions correspond to Fig. $7.2 a$ to $c$. In actual practice measurements in which the vapor phase is unimportant are usually made at constant atmospheric pressure in a way similar to Fig. 7.2d. Although this is not an ideal closed system, it closely approximates one as long as the vapor pressure is low compared with atmospheric pressure (so that we can ignore the insignificant vapor phase which would
    

    Fig. 7.1. Pressure-temperature diagram for $\mathrm{H}_{2} \mathrm{O}$.
    

    Fig. 7.2. Experimental conditions for a single-component system with (a) one phase, (b) two phases, (c) three phases, and (d) common conditions, with the condensed phase exposed to a gas atmosphere.
    not exist at all in a closed system) or is equal to or greater than atmospheric pressure (so that the vapor phase has the partial pressure predicted by the phase diagram). For many condensed systems of interest, the first criterion is satisfied.

    In a one-component system the largest number of phases that can occur at equilibrium is given when the variance is zero: $P+V=C+2, P+0=$ $1+2, P=3$. When three phases are present at equilibrium (ice, water, vapor), as at point $A$ in Fig. 7.1, any change in pressure or temperature causes the disappearance of a phase. The lines on the diagram represent conditions for two phases to exist together at equilibrium; for example, when liquid and vapor are present, as at point $B, P+V=C+2$,
    
    rium. Tl
    chemical diagram may occı lines in t phase. $\mathbf{F}$ quartz is into $\alpha-\mathrm{Cl}$ and $\beta$-tr. the form when cor this stat At any into anol reverse $t$ however at $1100^{\circ}$ $\beta_{2}$-tridyn

    Fig.

    ## $381-515$

    rium. The vapor pressure shown in the diagram is a measure of the chemical potential of silica in the different phases, and this same kind of diagram can be extended to include the metastable forms of silica which may occur (Fig. 7.5). The phase with the lowest vapor pressure (the heavy lines in the diagram) is the most stable at any temperature, the equilibrium phase. However, once formed, the transition between cristobalite and quartz is so sluggish that $\beta$-cristobalite commonly transforms on cooling into $\alpha$-cristobalite. Similarly, $\beta_{2}$-tridymite commonly transforms into $\alpha$ and $\beta$-tridymite rather than into the equilibrium quartz forms. These are the forms present in the refractory silica brick, for example. Similarly, when cooled, the liquid forms silica glass, which can remain indefinitely in this. state at room temperature.

    At any constant temperature there is always a tendency to transform into another phase of lower free energy (lower vapor pressure), and the reverse transition is thermodynamically impossible. It is not necessary, however, to transform into the lowest energy form shown. For example, at $1100^{\circ}$ silica glass could transform into $\beta$-cristobalite, $\beta$-quartz, or $\beta_{2}$-tridymite. Which of these transformations actually takes place is
    

    Fig. 7.5. Diagram including metastable phases occurring in the system $\mathrm{SiO}_{2}$.
    determined by the kinetics of these changes. In practice, when silica glass is heated for a long time at this temperature, it crystallizes, or devitrifies, to form cristobalite, which is not the lowest energy form but is structurally the most similar to silica glass. On cooling, $\beta$-cristobalite transforms into $\alpha$-cristobalite.

    The silica system illustrates that the phase-equilibrium diagram graphically represents the conditions for minimum free energy in a system; extension to include metastable forms also allows certain deductions about possible nonequilibrium behavior. Almost always, however, a number of alternative nonequilibrium courses are possible, but there is only one equilibrium possibility.

    ### 7.3 Techniques for Determining Phase-Equilibrium Diagrams

    The phase-equilibrium diagrams discussed in the last section and in the rest of this chapter are the product of experimental studies of the phases present under various conditions of temperature and pressure. In using phase-equilibrium diagrams it is important to remember this experimental basis. In critical cases, for example, diagrams should not be used without referring directly to the original experimenter's description of exactly how the diagram was determined and with what detail the measurements were made. As additional measurements are carried out, diagrams are subject to constant revision.

    There is a large body of literature describing methods of determining phase equilibrium. In general, any physical or chemical difference between phases or effect occurring on the appearance or disappearance of a phase can be used in determining phase equilibrium. Two general methods are used: dynamic methods use the change in properties of a system when phases appear or disappear, and static methods use a sample held under constant conditions until equilibrium is reached, when the number and composition of the phases present are determined.

    Dynamic Methods. The most common dynamic method is thermal analysis, in which the temperature of a phase change is determined from changes in the rate of cooling or heating brought about by the heat of reaction. Other properties such as electrical conductivity, thermal expansion, and viscosity have also been used. Under the experimental conditions used, the phase change must take place rapidly and reversibly at the equilibrium temperature without undercooling, segregation, or other nonequilibrium effects. In silicate systems the rate ${ }_{i}$ of approach toward equilibrium is slow; as a result thermal-analysis methods are less useful for silicates than they are for metals, for example.
    
    glass
    rifies, icturorms
    aphistem; :tions er, a ere is
    in the hases using rental thout sactly nents is are
    lining :e be$e$ of a sneral ; of a imple $n$ the
    ermal from zat of xpan-:ondiat the other ,ward iseful

    Dynamic methods are suitable for determining the temperature of phase changes but give no information about the exact reactions taking place. In addition to the measurements of temperature changes then, phase identification before and after any phase change is required. This analysis is usually carried out by chemical determination of composition, determination of optical characteristics, X-ray determination of crystal structure, and microscopic examination of phase amounts and phase distribution.

    Static Methods. In contrast to dynamic measurements, static measurements often consist of three steps. Equilibrium conditions are held at elevated temperatures or pressures, the sample is quenched to room temperature sufficiently rapidly to prevent phase changes during cooling, and then the specimen is examined to determine the phases present. By carrying out these steps at a number of different temperatures, pressures, and compositions, the entire phase diagram can be determined. Sometimes high-temperature X-ray and high-temperature microscopic examinations can determine the phases present at high temperatures, making quenching unnecessary.

    For silicate systems the major problem encountered in determining phase-equilibrium diagrams is the slow approach toward equilibrium and the difficulty in ensuring that equilibrium has actually been reached. For most systems this means that static measurements are necessary. A common technique is to mix together carefully constituents in the correct ratio to give the final composition desired. These are held at a constant temperature in platinum foil; after rapid cooling, the mixture is reground in a mortar and pestle and then heated for a second time and quenched. The phases present are examined, the sample mixture remixed, reheated, and quenched again. The resulting material is then reexamined to ensure that the phase composition has not changed.

    This process requires much time and effort; since several thousand individual experiments, such as those just described, may be necessary for one ternary diagram, we can understand why only a few systems have been completely and exhaustively studied.

    Reliability of Individual Diagrams. In general, the original experimenter investigating a particular phase diagram is usually concerned with some limited region of composition, temperature, and pressure. His effort is concentrated in that area, and the other parts of the phase diagram are determined with much less precision and detail. As reported in summarizing descriptions (such as those given in this chapter), the diagram is not evaluated as to which parts are most reliable. As a result, although the general configuration of diagrams given can be relied on, the exact temperatures and compositions of individual lines or points on the
    diagram should only be accepted with caution. They represent the results of difficult experimental techniques and analysis.
    These cautions are particularly applicable to regions of limited crystalline solution at high temperatures, since for many systems exsolution occurs rapidly on cooling and for many systems this was not a feature of the experimenters' interest. Similarly, phase separation at moderate and low temperatures often results in submicroscopic phases which are not recognized without the use of electron microscopy and electron diffraction, which have not as yet been widely applied to crystalline solid solutions.

    ### 7.4 Two-Component Systems

    In two-component systems one additional variable, the composition, is introduced so that if only one phase is present, the variance is three: $P+V=C+2,1+V=2+2, V=3$. In order to represent the pressure, temperature, and composition region of the stability of a single phase, a three-dimensional diagram must be used. However, the effect of pressure is small for many condensed-phase systems, and we are most often concerned with the systems at or near atmospheric pressure. Consequently, diagrams at constant pressure can be drawn with temperature and composition as variables. A diagram of this kind is shown in Fig. 7.6.

    If one phase is present, both temperature and composition can be arbitrarily varied, as illustrated for point $A$. In the areas in which two phases are present at equilibrium, the composition of each phase is
    

    Fig. 7.6. Simple binary diagram.
    

    ## 

    CERAMIC PHASE-EQUILIBRIUM DIAGRAMS
    indicated by lines on the diagram. (In binary diagrams two-phase regions will often be shaded, single-phase regions not.) The intersection of a constant-temperature "tie line" with the phase boundaries gives the compositions of the phases in equilibrium at temperature $T$. With two phases present, $P+V=C+2,2+V=2+2, V=2$. At an arbitrarily fixed pressure, any arbitrary change in either temperature or composition of one of the phases present requires a corresponding change in the other variable. The maximum number of phases that can be present where pressure is arbitrarily fixed $(V=1)$ is

    $$
    P+V=C+2, P+1=2+2, P=3
    $$

    When three phases are present, the composition of each phase and the temperature are fixed, as indicated by the solid horizontal line at $C$.
    Systems in Which a Gas Phase Is Not Important. Systems containing only stable oxides in which the valence of the cations is fixed comprise a large fraction of the systems of interest for ceramics and can adequately be represented at a constant total pressure of 1 atm . At equilibrium the chemical potential of each constituent must be equal in each phase present. As a result the variation of chemical potential with composition is the underlying thermodynamic consideration which determines phase stability. If we consider a simple mechanical mixture of two pure components, the free energy of the mixture $G^{M}$ is

    $$
    \begin{equation*}
    G^{M}=X_{A} G_{A}+X_{B} G_{B} \tag{7.9}
    \end{equation*}
    $$

    For the simplest case, an ideal solution in which the heat of mixing and changes in vibrational entropy terms are zero, random mixing gives rise to a configurational entropy of mixing $\Delta S_{m}$ which has been derived in Eq. 4.14; the free energy of the solution is

    $$
    \begin{equation*}
    G^{i d S}=G^{M}-T \Delta S_{m} \tag{7.10}
    \end{equation*}
    $$

    and under all conditions the free energy of the solution is less than that of a mechanical mixture; the free energy curves for the solid and liquid solutions and the resulting phase-equilibrium diagram are similar to those already illustrated in Fig. 4.2. Since very dilute solutions approach ideal behavior, Eq. 7.10 requires that there is always at least some minute solubility on the addition of any solute to any pure substance.

    Most concentrated solutions are not ideal, but many can be well represented as regular solutions in which the excess entropy of the solution is negligible, but the excess enthalpy or heat of mixing $\Delta H^{x s}$ is significant. In this case the free energy of the regular solution is

    $$
    \begin{equation*}
    G^{r . S}=G^{M}+\Delta H^{x s}-T \Delta S_{m} \tag{7.11}
    \end{equation*}
    $$

    The resulting forms of typical free-energy-composition curves for an ideal solution and for regular solutions with positive or negative excess enthalpies are shown in Fig. 7.7. In Fig. 7.7c the minimum free energy for the system at compositions intermediate between $\alpha$ and $\beta$ consists of a mixture of $\alpha$ and $\beta$ in which these two solution compositions have the same chemical potential for each component and a lower free energy than intermediate single-phase compositions; that is, phase separation occurs. When differences of crystal structure occur (as discussed in Chapter 2), a complete series of solid solutions between two components is not possible, and the free energy of the solution increases sharply after an initial decrease required by the configurational entropy of mixing. This
    

    Fig. 7.7. Free-energy-composition diagrams for (a) ideal solution, (b) and (c) regular solutions, and (d) incomplete solid solution.
    or an
    icess $y$ for of a
    $\vdots$ the than zurs. 2), a not or an This
    situation is illustrated in Fig. 7.7d, in which the minimum system free energy again consists of a mixture of the two solutions $\alpha$ and $\beta$.

    When, for any temperature and composition, free-energy curves such as shown in Fig. 7.7 are known for each phase which may exist, these phases actually occur at equilibrium which give the lowest system free energy consistent with equal chemical potentials for the components in each phase. This has been illustrated for an ideal solution in Fig. 4.2, compound formation in Fig. 4.3, and phase separation in Fig. 3.10 and is illustrated for a series of temperatures in a eutectic system in Fig. 7.8.

    Systems in Which a Gas Phase Is Important. In adjusting the oxygen pressure in an experimental system, it is often convenient to use the equilibria

    $$
    \begin{align*}
    & \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{CO}_{2}  \tag{7.12}\\
    & \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O} \tag{7.13}
    \end{align*}
    $$

    In this case, with no condensed phase present, $P+V=C+2,1+V=$ $2+2 . V=3$, and it is necessary to fix the temperature, system total pressure, and the gas composition, that is, $\mathrm{CO}_{2} / \mathrm{CO}$ or $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratio, in order to fix the oxygen partial pressure. If a condensed phase, that is, graphite, is in equilibrium with an oxygen-containing vapor phase, $P+$ $V=C+2,2+V=2+2, V=2$, and fixing any two independent variables completely defines the system.

    The most extensive experimental data available for a two-component system in which the gas phase is important is the $\mathrm{Fe}-\mathrm{O}$ system, in which a number of condensed phases may be in equilibrium with the vapor phase. A useful diagram is shown in Fig. 7.9, in which the heavy lines are boundary curves separating the stability regions of the condensed phases and the dash-dot curves are oxygen isobars. In a single condensed-phase region (such as wüstite) $P+V=C+2,2+V=2+2, V=2$, and both the temperature and oxygen pressure have to be fixed in order to define the composition of the condensed phase. In a region of two condensed phases (such as wüstite plus magnetite) $P+V=C+2,3+V=2+2, V=1$, and fixing either the temperature or oxygen pressure fully defines the system. For this reason, the oxygen partial-pressure isobars are horizontal, that is, isothermal, in these regions, whereas they run diagonally across single condensed-phase regions.

    An alternative method of representing the phases present at particular oxygen pressures is shown in Fig. 7.9b. In this representation we do not show the $\mathrm{O} / \mathrm{Fe}$ ratio, that is, the composition of the condensed phases, but only the pressure-temperature ranges for each stable phase.
    

    Fig. 7.8. Free-energy-composition curves and the temperature-composition equilibrium diagram for a eutectic system. From P. Gordon, Principles of Phase Diagrams in Materials Systems, McGraw-Hill Book Company, New York, 1968.

    ## $381-515$

    

    Fig. 7.9. (a) Phase relations in the $\mathrm{FeO}-\mathrm{Fe}_{2} \mathrm{O}$, system. Dash-dot lines are oxygen isobars. Alternate solidification paths for composition $A$ are discussed in text. From $A$. Muan and $E$. F. Osborn, Phase Equilibria among Oxides in Steelmaking, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1965.
    

    Fig. 7.9 (continued). (b) Temperature-oxygen pressure diagram for the $\mathrm{Fe}^{-} \mathrm{Fe}_{2} \mathrm{O}_{\text {, }}$ system. From J. B. Wagner, Bull. Am. Cer. Soc., 53, 224 (1974).

    ### 7.5 Two-Component Phase Diagrams

    Phase-equilibrium diagrams are graphical representations of experimental observations. The most extensive collection of diagrams useful in ceramics is that published by the American Ceramic Society in two large volumes, which are an important working tool of every ceramist.* Phase diagrams can be classified into several general types.

    Eutectic Diagrams. When a second component is added to a pure material, the freezing point is often lowered. A complete binary system consists of lowered liquidus curves for both end members, as illustrated in Fig. 7.8. The eutectic temperature is the temperature at which the liquidus curves intersect and is the lowest temperature at which liquid occurs. The eutectic composition is the composition of the liquid at this temperature, the liquid coexisting with two solid phases. At the eutectic temperature three phases are present, so the variance is one. Since pressure is fixed, the temperature cannot change unless one phase disappears.
    In the binary system $\mathrm{BeO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ (Fig. 7.10) the regions of solid solution that are necessarily present have not been determined and are presumed
    *E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists, American Ceramic Society, Columbus, 1964; Supplement, 1969.
    
    must be $50 \%$ of each phase present for a mass balance to give the correct overall composition. This can be represented graphically in the diagram by the lever principle, in which the distance from one phase boundary to the overall system composition, divided by the distance from that boundary to the second phase boundary, is the fraction of the second phase present. That is, in Fig. 7.10,

    $$
    \frac{O C}{O D}(100)=\text { Per cent } 3 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}
    $$

    A little consideration indicates that the ratio of phases is given as

    $$
    \frac{D C}{O C}=\frac{\mathrm{BeO}}{3 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}}
    $$

    This same method can be used for determining the amounts of phases present at any point in the diagram.

    Consider the changes that occur in the phases present on heating a composition such as $E$, which is a mixture of $\mathrm{BeAl}_{2} \mathrm{O}_{4}$ and $\mathrm{BeAl}_{6} \mathrm{O}_{10}$. These phases remain the only ones present until a temperature of $1850^{\circ} \mathrm{C}$ is reached; at this eutectic temperature there is a reaction, $\mathrm{BeAl}_{2} \mathrm{O}_{4}+$ $\mathrm{BeAl}_{6} \mathrm{O}_{10}=$ Liquid $\left(85 \% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$, which continues at constant temperature to form the eutectic liquid until all the $\mathrm{BeAl}_{6} \mathrm{O}_{10}$ is consumed. On further heating more of the $\mathrm{BeAl}_{2} \mathrm{O}_{4}$ dissolves in the liquid, so that the liquid composition changes along $G F$ until at about $1875^{\circ} \mathrm{C}$ all the $\mathrm{BeAl}_{2} \mathrm{O}_{4}$ has disappeared and the system is entirely liquid. On cooling this liquid, exactly the reverse occurs during equilibrium solidification.
    As an exercise students should calculate the fraction of each phase present for different temperatures and different system compositions.

    One of the main features of eutectic systems is the lowering of the temperature at which liquid is formed. In the $\mathrm{BeO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system, for example, the pure end members melt at temperatures of $2500^{\circ} \mathrm{C}$ and $2040^{\circ} \mathrm{C}$, respectively. In contrast, in the two-component system a liquid is formed at temperatures as low as $1835^{\circ} \mathrm{C}$. This may be an advantage or disadvantage for different applications. For maximum temperature use as a refractory we want no liquid to be formed. Addition of even a small amount of BeO to $\mathrm{Al}_{2} \mathrm{O}_{3}$ results in the formation of a substantial amount of a fluid liquid at $1890^{\circ} \mathrm{C}$ and makes it useless as a refractory above this temperature. However, if high-temperature applications are not of major importance, it may be desirable to form the liquid as an aid to firing at lower temperatures, since liquid increases the ease of densification. This is true, for example, in the system $\mathrm{TiO}_{2}-\mathrm{UO}_{2}$, in which addition of $1 \%$ $\mathrm{TiO}_{2}$ forms a eutectic liquid, which is a great aid in obtaining high densities at low temperatures. The structure of this system, shown in Fig.
    
    7.11, consists of large grains of $\mathrm{UO}_{\mathbf{2}}$ surrounded by the eutectic composition.

    The effectiveness of eutectic systems in lowering the melting point is made use of in the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ system, in which glass compositions can be melted at low temperatures (Fig. 7.12). The liquidus is lowered from $1710^{\circ} \mathrm{C}$ in pure $\mathrm{SiO}_{2}$ to about $790^{\circ}$ for the eutectic composition at approximately $75 \% \mathrm{SiO}_{2}-25 \% \mathrm{Na}_{2} \mathrm{O}$.

    Formation of low-melting eutectics also leads to some severe limitations on the use of refractories. In the system $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ the liquidus is strongly lowered by a series of eutectics. In general, strongly basic oxides such as CaO form low-melting eutectics with amphoteric or basic oxides, and these classes of materials cannot be used adjacent to each other, even though they are individually highly refractive.
    Incongruent Melting. Sometimes a solid compound does not melt to form a liquid of its own composition but instead dissociates to form a new solid phase and a liquid. This is true of enstatite $\left(\mathrm{MgSiO}_{3}\right)$ at $1557^{\circ} \mathrm{C}$ (Fig. 7.13); this compound forms solid $\mathrm{Mg}_{2} \mathrm{~S}: \mathrm{O}_{4}$ plus a liquid containing about $61 \% \mathrm{SiO}_{2}$. At this incongruent melting point or peritectic temperature there
    

    Fig. 7.11. Structure of $99 \% \mathrm{UO}_{2}-1 \% \mathrm{TiO}_{2}$ ceramic ( $228 \mathrm{X}, \mathrm{HNO}$, etch). $\mathrm{UO}_{2}$ is the primary phase, bonded by eutectic composition. Courtesy G. Ploetz.
    

    Fig. 7.12. The binary system $\mathrm{Na}_{2} \mathrm{SiO}_{3}-\mathrm{SiO}_{2}$. The dashed line shows metastable liquid-liquid phase separation.
    

    Fig. 7.13. The binary system $\mathrm{MgO}-\mathrm{SiO}_{2}$.
    

    Fig. 7.14. The binary system $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2}$ (leucite) $-\mathrm{SiO}_{2}$. From J. F. Schairer and N. L. Bowen, Bull. Soc. Geol. Finl., 20, 74 (1947). Two-phase regions are shown shaded in this diagram.
    

    Fig. 7.15. The binary system NiO-CoO.
    

    Fig. 7.16. The binary system $\mathrm{MgO}-\mathrm{CaO}$.

    ## 381-515

    Solid Solutions. As discussed in Chapter 4 and in Section 7.4, a complete series of solid solutions occurs for some systems such as illustrated in Fig. 4.2 and Fig. 7.15, and some minute or significant limited solid solution occurs for all systems, as shown in Figs. 4.3,7.13, and 7.15.

    It has only been in the last decade or so that careful experimentation has revealed the wide extent of solid solubility, reaching several percent at high temperatures in many systems, as shown in Figs. 4.3, 7.13, and 7.15 and for the $\mathrm{MgO}-\mathrm{CaO}$ system in Fig. 7.16 and the $\mathrm{MgO}-\mathrm{Cr}_{2} \mathrm{O}_{3}$ system in Fig. 7.17. For steel-plant refractories directly bonded magnesia-chromite brick is formed when these materials are heated together at temperatures above $1600^{\circ} \mathrm{C}$ as a result of the partial solubility of the constituents; exsolution occurs on cooling. Almost all open-hearth roofs are formed of either direct-bonded, rebonded fine-grain, or fusion-cast magnesiachromite refractories. In the basic oxygen-furnace process for steel making $\mathrm{MgO}-\mathrm{CaO}$ refractories bonded with pitch are widely used, and the solid solubility at high temperatures forms a high-temperature bond. In magnesia refractories the lower solid solubility of $\mathrm{SiO}_{2}$ as compared
    

    Fig. 7.17. The binary system $\mathrm{MgO}-\mathrm{MgCr}_{2} \mathrm{O}_{3}$.
    with CaO in MgO requires that excess CaO be added to prevent the formation of low-melting intergranular silicates.
    In the $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system (Fig. 4.3) there is extensive solubility of MgO and of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in spinel. As spinel in this composition range is cooled, the solubility decreases, and corundum precipitates as a separate solid phase (Fig. 7.18).

    This same sort of limited solid solution is observed in the $\mathrm{CaO}-\mathrm{ZrO}_{2}$ system (Fig. 7.19); in this system there are three different fields of solid solution, the tetragonal form, the cubic form, and the monoclinic form. Pure $\mathrm{ZrO}_{2}$ exhibits a monoclinic tetragonal phase transition at $1000^{\circ} \mathrm{C}$, which involves a large volume change and makes the use of pure zirconia impossible as a ceramic material. Addition of lime to form the cubic solid solution, which has no phase transition, is one basis for stabilized zirconia, a valuable refractory.

    Complex Diagrams. All the basic parts of binary phase-equilibrium diagrams have been illustrated; readers should be able to identify the number of phases, composition of phases, and amounts of phases present at any composition and temperature from any of these diagrams with ease and confidence. If they cannot, they should consult one of the more extensive treatments listed in the references.
    

    Fig. 7.18. Precipitation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ from spinel solid solution on cooling ( $400 \times \mathrm{H}_{2} \mathrm{SO}_{4}$ etch). Courtesy R. L. Coble.

    Fig. 7.1 J. Am.

    ## Co:

    fright inter find $t$ form: alrea
    ## with

    intere parti;

    294 INTRODUCTION TO CERAMICS
    

    Fig. 7.20. The binary system $\mathrm{Ba}_{2} \mathrm{TiO}_{4}-\mathrm{TiO}_{2}$. From D. E. Rase and R. Roy, J. Am. Ceram. Soc. 38, 111 (1955). Two-phase regions are shown shaded in this figure.
    pressure and composition as variables become a useful alternative for describing phase equilibria, for example, Fig. 7.9b. Figure 7.21(a-1) shows such a diagram for $\mathrm{Co}-\mathrm{Ni}-\mathrm{O}$ at $1600^{\circ} \mathrm{K}$. The lens-shaped twophase region between $(\mathrm{Co}, \mathrm{Ni}) \mathrm{O}$ and the NiCo alloy is similar to that between the liquid oxides and $(\mathrm{Co}, \mathrm{Ni}) \mathrm{O}$ in a temperature-composition plot (Fig. 7.15). Figure 7.21(a-2) shows the oxygen isobar tie lines between the metal alloy and the oxide solid solution; for example, the dotted line represents the equilibrium at $P_{\mathrm{O}_{2}}=1.5 \times 10^{-7}$ atm between $\mathrm{Ni}_{0.62} \mathrm{Co}_{0.38} \mathrm{O}$ and $\mathrm{Ni}_{0.9} \mathrm{Co}_{0.1}$. (A tie line connects phases in equilibrium and designates the composition of each phase. For example, a constant temperature tie line in Fig. 7.17 at $2600^{\circ} \mathrm{C}$ specifies the composition of the solid solution, $10 \mathrm{w} / \mathrm{o} \mathrm{Cr}_{2} \mathrm{O}_{3}$, in equilibrium with the liquid, which contains $40 \mathrm{w} / \mathrm{o}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}$.) A plot of the nickel activity as a function of $P_{\mathrm{O}_{2}}$ is shown in Fig. 7.21(a-3). In systems which form intermediate compounds, such as spinels, the diagrams become more complex. The $\mathrm{Fe}-\mathrm{Cr}-\mathrm{O}$ ternary

    ## 381-515

    ## CERAMIC PHASE-EQUILIBRIUM DIAGRAMS

    Am. Ceram.
    lative for 7.21(a-1) sped twoir to that mposition tie lines mple, the between sium and constant ion of the a contains ; shown in
    s, such as

    - .) ternary
    system at $1573^{\circ} \mathrm{K}$ is shown in Fig. 7.21b. At an oxygen pressure of $P_{\mathrm{O}_{2}}=10^{-10} \mathrm{~atm}$, the stable phases may be $\mathrm{FeO}, \mathrm{FeO}+(\mathrm{Fe}, \mathrm{Cr})_{3} \mathrm{O}_{4}$, $(\mathrm{Fe}, \mathrm{Cr})_{3} \mathrm{O}_{4}+(\mathrm{Fe}, \mathrm{Cr})_{2} \mathrm{O}_{3}$, or $(\mathrm{Fe}, \mathrm{Cr})_{2} \mathrm{O}_{3}$, depending on the concentration of chromium. The oxygen isobars shown in Fig. 7.21(b-2) are tie lines between the compositions in equilibrium at $1573^{\circ} \mathrm{K}$.


    ### 7.6 Three-Component Phase Diagrams

    Three-component systems are fundamentally no different from twocomponent systems, except that there are four independent variablespressure, temperature, and the concentrations of two components (which fix the third). If pressure is arbitrarily fixed, the presence of four phases gives rise to an invariant system. A complete graphical representation of ternary systems is difficult, but if the pressure is held constant, compositions can be represented on an equilateral triangle and the temperature on a vertical ordinate to give a phase diagram such as Fig. 7.22. For two-dimensional representation the temperatures can be projected on an equilateral triangle, with the liquidus temperatures represented by
    

    Fig. 7.21. (a) $\mathrm{Co}-\mathrm{Ni}-\mathrm{O}$ system. (1) Composition of condensed phases as a function of $\mathrm{P}_{\mathrm{O}_{2}}$; (2) oxygen isobars for equilibrium between the oxide solid solution and the alloy solution; (3) nickel activity as a function of $\mathrm{P}_{\mathrm{O}_{2}}$.
    

    Fig. 7.21 (continued). (b) $\mathrm{Fe}-\mathrm{Cr}-\mathrm{O}$ system. (1) Composition- $\mathrm{P}_{\mathrm{O}_{2}}$ diagram and (2) oxygen isobars for equilibrium between two phases. From A. Pelton and H. Schmalzried, Met. Trans., 4, 1395 (1973):
    isotherms. The diagram is divided into areas representing equilibrium between the liquid and a solid phase. Boundary curves represent equilibrium between, two solids and the liquid, and intersections of three: boundary curves represent points of four phases in equilibrium (invariant points in the constant-pressure system). Another method of two-

    Fig. 7.22.
    dimensic the diagı ture.

    Interp that of $b$ composi phase-bc phase ar composi Fig. 7.22 field of when th along $A$ applies, 100 (BA) path re: and two changes are a liq compos mixture $(100)=$ That is compos
    
    dimensional representation is to take a constant-temperature cut through the diagram, indicating the phases at equilibrium at some fixed temperature.
    Interpretation of ternary diagrams is not fundamentally different from that of binary diagrams. The phases in equilibrium at any temperature and composition are shown; the composition of each phase is given by the phase-boundary surfaces or intersections; the relative amounts of each phase are determined by the principle that the sum of the individual phase compositions must equal the total composition of the entire system. In Fig. 7.22 and Fig. 7.23, for example, the composition A falls in the primary field of $X$. If we cool the liquid $A, X$ begins to crystallize from the melt when the temperature reaches $T_{1}$. The composition of the liquid changes along AB because of the loss of X . Along this line the lever principle applies, so that at any point the percentage of $X$ present is given by $100(\mathrm{BA} / \mathrm{XB})$. When the temperature reaches $T_{2}$ and the crystallization
    Fig. 7.22. Space diagram of (a) ternary eutectic and (b) complete series of solid solutions. path reaches the boundary representing equilibrium between the liquid and two solid phases X and $\mathrm{Z}, \mathrm{Z}$ begins to crystallize also, and the liquid changes in composition along the path CD. At L , the phases in equilibrium are a liquid of composition L and the solids X and Z , whereas the overall composition of the entire system is A. As shown in Fig. 7.23b, the only mixture of $\mathrm{L}, \mathrm{X}$, and Z that gives a total corresponding to A is $x \mathrm{~A} / x \mathrm{X}$ $(100)=$ Per cent $X, z A / z Z(100)=$ Per cent $Z, / A / / L(100)=$ Per cent $L$. That is, the smaller triangle XZL is a ternary system in which the composition of A can be represented in terms of its three constituents.
    

    Fig. 7.23. (a) Crystallization path illustrated in Fig. 7.22a and (b) application of center of gravity principle to a ternary system.
    

    Fig. 7.24. The ternary system $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. From J. F. Schairer and N. L. Bowen, Am. J. Sci., 245, 199 (1947).

    Many tı ogy. Two system, al the MgC $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{C}$ compositi silica-mu discussed the basis systems provides $\mathrm{SiO}_{2}$ syst tions fal! $\mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{C}$

    Fig. 7.25 Glass $T$.

    $$
    381-515
    $$

    Many ternary systems are of interest in ceramic science and technology. Two of these, the $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system and the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{CaO}-\mathrm{SiO}_{2}$ system, are illustrated in Figs. 7.24 and 7.25. Another important system, the $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system, is discussed in Section 7.8. The $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system is important as the basis for many porcelain compositions. The eutectic in the subsystem potash-feldspar-silica-mullite determines the firing behavior in many compositions. As discussed in Chapter 10, porcelain compositions are adjusted mainly on the basis of ( $a$ ) ease in forming and (b) firing behavior. Although real systems are usually somewhat more complex, this ternary diagram provides a good description of the compositions used. The $\mathrm{Na}_{2} \mathrm{O}-\mathrm{CaO}-$ $\mathrm{SiO}_{2}$ system forms the basis for much glass technology. Most compositions fall along the border between the primary phase of devitrite, $\mathrm{Na} 2 \mathrm{O} \cdot 3 \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2}$, and silica; the liquidus temperature is 900 to $1050^{\circ} \mathrm{C}$.
    :enter of

    Am. J.
    

    Weight per cent $\mathrm{Na}_{2} \mathrm{O}$
    Fig. 7.25. The $\mathrm{Na}_{2} \mathrm{O}-\mathrm{O}-\mathrm{CaO}-\mathrm{SiO}_{2}$ system. From G. W. Morey and N. L. Bowen, J. Soc. Glass Technol., 9, 232 (1925).

    This is a compositional area of low melting temperature, but the glasses formed contain sufficient calcium oxide for reasonable resistance to chemical attack. When glasses are heated for extended times above the transition range, devitrite or cristobalite is the crystalline phase formed as the devitrification product.

    Very often constant-temperature diagrams are useful. These are illustrated for subsolidus temperatures in Figs. 7.24 and 7.25 by lines between the forms that exist at equilibrium. These lines form composition triangles in which three phases are present at equilibrium, sometimes called compatibility triangles. Constant-temperature diagrams at higher temperatures are useful, as illustrated in Fig. 7.26, in which the $1200^{\circ}$ isothermal
    

    Fig. 7.26. Isothermal cut in the $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ diagram at $1200^{\circ} \mathrm{C}$.
    plane is shown this system are amount of liqu isothermal diag: different comp selected. Frequ rather than an

    Although our and we do no component sys familiar with th

    ### 7.7 Phase Con

    One of the ceramic systerr temperatures. I the amount of

    Consider, for ition of $50 \mathrm{wt} \%$ are forsterite al until $1557^{\circ} \mathrm{C}$. A tion of about heating the amc at some tempe: composition th lase, MgO . Nc composition be eutectic comp compositions a

    Several thin: the large differ small change i $42 \%$ silica, the temperatures. liquid is form chromite refra $3 \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2} \cdot 2$ sufficient MgO has a deleteris! temperatures.

    Another api
    asses
    ;e to
    $e$ the
    ed as
    illus-
    ween
    angles called neperdermal
    plane is shown for the $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ diagram. The liquids formed in this system are viscous; in order to obtain vitrification, a substantial amount of liquid must be present at the firing temperature. From isothermal diagrams the composition of liquid and amount of liquid for different compositions can be easily determined at the temperature selected. Frequently it is sufficient to determine an isothermal plane rather than an entire diagram, and obviously it is much easier.

    Although our discussion of three-component diagrams has been brief and we do not discuss phase-equilibrium behavior for four or more component systems at all, students would be well advised to become familiar with these as an extra project.

    ### 7.7 Phase Composition versus Temperature

    One of the useful applications for phase equilibrium diagrams in ceramic systems is the determination of the phases present at different temperatures. This information is most readily used in the form of plots of the amount of phases present versus temperature

    Consider, for example, the system $\mathrm{MgO}-\mathrm{SiO}_{2}$ (Fig. 7.13). For a composinion of $50 \mathrm{wt} \% \mathrm{MgO}-50 \mathrm{wt} \% \mathrm{SiO}_{2}$, the solid phases present at equilibrium are forsterite and enstatite. As they are heated, no new phases are formed until $1557^{\circ} \mathrm{C}$. At this temperature the enstatite disappears and a composiion of about $40 \%$ liquid containing $61 \% \mathrm{SiO}_{2}$ is formed. On further heating the amount of liquid present increases until the liquidus is reached at some temperature near $1800^{\circ} \mathrm{C}$. In contrast, for a $60 \% \mathrm{MgO}-40 \% \mathrm{SiO}_{2}$ composition the solid phases present are forsterite, $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$, and periclase, MgO . No new phase is found on heating until $1850^{\circ} \mathrm{C}$, when the composition becomes nearly all liquid, since this temperature is near the eutectic composition. The changes in phase occurring for these two compositions are illustrated in Fig. 7.27.
    Several things are apparent from this graphical representation. One is the large difference in liquid content versus temperature for a relatively small change in composition. For compositions containing greater than $42 \%$ silica, the forsterite composition, liquids are formed at relatively low temperatures. For compositions with silica contents less than $42 \%$ no liquid is formed until $1850^{\circ} \mathrm{C}$. This fact is used in the treatment of chromite refractories. The most common impurity present is serpentine, $3 \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, having a composition of about $50 \mathrm{wt} \% \mathrm{SiO}_{2}$. If sufficient MgO is added to put this in the MgO -forsterite field, it no longer has a deleterious effect. Without this addition a liquid is formed at low temperatures.

    Another application of this diagram is in the selection of compositions
    

    Fig. 7.27. Phase composition versus temperature for samples in the $\mathrm{MgO}-\mathrm{SiO}_{2}$ system.
    that have desirable firing characteristics. It is necessary to form a sufficient amount of liquid for vitrification, but not so much that ware slumps or warps during firing. The limits of liquid required vary with the properties of the liquid but are in the range of 20 to $50 \mathrm{wt} \%$. To have a sufficient range of firing temperature, it is desirable that the liquid content not change much with temperature. Forsterite compositions cannot be fired until very high temperatures if the composition is exactly $42 \% \mathrm{SiO}_{2}$, since no liquid is formed below $1850^{\circ} \mathrm{C}$. Compositions in the forsteriteenstatite field which are mainly forsterite form a liquid at $1557^{\circ} \mathrm{C}$, and
    
    since the liquidus curve is steep, the amount of liquid present changes but slightly with temperature, as shown in Fig. 7.27. Consequently, these compositions have a good firing range and are easy to vitrify. In contrast, compositions that are mostly enstatite ( $55,60,65 \% \mathrm{SiO}_{2}$ ) form large amounts of liquid at low temperature, and the amount of liquid present changes rapidly with temperature. These materials have a limited firing range and pose difficult control problems for economic production.
    For systems in which the gas phase is important the way in which condensed phases appear and their compositional changes on cooling depend on the conditions imposed. Referring back to the $\mathrm{Fe}-\mathrm{O}$ system illustrated in Fig. 7.9, if the total condensed-phase composition remains constant, as occurs in a closed nonreactive container with only a negligible amount of gas phase present, the composition A solidifies along the dotted line with a corresponding decrease in the system oxygen pressure. In contrast, if the system is cooled at constant oxygen pressure, the solidification path is along the dashed line. In one case the resulting product at room temperature is a mixture of iron and magnetite; in the second case the resulting product is hematite. Obviously in such systems the control of oxygen pressure during cooling is essential for the control of the products formed.

    For detailed discussions of crystallization paths in ternary systems the references should be consulted. The following summary* can serve as a review.

    1. When a liquid is cooled, the first phase to appear is the primary phase for that part of the system in which the composition of the melt is represented.
    2. The crystallization curve follows to the nearest boundary the extension of the straight line connecting the composition of the original liquid with that of the primary phase of that field. The composition of the liquid within the primary fields is represented by points on the crystallization curve. This curve is the intersection of a plane (perpendicular to the base triangle and passing through the compositions of original melt and the primary phase) with the liquidus surface.
    3. At the boundary line a new phase appears which is the primary phase of the adjacent field. The two phases separate together along this boundary as the temperature is lowered.
    4. The ratio of the two solids crystallizing is given by the intersection of the tangent to the boundary curve with a line connecting the composi-

    ## INTRODUCTION TO CERAMICS

    tions of the two solid phases. Two things can occur. If this tangent line runs between the compositions of the two solid phases, the amount of each of these phases present increases. If the tangent line intersects an extension of the line between solid compositions, the first phase decreases in amount (is resorbed; Reaction $\mathbf{A}+$ Liquid $=\mathbf{B}$ ) as crystallization proceeds. In some systems the crystallization curve leaves the boundary curve if the first phase is completely resorbed, leaving only the second phase. Systems in which this occurs may be inferred from a study of the mean composition of the solid separating between successive points on the crystallization path.
    5. The crystallization curve always ends at the invariant point which represents equilibrium of liquid with the three solid phases of the three components within whose composition triangle the original liquid composition was found.
    6. The mean composition of the solid which is crystallizing at any point on a boundary line is shown by the intersection at that point of the tangent with a line joining the composition of the two solid phases which are crystallizing.
    7. The mean composition of the total solid that has crystallized up to any point on the crystallization curve is found by extending the line connecting the given point with the original liquid composition to the line connecting the compositions of the phases that have been separating.
    8. The mean composition of the solid that has separated between two points on a boundary is found at the intersection of a line passing through these two points with a line connecting the compositions of the two solid phases separating along this boundary.

    ### 7.8 The System $\mathrm{Al}_{2} \mathrm{O}_{\mathbf{3}}-\mathrm{SiO}_{\mathbf{2}}$

    As an example of the usefulness of phase diagrams for considering high-temperature phenomena in ceramic systems, the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system illustrates many of the features and problems encountered. In this system (Fig. 7.28), there is one compound present, mullite, which is shown as melting incongruently. (The melting behavior of mullite has been controversial; we show the metastable extensions of the phase boundaries in Fig. 7.28. For our purposes this is most important as indicative of the fact that experimental techniques are difficult and time consuming; the diagrams included here and in standard references are summaries of experimental data. They usually include many interpolations and extrapolations and have been compiled with greater or lesser care, depending on the needs of the original investigator.) The eutectic between mullite and

    Fig. 7.28.
    cristob $\mathrm{SiO}_{2}$. I
    Fact
    can be
    1.0 wt ? to 90 י sintert

    At c furnac tempe furnas this te develc alumis

    $$
    381-515
    $$

    ent line ount of :ects an ase de-stallizaves the only the a study :cessive
    .t which le three id com-
    ny point tangent nich are
    sd up to the line the line rating. een two through wo solid
    isidering 2 system s system hown as sen condaries in the fact the diagf experisolations $g$ on the llite and
    

    Fig. 7.28. The binary system $\mathrm{Al}_{2} \mathrm{O}_{5}-\mathrm{SiO}_{2}$. From Aksay and Pask, Science, 183, 69 (1974).
    cristobalite occurs at $1587^{\circ} \mathrm{C}$ to form a liquid containing about 95 mole\% $\mathrm{SiO}_{2}$. The solidus temperature between mullite and alumina is at $1828^{\circ} \mathrm{C}$.

    Factors affecting the fabrication and use of several refractory products can be related to this diagram. They include refractory silica brick ( 0.2 to $1.0 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ), clay products ( 35 to $\mathrm{SO} \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ), high-alumina brick ( 60 to $90 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ), pure fused mullite ( $72 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ), and pure fused or sintered alumina ( $>90 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ).

    At one end of the composition range are silica bricks widely used for furnace roofs and similar structures requiring high strength at high temperatures. A major application was as roof brick for open-hearth furnaces in which temperatures of 1625 to $1650^{\circ} \mathrm{C}$ are commonly used. At this temperature a part of the brick is actually in the liquid state. In the development of silica brick it has been found that small amounts of aluminum oxide are particularly deleterious to brick properties because
    the eutectic composition is close to the silica end of the diagram. Consequently, even small additions of aluminum oxide mean that substantial amounts of liquid phase are present at temperatures above $1600^{\circ} \mathrm{C}$. For this reason supersilica brick, which has a lower alumina content through special raw-material selection or treatment, is used in structures that will be heated to high temperatures.

    Fire-clay bricks have a composition ranging from 35 to $55 \%$ aluminum oxide. For compositions without impurities the equilibrium phases present at temperatures below $1587^{\circ} \mathrm{C}$ are mullite and silica (Fig. 7.29). The relative amounts of these phases present change with composition, and there are corresponding changes in the properties of the brick. At temperatures above $1600^{\circ} \mathrm{C}$ the amount of liquid phase present is sensitive to the alumina-silica ratio, and for these high-temperature applications the higher-alumina brick is preferred.
    

    Fig. 7.29. Mullite crystals in silica matrix formed by heating kaolinite ( $37,000 \times$ ). Courtesy J. J. Comer.

    Refr cient a greater mullite temper mullite deform with $\mathbf{p}$ fusion-

    A tel of cer: Fig. 7.:

    Fig. 7.3 Geol., 6

    ## 381-515

    igram.
    it subabove lumina ised in
    minum s pres7). The m, and ck. At :nsitive ons the
    

    1. Courtesy

    Refractory properties of brick can be substantially improved if sufficient alumina is added to increase the fraction of mullite present until at greater than $72 \mathrm{wt} \%$ alumina the brick is entirely mullite or a mixture of mullite plus alumina. Under these conditions no liquid is present until temperatures above $1828^{\circ} \mathrm{C}$ are reached. For some applications fused mullite brick is used; it has superior ability to resist corrosion and deformation at high temperatures. The highest refractoriness is obtained with pure alumina. Sintered $\mathrm{Al}_{2} \mathrm{O}_{3}$ is used for laboratory ware, and fusion-cast $\mathrm{Al}_{2} \mathrm{O}_{3}$ is used as a glass tank refractory.

    ### 7.9 The System $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$

    A ternary system important in understanding the behavior of a number of ceramic compositions is the $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system, illustrated in Fig. 7.30. This system is composed of several binary compounds which
    

    Fig. 7.30. The ternary system $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. From M. L. Keith and J. F. Schairer, J. Geol., 60, 182 (1952). Regions of solid solution are not shown; see Figs. 4.3 and 7.13.

    ## INTRODUCTION TO CERAMICS

    have already been described, together with two ternary compounds, cordierite, $2 \mathrm{MgO} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SiO}_{2}$, and sapphirine, $4 \mathrm{MgO} \cdot 5 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$, both of which melt incongruently. The lowest liquidus temperature is at the tridymite-protoenstatite-cordierite eutectic at $1345^{\circ} \mathrm{C}$, but the cordierite-enstatite-forsterite eutectic at $1360^{\circ} \mathrm{C}$ is almost as low-melting.

    Ceramic compositions that in large part appear on this diagram include magnesite refractories, forsterite ceramics, steatite ceramics, special low-loss steatites, and cordierite ceramics. The general composition areas of these products on the ternary diagram are illustrated in Fig. 7.31. In all but magnesite refractories, the use of clay and talc as raw materials is the basis for the compositional developments. These materials are valuable in large part because of their ease in forming; they are fine-grained and platey and are consequently plastic, nonabrasive, and easy to form. In addition, the fine-grained nature of these materials is essential for the
    

    Fig. 7.31. Common compositions in the ternary system $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$. See text for other additives.
    firing proce clay decom Talc decon protoenstat heating of crystallizat: eutectic liq growth of $t$ At this ter $\mathrm{SiO}_{2}, 33.4 c$ $\mathrm{MgO}-\mathrm{SiO}_{2}$

    The mair ite, steatite firing rangı fusion. In $g$ to $35 \%$ of $\varepsilon$ indicated is compositio clay mixtu which is 90 tions. At t : liquidus ter with tempe necessary,

    Fig. 7.32. A in Fig. 7.31.
    

    CERAMIC PHASE-EQUILIBRIUM DIAGRAMS
    inds,
    both
    $t$ the
    :rite-
    slude
    recial areas
    In all
    is the
    ble in
    1 and
    m. In
    or the
    $5 \pm 10^{\circ}$
    $\underset{13 \div 5-}{\mathrm{SiO}_{2}}$
    text for
    firing process, which is described in more detail in Chapter 12. On heating, clay decomposes at $980^{\circ} \mathrm{C}$ to form fine-grained mullite in a silica matrix. Talc decomposes and gives rise to a similar mixture of fine-grained protoenstatite crystals, $\mathrm{MgSiO}_{3}$, in a silica matrix at about $1000^{\circ} \mathrm{C}$. Further heating of clay gives rise to increased growth of mullite crystals, crystallization of the silica matrix as cristobalite, and formation of a eutectic liquid at $1595^{\circ}$ C. Further heating of pure talc leads to crystal growth of the enstatite, and liquid is formed at a temperature of $1547^{\circ} \mathrm{C}$. At this temperature almost all the composition melts, since talc $(66.6 \%$ $\mathrm{SiO}_{2}, 33.4 \% \mathrm{MgO}$ ) is not far from the eutectic composition in the $\mathrm{MgO}-\mathrm{SiO}_{2}$ system (Fig. 7.13).
    The main feature which characterizes the melting behavior of cordierite, steatite porcelain, and low-loss steatite compositions is the limited firing range which results when pure materials are carried to partial fusion. In general, for firing to form a vitreous densified ceramic about 20 to $35 \%$ of a viscous silicate liquid is required. For pure talc, however, as indicated in Fig. 7.32, no liquid is formed until $1547^{\circ} \mathrm{C}$, when the entire composition liquifies. This can be substantially improved by using talcclay mixtures. For example, consider the composition A in Fig. 7.31 which is $90 \%$ talc- $10 \%$ clay, similar to many commercial steatite compositions. At this composition about $30 \%$ liquid is formed abruptly at the liquidus temperature, $1345^{\circ} \mathrm{C}$; the amount of liquid increases quite rapidly with temperature (Fig. 7.32), making close control of firing temperature necessary, since the firing range is short for obtaining a dense vitreous
    

    Fig. 7.32. Amount of liquid present at different temperatures for compositions illustrated in Fig. 7.31.
    body (this composition would be fired at 1350 to $1370^{\circ} \mathrm{C}$ ). In actual fact, however, the raw materials used contain $\mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{BaO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and $\mathrm{TiO}_{2}$ as minor impurities which both lower and widen the fusion range. Additions of more than $10 \%$ clay again so shorten the firing range that they are not feasible, and only limited compositions are practicable. The addition of feldspar greatly increases the firing range and the ease of firing and has been used in the past for compositions intended as low-temperature insulators. However, the electrical properties are not good.

    For low-loss steatites, additional magnesia is added to combine with the free silica to bring the composition nearer the composition triangle for forsterite-cordierite-enstatite. This changes the melting behavior so that a composition such as B in Fig. 7.31 forms about $50 \%$ liquid over a temperature range of a few degrees, and control in firing is very difficult (Fig. 7.32). In order to fire these compositions in practice to form vitreous bodies, added flux is essential. Barium oxide, added as the carbonate, is the most widely used.

    Cordierite ceramics are particularly useful, since they have a very low coefficient of thermal expansion and consequently good resistance to thermal shock. As far as firing behavior is concerned, compositions show a short firing range corresponding to a flat liquidus surface which leads to the development of large amounts of liquid over a short temperature interval. If a mixture consisting of talc and clay, with alumina added to bring it closer to the cordierite composition, is heated, an initial liquidus is formed at $1345^{\circ} \mathrm{C}$, as for composition C in Fig. 7.31. The amount of liquid rapidly increases; because of this it is difficult to form vitreous bodies. Frequently when these compositions are not intended for electrical applications, feldspar ( 3 to $10 \%$ ) is added as a fluxing medium to increase the firing range.

    Magnesia and forsterite compositions are different in that a eutectic liquid is formed of a composition widely different from the major phase with a steep liquidus curve so that a broad firing range is easy to obtain. This is illustrated for the forsterite composition D in Fig. 7.31 and the corresponding curve in Fig. 7.32. The initial liquid is formed at the $1360^{\circ} \mathrm{C}$ eutectic, and the amount of liquid depends mainly on composition and does not change markedly with temperature. Consequently, in contrast to the steatite and cordierite bodies, forsterite ceramics present few problems in firing.

    In all these compositions there is normally present at the firing temperature an equilibrium mixture of crystalline and liquid phases. This is illustrated for a forsterite composition in Fig. 7.33. Forsterite crystals are present in a matrix of liquid silicate corresponding to the liquidus
    composi ${ }^{1}$ phase at and the liquid ph (or a parı for fixin. deduced

    ### 7.10 No

    The ki in the ne in Chapt lowest e, systems. free ene illustrate phases $\mathbf{t}$ equilibriı solution liquịd an phases ir the coms slowness
     n vitreous :bonate, is
    a very low istance to tions show ch leads to mperature a added to liquidus is nt of liquid us bodies. electrical to increase
    a eutectic tajor phase I to obtain. 31 and the the $1360^{\circ} \mathrm{C}$ ssition and contrast to few prob-
    the firing hases. This ite crystals he liquidus

    Fig. 7.33. Crystal-liquid structure of a forsterite composition (150x).
    composition at the firing temperature. For other systems the crystalline phase at the firing temperature is protoenstatite, periclase, or cordierite, and the crystal size and morphology are usually different as well. The liquid phase frequently does not crystallize on cooling but forms a glass (or a partly glass mixture) so that the compatibility triangle cannot be used for fixing the phases present at room temperature, but they must be deduced instead from the firing conditions and subsequent heat treatment.

    ### 7.10 Nonequilibrium Phases

    The kinetics of phase transitions and solid-state reactions is considered in the next two chapters; however, from our discussion of glass structure in Chapter 3 and atom mobility in Chapter 6 it is already apparent that the lowest energy state of phase equilibria is not achieved in many practical systems. For any change to take place in a system it is necessary that the free energy be lowered. As a result the sort of free-energy curves illustrated in Figs. 3.10, 4.2, 4.3, 7.7, and 7.8 for each of the possible phases that might be present remain an important guide to metastable equilibrium. In Fig. 7.8, for example, if at temperature $T_{2}$ the solid solution $\alpha$ were absent for any reason, the common tangent between the liquid and solid solution $\beta$ would determine the composition of those phases in which the constituents have the same chemical potential. One of the common types of nonequilibrium behavior in silicate systems is the slowness of crystallization such that the liquid is supercooled. When this

    ## INTRODUCTION TO CERAMICS

    happens, metastable phase separation of the liquid is quite common, discussed in Chapter 3.

    Glasses. One of the most common departures from equilibrium behavior in ceramic systems is the ease with which many silicates are cooled from the liquid state to form noncrystalline products. This requires that the driving force for the liquid-crystal transformation be low and that the activation energy for the process be high. Both of these conditions are fulfilled for many silicate systems.

    The rate of nucleation for a crystalline phase forming from the liquid is proportional to the product of the energy difference between the crystal and liquid and the mobility of the constituents that form a crystal, as discussed in Chapter 8. In silicate systems, both of these factors change so as to favor the formation of glasses as the silica content increases. Although data for the diffusion coefficient are not generally available, the limiting mobility is that of the large network-forming anions and is inversely proportional to the viscosity. Thus, the product of $\Delta H_{i} / T_{\mathrm{mp}}$ and $1 / \eta$ can be used as one index for the tendency to form glasses on cooling, as shown in Table 7.1.

    Table 7.1. Factors Affecting Glass-Forming Ability
    $\left.\left.\begin{array}{lccccc}\hline \begin{array}{c}\text { Compo- } \\ \text { sition }\end{array} & T_{\mathrm{mp}}\left({ }^{\circ} \mathrm{C}\right) & \begin{array}{c}\Delta H_{J} / T_{\mathrm{mp}} \\ \left(\mathrm{cal} / \mathrm{mole} /{ }^{\circ} \mathrm{K}\right)\end{array} & \begin{array}{c}(1 / \eta)_{\mathrm{mp}} \\ \left(\text { poise } e^{-1}\right)\end{array} & \begin{array}{c}\left(\Delta H_{f} / T_{\mathrm{mp}}\right) \times \\ (1 / \eta)_{\mathrm{mp}}\end{array} & \text { Comments } \\ \hline \mathrm{B}_{2} \mathrm{O}_{3} & 450 & 7.3 & 2 \times 10^{-5} & 1.5 \times 10^{-4} & \begin{array}{c}\text { Good glass } \\ \text { former }\end{array} \\ \mathrm{SiO}_{2} & 1713 & 1.1 & 1 \times 10^{-6} & 1.1 \times 10^{-6} & \begin{array}{c}\text { Good glass } \\ \text { former }\end{array} \\ \mathrm{Na}_{2} \mathrm{Si}_{2} \mathrm{O}_{5} & 874 & 7.4 & 5 \times 10^{-4} & 3.7 \times 10^{-3} & \begin{array}{c}\text { Good glass } \\ \text { former }\end{array} \\ \mathrm{Na}_{2} \mathrm{SiO}_{3} & 1088 & 9.2 & 5 \times 10^{-3} & 4.5 \times 10^{-2} & \begin{array}{c}\text { Poor glass } \\ \text { former }\end{array} \\ \mathrm{CaSiO}_{3} & 1544 & 7.4 & 10^{-1} & 0.74 & \begin{array}{c}\text { Very diff- } \\ \text { cult to }\end{array} \\ \text { form as } \\ \text { glass }\end{array}\right] \begin{array}{l}\text { Notaglass } \\ \text { former }\end{array}\right]$
    energ
    rate '
    same
    one more enerk Th Fig. energ been whic: into : into preci
    exan phas prest Th
    going pore of 12 quar raw ; trans The elim:

    Metastable Crystalline Phases. Frequently in ceramic systems crystalline phases are present that are not the equilibrium phases for the conditions of temperature, pressure, and composition of the system. These remain present in a metastable state because the high activation
    
    ite common,
    uilibrium bees are cooled requires that ' and that the onditions are

    1 the liquid is n the crystal a crystal, as ctors change nt increases. ivailable, the lions and is $\Delta H_{f} / T_{\mathrm{mp}}$ and $s$ on cooling,

    Comments

    | Good glass |
    | :---: |
    | former |
    | Good glass |
    | former |
    | Good glass |
    | former |
    | Poor glass |
    | former |
    | Very diffi- |
    | cult to |
    | form as |
    | glass |
    | Nota glass |
    | former |

    :ms crystalies for the he system. 1 activation
    energies required for their conversion into more stable phases cause a low rate of transition. The energy relationships among three phases of the same composition might be represented as given in Fig. 7.34. Once any one of these phases is formed, its rate of transformation into another more stable phase is slow. In particular, the rate of transition to the lowest energy state is specially slow for this system.

    The kinetics of transformation in systems such as those illustrated in Fig. 7.34 are discussed in Chapter 9 in terms of the driving force and energy barrier. Structural aspects of transformations of this kind have been discussed in Chapter 2. In general, there are two common ways in which metastable crystals are formed. First, if a stable crystal is brought into a new temperature or pressure range in which it does not transform into the more stable form, metastable crystals are formed. Second, a precipitate or transformation may form a new metastable phase. For example, if phase 1 in Fig. 7.34 is cooled into the region of stability of phase 3, it may transform into the intermediate phase 2 , which remains present as a metastable crystal.

    The most commonly observed metastable crystalline phases not undergoing transformation are the various forms of silica (Fig. 7.5). When a porcelain body containing quartz as an ingredient is fired at a temperature of 1200 to $1400^{\circ} \mathrm{C}$, tridymite is the stable form but it never is observed; the quartz always remains as such. In refractory silica brick, quartz used as a raw material must have about $2 \%$ calcium oxide added to it in order to be transformed into the tridymite and cristobalite forms which are desirable. The lime provides a solution-precipitation mechanism which essentially eliminates the activation energy barrier, shown in Fig. 7.34, and allows
    

    Fig. 7.34. Illustration of energy barriers between three different states of a system.

    ## INTRODUCTION TO CERAMICS

    the stable phase to be formed. This is, in general, the effect of mineralizers such as fluorides, water, and alkalies in silicate systems. They provide a fluid phase through which reactions can proceed without the activation energy barrier present for the solid-state process.

    Frequently, when high-temperature crystalline forms develop during firing of a ceramic body, they do not revert to the more stable forms on cooling. This is particularly true for tridymite and cristobalite, which never revert to the more stable quartz form. Similarly, in steatite bodies the main crystalline phase at the firing temperature is the protoenstatite form of $\mathrm{MgSiO}_{3}$. In fine-grained samples this phase remains as a metastable phase dispersed in a glassy matrix after cooling. In large-grain samples or on grinding at low temperature, protoenstatite reverts to the equilibrium form, clinoenstatite.

    A common type of nonequilibrium behavior is the formation of a metastable phase which has a lower energy than the mother phase but is not the lowest-energy equilibrium phase. This corresponds to the situation illustrated in Fig. 7.34 in which the transition from the highest-energy phase to an intermediate energy state occurs with a much lower activation energy than the transition to the most stable state. It is exemplified by the devitrification of silica glass, which occurs in the temperature range of 1200 to $1400^{\circ} \mathrm{C}$, to form cristobalite as the crystalline product instead of the more stable form, tridymite. The reasons for this are usually found in the structural relationships between the starting material and the final product. In general, high-temperature forms have a more open structure than low-temperature crystalline forms and consequently are more nearly like the structure of a glassy starting material. These factors tend to favor crystallization of the high-temperature form from a supercooled liquid or glass, even in the temperature range of stability of a lower-temperature modification.

    This phenomenon has been observed in a number of systems. For example, J. B. Ferguson and H. E. Merwin* observed that when calciumsilicate glasses are cooled to temperatures below $1125^{\circ} \mathrm{C}$, at which wollastonite $\left(\mathrm{CaSiO}_{3}\right)$ is the stable crystalline form, the high-temperature modification, pseudowollastonite, is found to crystallize first and then slowly transform into the more stable wollastonite. Similarly, on cooling compositions corresponding to $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$, the high-temperature crystalline form (carnegieite) is observed to form as the reaction product, even in the range in which nephelite is the stable phase; transformation of carnegieite into nephelite occurs slowly.
    In order for any new phase to form, it must be lower in free energy than the starting material but need not be the lowest of all possible new phases.

    This requi the phase diagram $r$ r other phas precipitate Fig. 7.35. difficulty frequently potassium eutectic $\boldsymbol{t} \epsilon$ which bot the liquid this syster cristobalit. rium quar1 by the dol

    Extensis

    Fig. 7.35. E system.
    
    mineraliziey provide : activation
    lop during $\geq$ forms on lite, which tite bodies toenstatite a metastain samples he equilib-
    ation of a jase but is the situa-est-energy activation fied by the $\geq$ range of instead of $y$ found in 1 the final structure ore nearly d to favor 1 liquid or nperature
    tems. For 1 calciumat which nperature and then n cooling aperature ${ }^{1}$ product, mation of
    ergy than ${ }^{2}$ phases.

    This requirement means that when a phase does not form as indicated on the phase equilibrium diagram, the liquidus curves of other phases on the diagram must be extended to determine the conditions under which some other phase becomes more stable than the starting solution and a possible precipitate. This is illustrated for the potassium disilicate-silica system in Fig. 7.35. Here, the compound $\mathrm{K}_{2} \mathrm{O} \cdot 4 \mathrm{SiO}_{2}$ crystallizes only with great difficulty so that the eutectic corresponding to this precipitation is frequently not observed. Instead, the liquidus curves for silica and for potassium disilicate intersect at a temperature about $200^{\circ}$ below the true eutectic temperature. This nonequilibrium eutectic is the temperature at which both potassium disilicate and silica have a lower free energy than the liquid composition corresponding to the false eutectic. Actually, for this system the situation is complicated somewhat more by the fact that cristobalite commonly crystallizes from the melt in place of the equilibrium quartz phase. This gives additional possible behaviors, as indicated by the dotted line in Fig. 7.35.

    Extension of equilibrium curves on phase diagrams, such as has been
    

    Fig. 7.35. Equilibrium and nonequilibrium liquidus curves in the potassium disilicate-silica system.
    shown in Fig. 7.35 and also in Fig. 7.5, provides a general method of using equilibrium data to determine possible nonequilibrium behavior. It provides a highly useful guide to experimental observations. The actual behavior in any system may follow any one of several possible courses, so that an analysis of the kinetics of these processes (or more commonly experimental observations) is also required.
    Incomplete Reactions. Probably the most common source of nonequilibrium phases in ceramic systems are reactions that are not completed in the time available during firing or heat treatment. Reaction rates in condensed phases are discussed in Chapter 9. The main kinds of incomplete reactions observed are incomplete solution, incomplete solidstate reactions, and incomplete resorption or solid-liquid reactions. All of these arise from the presence of reaction products which act as barrier layers and prevent further reaction. Perhaps the most striking example of incomplete reactions is the entire metallurgical industry, since almost all metals are thermodynamically unstable in the atmosphere but oxidize and corrode only slowly.

    A particular example of incomplete solution is the existence of quartz grains which are undissolved in a porcelain body, even after firing at temperatures of 1200 to $1400^{\circ} \mathrm{C}$. For the highly siliceous liquid in contact with the quartz grain, the diffusion coefficient is low, and there is no fluid flow to remove the boundary layer mechanically. The situation is similar to diffusion into an infinite medium, illustrated in Fig. 6.5. To a first approximation, the diffusion coefficient for $\mathrm{SiO}_{2}$ at the highly siliceous br indary may be of the order of $10^{-8}$ to $10^{-9} \mathrm{~cm}^{2} / \mathrm{sec}$ at $1400^{\circ} \mathrm{C}$. With these de a it is left as an exercise to estimate the thickness of the diffusion layer after 1 hr of firing at this temperature.

    The way in which incomplete solid reactions can lead to residual starting material being present as nonequilibrium phases will be clear from the discussion in Chapter 9. However, new products that are not the final equilibrium composition can also be formed. For example, in heating equimolar mixtures of $\mathrm{CaCO}_{3}$ and $\mathrm{SiO}_{2}$ to form $\mathrm{CaSiO}_{3}$, the first product formed and the one that remains the major phase through most of the reaction is the orthosilicate, $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$. Similarly, when $\mathrm{BaCO}_{3}$ and $\mathrm{TiO}_{2}$ are reacted to form $\mathrm{BaTiO}_{3}$, substantial amounts of $\mathrm{Ba}_{2} \mathrm{TiO}_{4}, \mathrm{BaTi}_{3} \mathrm{O}_{7}$, and BaTi O , are formed during the reaction process, as might be expected from the phase-equilibrium diagram (Fig. 7.20). When a series of intermediate compounds is formed in a solid reaction, the rate at which each grows depends on the effective diffusion coefficient through it. Those layers for which the diffusion rate is high form most rapidly. For the $\mathrm{CaO}-\mathrm{SiO}_{2}$ system this is the orthosilicate. For the $\mathrm{BaO}-\mathrm{TiO}_{2}$ system the most rapidly forming compound is again the orthotitanate, $\mathrm{Ba}_{2} \mathrm{TiO}_{4}$.
     avior. It pro:. The actual sible courses, re commonly
    urce of nonare not comeaction rates ain kinds of .mplete solidctions. All of act as barrier g example of ice almost all it oxidize and
    ace of quartz ffter firing at id in contact are is no fluid ion is similar 5. To a first ;hly siliceous工. With these iffusion layer

    1 to residual will be clear at are not the le, in heating first product most of the and $\mathrm{TiO}_{2}$ are $\mathrm{BaTi}_{3} \mathrm{O}_{7}$, and be expected ries of inter$t$ which each gh it. Those idly, For the $)_{2}$ 'system the $\mathrm{Ba}_{2} \mathrm{TiO}_{4}$.

    CERAMIC PHASE-EQUILIBRIUM DIAGRAMS
    

    Fig. 7.36. Nonequilibrium crystallization path with (1) Liquid $\rightarrow A$, (2) $A+$ liquid $\rightarrow A B$, (3) Liquid $\rightarrow \mathrm{AB}$, (4) Liquid $\rightarrow \mathrm{AB}+\mathrm{B}$, (5) Liquid $\rightarrow \mathrm{AB}+\mathrm{B}+\mathrm{C}$.

    A final example of nonequilibrium conditions important in interpreting phase-equilibrium diagrams is the incomplete resorption that may occur whenever a reaction, $A+$ Liquid $=A B$, takes place during crystallization. This is the case, for example, when a primary phase reacts with a liquid to form a new compound during cooling. A layer tends to build up on the surface of the original particle, forming a barrier to further reaction. As the temperature is lowered, the final products are not those anticipated from the equilibrium diagram. A nonequilibrium crystallization path for incomplete resorption is schematically illustrated in Fig. 7.36.

    ## Suggested Reading

    1. E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists, American Ceramic Society, Columbus, Ohio, 1964.
    2. E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase Diagrams for Ceramists, 1969 Supplement, American Ceramic Society, Columbus, Ohio, 1969.
    3. A. M. Alper, Ed., Phase Diagrams: Materials Science and Technology, Vol. I, "Theory, Principles, and Techniques of Phase Diagrams," Academic Press, Inc., New York, 1970; Vol. II, "The Use of Phase Diagrams in Metal, Refractory, Ceramic, and Cement Technology," Academic Press, Inc., New

    York, 1970; Vol. III, "The Use of Phase Diagrams in Electronic Materials and Glass Technology," Academic Press, Inc., New York, 1970.
    4. A. Muan and E. F. Osborn, Phase Equilibria among Oxides in Steelmaking, Addison-Wesley, Publishing Company, Inc., Reading, Mass., 1965.
    5. A. Reisman, Phase Equilibria, Academic Press, Inc., New York, 1970.
    6. P. Gordon, Principles of Phase Diagrams in Materials Systems, McGraw Hill Book Company, New York, 1968.
    7. A. M. Alper, Ed., High Temperature Oxides, Part I, "Magnesia, Lime and Chrome Refractories," Academic Press, Inc., New York, 1970; Part II, "Oxides of Rare Earth, Titanium, Zirconium, Hafnium, Niobium, and Tantalum," Academic Press, Inc., New York, 1970; Part III, "Magnesia, Alumina, and Beryllia Ceramics: Fabrication, Characterization and Properties," Academic Press, Inc., New York; Part IV, "Refractory Glasses, GlassCeramics, Ceramics," Academic Press, New York, Inc., 1971.
    8. J. E. Ricci, The Phase Rule and Heterogeneous Equilibrium, Dover Books, New York, 1966.

    ## Problems

    7.1. A power failure allowed a furnace used by a graduate student working in the $\mathrm{K}_{2} \mathrm{O}-$ $\mathrm{CaO}-\mathrm{SiO}_{2}$ system to cool down over night. For the fun of it, the student analyzed the composition he was studying by X-ray diffraction. To his horror, he found $\beta-\mathrm{CaSiO}_{3}$, $2 \mathrm{~K}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 3 \mathrm{SiO}_{2}, 2 \mathrm{~K}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2}, \mathrm{~K}_{2} \mathrm{O} \cdot 3 \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2}$, and $\mathrm{K}_{2} \mathrm{O} \cdot 2 \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2}$ in his sample.
    (a) How could he get more than three phases?
    (b) Can you tell him in which composition triangle his original composition was?
    (c) Can you predict the minimum temperature above which his furnace was operating before power failure?
    (d) He thought at first he also had some questionable X-ray diffraction evidence for $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot \mathrm{SiO}_{2}$, but after thinking it over he decided $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot \mathrm{SiO}_{2}$ should not crystallize out of his sample. Why did he reach this conclusion?
    7.2. According to Alper, McNally, Ribbe, and Doman,* the maximum solubility of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in MgO is $18 \mathrm{wt} \%$ at $1995^{\circ} \mathrm{C}$ and of MgO in $\mathrm{MgAl}_{2} \mathrm{O}_{\text {a }}$ is $39 \% \mathrm{MgO}, 51 \% \mathrm{Al}_{2} \mathrm{O}_{3}$. Assuming the $\mathrm{NiO}-\mathrm{Al}_{2} \mathrm{O}$, binary is similar to the $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}$, binary, construct a ternary. Make isothermal plots of this ternary at $2200^{\circ} \mathrm{C}, 1900^{\circ} \mathrm{C}$, and $1700^{\circ} \mathrm{C}$.
    7.3. You have been assigned to study the electrical properties of calcium metasilicate by the director of the laboratory in which you work. If you were to make the material synthetically, give a batch composition of materials commonly obtainable in high purity. From a production standpoint, $10 \%$ liquid would increase the rate of sintering and reaction. Adjust your composition accordingly. What would be the expected firing temperature? Should the boss ask you to explore the possibility of lowering the firing temperature and maintain a white body, suggest the direction to procede. What polymorphic transformations would you be conscious of in working with the above systems?


    
    terials and
    selmaking,
    1970.

    Graw Hill
    Lime and
    ; Part II, and TanAlumina, operties," s, Glass-

    2r Books,
    the $\mathrm{K}_{2} \mathrm{O}$ :alyzed the $\beta-\mathrm{CaSiO}_{3}$, $\mathrm{iO}_{2}$ in his
    tion was? nace was
    idence for should not

    If $\mathrm{Al}_{2} \mathrm{O}$, in
    Assuming
    ary. Make
    etasilicate make the ainable in le rate of Id be the sibility of rection to 1 working
    7.4. Discuss the importance of liquid-phase formation in the production and utilization of refractory bodies. Considering the phase diagram for the $\mathrm{MgO}-\mathrm{SiO}_{2}$ system, comment on the relative desirability in use of compositions containing $50 \mathrm{MgO}-50 \mathrm{SiO}_{2}$ by weight and $60 \mathrm{MgO}-40 \mathrm{SiO}_{2} \cdot$ by weight. What other characteristics of refractory bodies are important in their use?
    7.5. A binary silicate of specified composition is melted from powders of the separate oxides and cooled in different ways, and the following observations are made:

    | Condition | Observations |
    | :--- | :--- |
    | (a) Cooled rapidly | Single phase, no evidence of <br> crystallization |
    | (b) Melted for 1 hr, held |  |
    | $80^{\circ} \mathrm{C}$ below liquidus | Crystallized from surface with |
    | for 2 hr |  |
    | primary phases $\mathrm{SiO}_{2}$ plus glass |  |

    Are all these observations self consistent? How do you explain them?
    7.6. Triaxial porcelains (flint-feldspar-clay) in which the equilibrium phases at the firing temperature are mullite and a silicate liquid have a long firing range; steatite porcelains (mixtures of talc plus kaolin) in which the equilibrium phases at the firing temperature are enstiatite and a silicate liquid have a short firing range. Give plausible explanations for this difference in terms of phases present, properties of phases, and changes in phase composition and properties with temperature.
    7.7. For the composition $40 \mathrm{MgO}-55 \mathrm{SiO}_{2}-5 \mathrm{Al}_{2} \mathrm{O}_{3}$, trace the equilibrium crystallization path in Fig. 7.30. Also, determine the crystallization path if incomplete resorption of forsterite occurs along the forsterite-protoenstatite boundary. How do the compositions and temperatures of the eutectics compare for the equilibrium and nonequilibrium crystallization paths? What are the compositions and amounts of each constituent in the final product for the two cases?
    7.8. If a homogeneous glass having the composition $13 \mathrm{Na}_{2} \mathrm{O}-13 \mathrm{CaO}-74 \mathrm{SiO}_{2}$ were heated to $1050^{\circ} \mathrm{C}, 1000^{\circ} \mathrm{C}, 900^{\circ} \mathrm{C}$, and $800^{\circ} \mathrm{C}$, what would be the possible crystalline products that might form? Explain.
    7.9. The clay mineral kaolinite, $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{3}(\mathrm{OH})_{4}$, when heated above $600^{\circ} \mathrm{C}$ decomposes to $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ and water vapor. If this composition is heated to $1600^{\circ} \mathrm{C}$ and left at that temperature until equilibrium is established, what phase(s) will be present. If more than one is present, what will be their weight percentages. Make the same calculations for $1585^{\circ} \mathrm{C}$.

    ## Reactions with and between Solids

    In heterogeneous reactions there is a reaction interface between the reacting phases, such as nucleus and matrix or crystal and melt. In order for the reaction to proceed, three steps must take place in seriesmaterial transport to the interface, reaction at the phase boundary, and sometimes transport of reaction products away from the interface. In addition, reactions at the phase boundary liberate or absorb heat, changing the boundary temperature and limiting the rate of the process. Any of these steps may determine the overall rate at which a heterogeneous reaction takes place, since the overall reaction rate is determined by the slowest of these series steps.
    In this chapter we consider these rate-determining steps as applied to changes taking place in ceramic systems. Decomposition of hydrates and carbonates, solid-state reactions, oxidation, corrosion, and many other phenomena must be considered on the basis of limitations imposed by the rates of phase-boundary reactions, material transport, and heat flow.

    ### 9.1 Kinetics of Heterogeneous Reactions

    Reaction Order. Classical chemical-reaction kinetics has been mainly concerned with homogeneous reactions and cannot be directly applied to many phenomena of particular interest in ceramics, but it provides the basis for understanding rate phenomena. Reaction rates are frequently classified as to molecularity-the number of molecules or atoms formally taking part in the reaction. Overall reactions are also commonly classified as to reaction order-the sum of the powers to which concentrations $c_{1}$, $c_{2}$, and so on, must be raised to give empirical agreement with a rate equation of the form

    $$
    \begin{equation*}
    \frac{-d c}{d t}=K c_{1}^{\alpha} c_{2}^{\beta} c_{3}^{\gamma} \cdots \tag{9.1}
    \end{equation*}
    $$

    ## INTRODUCTION TO CERAMICS

    In a first-order reaction, for example,

    $$
    \begin{equation*}
    \frac{-d c}{d t}=K c \tag{9.2}
    \end{equation*}
    $$

    On integration this gives

    $$
    \begin{equation*}
    \ln \frac{c}{c_{0}}=K\left(t-t_{0}\right) \tag{9.3}
    \end{equation*}
    $$

    where $K$ is a constant and $c_{0}$ is the initial concentration at time $t_{0}$. For the simplest overall reactions which involve but one elementary step, the order and molecularity are the same. For more complex reactions which consist of several consecutive elementary steps involving different species and for heterogeneous reactions in general, the molecularity and order are quite different, and characterization by reaction order is a purely formal empirical method. In fact, zero and fractional reaction orders are sometimes found. Although the reaction-order concept is useful as a means of representing data for heterogeneous reactions, these cannot usually be interpreted simply in terms of molecular interactions.
    Activation Energy and Reaction Rate. The effect of temperature on the rate of processes taking place is frequently great. The historical basis for its understanding is the Arrhenius equation, in which it was found that for many processes the specific reaction-rate constant could be related to temperature by the relation $\log K \sim 1 / T$ or, alternatively, $K=$ $A \exp (-Q / R T)$, where $Q$ is the experimental activation energy. The basis of this relationship in a general theory of rate processes has been discussed in Chapter 6 in connection with diffusion as an activated process. In general, an activation energy is required for each of the steps involved in an overall rate process (Fig. 9.1).
    Two general considerations are the basis for interpreting most kinetic data. The first of these is that each individual step in a rate process must be relatively simple and that the reaction path of each step, such as an individual atom jump in diffusion, a molecular decomposition, or a new chemical bond being formed, involves an activated complex or transition state of maximum energy along the reaction path. Of all possible parallel paths of reaction, the one with the lowest energy barrier is the most rapid and the major contributor to the overall process. This activated-complex theory has provided a general form of equation for rate processes and a model that allows semiempirical calculations for simple processes. The second general consideration has been that the overall rate of a complex process involving a series of consecutive steps is fixed by the rate of the slowest individual step.
    If we plot energy along a distance coordinate corresponding to the

    Fig. 9.1. St several steps each step ha step.

    For the ep, the ; which ifferent ity and or is a eaction sept is i, these ons. on the tsis for hat for tted to
    $K=$
    y. The
    $s$ been tivated
    a steps
    kinetic
    s must
    : as an a new nsition carallel $t$ rapid -mplex and a
    s. The mplex of the to the
    
    (a)
    
    (b)

    Fig. 9.1. Schematic representation of (a) multipath process in which each path contains several steps; the process is dominated by the fastest path (path 3). (b) Multistep path in which each step has an activation energy; the overall rate along this path is determined by the slowest step.
    reaction path of lowest energy between the reactant and product, there is an energy maximum, actually a saddle point, corresponding to the activated complex or transition state, such as discussed for diffusion in Chapter 6. This concept of an activated complex has been generally accepted as the basis for reaction-rate studies and, as discussed in Chapter 6, leads to a specific reaction-rate constant given by

    $$
    \begin{equation*}
    k=\frac{k T}{h} \exp \left(-\frac{\Delta H^{\dagger}}{R T}\right) \exp \frac{\Delta S^{\dagger}}{R} \tag{9.4}
    \end{equation*}
    $$

    where $k$ is the Boltzmann constant, $h$ the Planck constant, and $\Delta H^{\dagger}$ and $\Delta S^{\dagger}$ the enthalpy and entropy of activation, respectively. Individual reaction steps in an overall reaction process are usually simple and may be designated as monomolecular or bimolecular. Semiempirical treatments of the unit steps on the basis of activated-complex theory allow a rational theoretical approach to reaction processes.
    Complex Processes. Overall processes are frequently complex and require a series of individual separate unit steps. In such a sequence the rate of any individual step depends on the specific reaction-rate constant and the concentration of the reactants for this step. For a series of consecutive steps,

    $$
    \begin{equation*}
    A_{1}=A_{2}=\cdots A_{i}=A_{i+1}=\cdots A_{n} \tag{9.5}
    \end{equation*}
    $$

    We can define a virtual maximum rate for each step as the rate that would be found if equilibria were established for all previous and following steps. Under these conditions the reaction with the lowest virtual maximum rate controls the overall rate if it is much lower than the rates of other steps. Under these conditions equilibrium will have been virtually established for all previous steps but will not necessarily be established for the following steps. As shown schematically in Fig. 9.1, the reaction rate for path 1 is determined by step $1 b$ of the process; it has the slowest rate and the largest activation energy barrier and accounts for $85 \%$ of the reaction time; steps $1 a$ and $1 c$ occur more rapidly. Reaction step $R_{\text {Ia }}$ will be slowed to a rate giving a virtual equilibrium concentration of products; reaction $R_{1 c}$ will be slowed because $R_{1 b}$ is producing few reactants for step $R_{1 c}$.

    We have already noted that most condensed-phase processes of interest in ceramics involve heterogeneous systems; changes take place at a phase boundary. The overall process involves (1) transport of reactants to the phase boundary, (2) reaction at the phase boundary, (3) transport of products away from the phase boundary. This series of reaction steps has relatively simple kinetics, provided the virtual maximum rate of one step is much slower than that of any of the other steps. If we assume this to be
    $\therefore$, there is g to the fusion in zenerally ussed in
    $\Delta H^{\dagger}$ and idividual and may al treatallow a lex and snce the :onstant eries of
    $t$ would Ilowing virtual rates of irtually blisked eaction ;lowest ; of the $\}_{1 a}$ will गducts; nts for
    ses of lace at ictants port of ps has e step s to be
    the case, we have two general classes of heterogeneous reactions: (1) those controlled by transport rate and (2) those controlled by phaseboundary reaction rate. In general, both the transport process and the phase-boundary process involve a number of individual steps, one of which has the lowest virtual maximum rate. In going from reactants to products, there may be several possible reaction paths for transport processes and for phase-boundary reactions. There are three different possible reaction paths shown in Fig. 9-1a.

    ### 9.2 Reactant Transport through a Planar Boundary Layer

    Slip Casting. As an example of the usefulness of determining the rate-limiting step for deriving kinetic equations, we begin with the ceramic processing technique of slip casting, in which a slurry containing clay particles dispersed in water is poured into a plaster of paris (gypsum) mold which contains fine capillaries (see Fig. 11.36) that absorb water from the slip. This causes a compact layer of clay particles to form at the mold-slip interface (Fig. 9.2). The rate of the process is determined by the
    

    Fig. 9.2. Schematic representation of the formation of a slip-cast layer formed by the extraction of water by capillary action of a plaster of paris mold.

    ## INTRODUCTION TO CERAMICS

    transport of water out of the slip and into the capillaries; the rate-limiting step is the flow of water through the compact clay layer. As the layer thickness increases, the overall rate of material transport decreases because of the increased permeation distance (similar to gas permeation through glasses, discussed in Chapter 6).

    We begin by writing the flux equation for water,

    $$
    \begin{equation*}
    J=-K \frac{d P}{d x} \tag{9.6}
    \end{equation*}
    $$

    where we assume a planar deposit (unidirectional flow) and that the water flux $J_{\mathrm{H}_{2} \mathrm{O}}$ is proportional to the pressure gradient resulting from the capillaries of the plaster mold. The permeation coefficient $K$ depends on the clay particle size, particle packing, and the viscosity of water and is temperature-sensitive. The water pressure in the slip, $P_{s}$, is 1 atm ; in the mold, $P_{m}$, it is determined by capillarity, $\Delta P=P_{s}-P_{m} \approx 2 \gamma / r$ (Chapter 5 ). The surface tension is a function of the deflocculating agents used. Until the capillaries become filled with water, $\Delta P$ is approximately constant, and the flux can be related to the change of the layer thickness $d x / d t$,

    $$
    \begin{equation*}
    J=\left(\frac{1}{\kappa \rho}\right) \frac{d x}{d t}=-K \frac{d P}{d x}=-K \frac{\Delta P}{x} \cong-K \frac{2 \gamma}{r x} \tag{9.7}
    \end{equation*}
    $$

    where $\rho$ is the density of the cast layer and $\kappa$ is a factor for converting the volume of water removed to the volume of clay particles deposited. Integration of Eq. 9.7 gives

    $$
    x=\left(2 K \rho \kappa \frac{2 \gamma}{r}\right)^{1 / 2} t^{1 / 2}
    $$

    or in the general parabolic form

    $$
    \begin{equation*}
    x=\left(K^{\prime} t\right)^{1 / 2} \tag{9.8}
    \end{equation*}
    $$

    That is, the wall thickness of a planar casting should increase with the square root of time (Fig. 9.3).

    This parabolic rate law is commonly observed for kinetic processes in which the limiting step is mass transport through a reaction layer.

    Interdifiusion between Solids. In Section 6.3, we discussed the chemical diffusion coefficient and its formulation in terms of the tracer diffusion coefficients for the case of interdiffusion. If we measure the rate at which two ceramics interdiffuse, this too can be considered the formation of a reaction product which is a solid solution rather than a distinct or separate phase. Let us consider the interdiffusion between crystals of NiO and CoO at a high temperature. The solid solution that forms is nearly ideal;
    
    
    (a)
    
    (b)

    Fig. 9.4. (a) Comparison of the calculated interdiffusion coefficients $\bar{D}$ and experimental values at 1445 and $1300^{\circ} \mathrm{C}$ in air. (b) Tracer diffusion coefficients of ${ }^{\infty} \mathrm{Co}$ and ${ }^{71} \mathrm{Ni}$ in $\left(\mathrm{Co}_{c} \mathrm{Ni}_{1, c}\right) \mathrm{O}$ crystals at 1445 and $1300^{\circ} \mathrm{C}$ in air. Plotted as $\log D$ versus $c$. From W. K. Chen and N. L. Petersen, J. Phys. Chem. Soc., 34. 1093 (1973).
    

    Reaction occurs at $\mathrm{AB}_{2} \mathrm{O}_{4}-\mathrm{B}_{2} \mathrm{O}_{3}$ interface: oxygen gas phase transport with $A^{2+}$ ion and electron transport through $\mathrm{AB}_{2} \mathrm{O}_{4}$ :

    $$
    \mathrm{A}^{2+}+2 e^{-}+\frac{1}{2} \mathrm{O}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}=\mathrm{AB}_{2} \mathrm{O}_{4}
    $$

    

    Reaction occurs at $\mathrm{AO}-\mathrm{AB}_{2} \mathrm{O}_{4}$ interface: oxygen gas phase transport with $\mathrm{B}^{3+}$ ion and electron transport through $\mathrm{AB}_{2} \mathrm{O}_{4}$ :

    $$
    \mathrm{AO}+2 \mathrm{~B}^{3+}+6 e^{-}+\frac{3}{2} \mathrm{O}_{2}=\mathrm{AB}_{2} \mathrm{O}_{4}
    $$

    

    Oxygen and cation transport through $\mathrm{AB}_{2} \mathrm{O}_{4}$ :
    (1) Both cations diffuse $\left(J_{\mathrm{B}^{2+}}=\frac{2}{3} J_{\mathrm{A}^{2+}}\right)$.

    Reactions occur at
    $\mathrm{AO}-\mathrm{AB}_{2} \mathrm{O}_{4}$ interface
    $2 \mathrm{~B}^{3+}+4 \mathrm{AO}=\mathrm{AB}_{2} \mathrm{O}_{4}+3 \mathrm{~A}^{2+}$
    and at

    $$
    \mathrm{AB}_{2} \mathrm{O}_{4}-\mathrm{B}_{2} \mathrm{O}_{3} \text { interface }
    $$

    $$
    3 \mathrm{~A}^{2+}+4 \mathrm{~B}_{2} \mathrm{O}_{3}=3 \mathrm{AB}_{2} \mathrm{O}_{4}+2 \mathrm{~B}^{3+}
    $$

    (2) $\mathrm{A}^{2+}$ and $\mathrm{O}^{2-}$ diffuse. Reaction at
    
    (2)
    
    might the tr. interf:

    $$
    \mathrm{Wh}
    $$

    throu:
    9.8), i

    Figur
    two plana when sed is

    Fig. 9 coupl (1966)

    TI defe
    Schematic representation of several mechanisms which may control the rate of $\mathrm{AB}_{2} \mathrm{O}_{4}$ (e.g., spinel) formation. From Ref. 1.
    
    

    Fig. 9.8. Cross-sectional view of a typical $\mathrm{NiAl}_{2} \mathrm{O}$, layer formed in an $\mathrm{NiO}-\mathrm{Al}_{2} \mathrm{O}$, couple after 73 hr at $1400^{\circ} \mathrm{C}$. From F. S. Pettit, et al., J. Am. Ceram. Soc., 49, 199 (1966).
    distinguishing feature of ionic crystals is the effective charge that an atomic specie may have within the crystal lattice. When there is mass transport in a ceramic, the transport of one charged specie is usually coupled to the transport of an ion or defect of the opposite charge. We must therefore consider the electrochemical potential as the motivating force for mass transport rather than just the chemical potential or concentration gradient. The electrochemical potential of the $i$ th specie $\eta_{i}$ is the sum of the chemical potential $\mu_{i}$ and the electrical potential $\phi$ acting on it:

    $$
    \begin{equation*}
    \eta_{i}=\mu_{i}+Z_{i} F \phi \tag{9.10}
    \end{equation*}
    $$

    where $Z_{i}$ is the effective charge and $F$ is the Faraday constant. We have already noted in Table 6.1 the interrelationship between the mobilities expressed in terms of electrical and chemical driving forces. The flux due to an electrochemical potential gradient is thus given by

    $$
    \begin{equation*}
    j_{i}=c_{i} v_{i}=-c_{i} B_{i} \frac{\partial \eta_{i}}{\partial x}=-c_{i} B_{i}\left[\frac{\partial \mu_{i}}{\partial x}+Z_{i} F \frac{\partial \phi}{\partial x}\right] \tag{9.11}
    \end{equation*}
    $$

    Examination of the two gradient terms in this equation shows the importance of the ionic nature of ceramics. For example, a concentration gradient (chemical-potential gradient) in one direction may be offset by an electrical-field gradient that motivates the ion in the opposite direction. Another kind of effect results from the local electrical field between oppositely charged species. For example, the cations in most close-
    packed oxi $\mathrm{NiO}-\mathrm{CoO}$ case in wl coefficient ions in alu motion of (9.11) are I Oxidatiol law in whis reaction $\mathbf{p r}$ metals. Th begin with results ext coherent o $P_{\mathrm{O}_{2}}{ }^{\text {g }}$ and th determined of the oxic

    The oxyge: layer (Fig. the metal-4 metal ion $i$ the oxygen also a net determines cations anc and then determinin

    The flux changed to
    packed oxides diffuse more rapidly than oxygen, as for the $\mathrm{NiO}-\mathrm{MgO}$ and $\mathrm{NiO}-\mathrm{CoO}$ interdiffusion already discussed. If this begins to happen in the case in which there is a net mass flow (not for the case of diffusion coefficient measurements using radioactive tracers), for example, $\mathrm{Al}^{3+}$ ions in alumina, a net electrical field results and thereby couples the motion of $\mathrm{Al}^{+3}$ ions and $\mathrm{O}^{-2}$ ions. Several solid reactions based on Eq. (9.11) are now considered.

    Oxidation of a Metal. The most extensive studies of the parabolic rate law in which the process is controlled by diffusive transport through the reaction product are investigations into the formation of oxide layers on metals. The analysis techniques were developed by Carl Wagner which begin with Eq. (9.11). They are described here in some detail because the results extend to many ceramic problems. Consider the formation of a coherent oxide layer on a metal where the ambient oxygen pressure is $P_{\mathrm{O}_{2}}{ }^{\prime}$ and the effective oxygen pressure at the oxide-metal interface $\mathrm{P}_{\mathrm{o}_{2}}{ }^{1}$ is determined by the temperature and the standard free energy of formation of the oxidation reaction (see Fig. 9.9):

    $$
    \begin{align*}
    2 \mathrm{Me}+\mathrm{O}_{2} & =2 \mathrm{MeO} \quad \Delta G_{\text {formation }}^{\circ}  \tag{9.12}\\
    P_{\mathrm{O}_{2}}^{i} & =e^{+\Delta G \cdot / R T}
    \end{align*}
    $$

    The oxygen concentration gradient (chemical potential) across the oxide layer (Fig. 9.10) provides the driving force for oxygen diffusion towards the metal-oxide interface. A gradient of the chemical potential of the metal ion in the opposite direction produces metal-ion diffusion toward the oxygen atmosphere. If one atomic flux is larger than the other, there is also a net flux of electrons or electron holes. The net transport, which determines the rate of oxide growth, is the sum of flux of anions and cations and electrons or holes. First we must consider each of these fluxes and then we shall look for circumstances when one specie is ratedetermining and the complex relationships reduce to more simple forms.
    The flux of the atomic and electronic species given by Eq. 9.11 can be changed to the flux of charged particles by multiplying by the valence:

    $$
    \begin{align*}
    & J_{0}=-\left|Z_{0}\right| c_{0} B_{0} \frac{\partial \eta_{0}}{\partial x}=\left|Z_{0}\right| j_{0} \\
    & J_{M c}=-\left|Z_{M c}\right| c_{M_{c}} B_{M c} \frac{\partial \eta_{M c}}{\partial x}=\left|Z_{\text {Mc }}\right| j_{\text {Me }}  \tag{9.13}\\
    & J_{c^{\prime}}=-\mathrm{n} B_{c^{\prime}} \cdot \frac{\partial \eta_{c^{*}}}{\partial x}=|-1| j_{c^{\prime}} \\
    & \left.J_{h}=-p B_{n} \cdot \frac{\partial \eta_{h^{\prime}}}{\partial x}=1+1 \right\rvert\, j_{h_{n}} .
    \end{align*}
    $$

    

    Fig. 9.9. Standard free energy of formation of oxides as a function of temperature. From F . D. Richardson and J. H. E. Jeffes, J. Iron Steel Inst., 160.261 (1948); modified by L. S. Darken and R. W. Gurry, Physical Chemistry of Metals, McGraw-Hill Book Company, New York, 1953.
    
    parabolic rate law;

    $$
    \begin{equation*}
    \frac{d x}{d t}=\frac{1}{x}\left[\frac{\bar{\sigma} \bar{t}_{c}}{\left|Z_{\mathrm{Mc}}\right| F^{2}}\left(\bar{t}_{0}+\bar{t}_{\mathrm{Mc}}\right)\left|\Delta \mu_{\mathrm{Mc}}\right|\right]=\frac{K}{x} \tag{9.16}
    \end{equation*}
    $$

    Recalling that,

    $$
    \begin{equation*}
    t_{i} \sigma=\sigma_{i}=e Z_{i} c_{i} \mu_{i}=\frac{c_{i} Z_{i}^{2} e^{2} F^{2}}{R T} D_{i} \tag{9.17}
    \end{equation*}
    $$

    we can see that the oxidation rate is governed by the atomic mobilities or diffusivities. Let us now consider specific rate limiting cases:

    1. The electrical current is carried primarily by electronic defects, $t_{e} \approx 1$ or $t_{h} \approx 1$ :
    a. If $D_{0} \gg D_{\mathrm{Mc}}$, then

    $$
    \begin{equation*}
    K=\frac{\bar{\sigma} \bar{t}_{0}}{\left|Z_{\mathrm{Mc}}\right| F^{2}}\left|\Delta \mu_{\mathrm{Mc}}\right| \tag{9.18}
    \end{equation*}
    $$

    which for an oxide for predominant $V_{0}^{\cdot}$ defects reduces to the approximation

    $$
    \begin{equation*}
    K \approx \frac{C_{0}}{2\left|Z_{M \mathrm{c}}\right|} \int_{\mu_{0}^{i}}^{\mu_{0}^{*}} D_{0} d \mu_{0} \tag{9.19}
    \end{equation*}
    $$

    since $\mu_{0}=1 / 2 \mu_{\mathrm{O}_{2}}=1 / 2\left(\mu_{\mathrm{O}_{2}}^{\circ}+R T \ln P_{\mathrm{o}_{2}}\right)$. If we assume that $\left[V_{0}^{\cdot}\right] \propto P_{O_{2}}^{-1 / 6}$, as discussed in Chapter 6, and that the diffusion coefficient varies similarly;

    $$
    \begin{equation*}
    D_{0}=\left[V_{0}^{\cdot}\right] D_{v_{0}}=\frac{\left(K_{v_{0}}\right)^{1 / 3}}{4^{1 / 3}} D_{v_{0}} \cdot P_{o_{2}}^{-1 / 6} \tag{9.20}
    \end{equation*}
    $$

    and the rate constant becomes

    $$
    \begin{equation*}
    K \approx \frac{3 c_{0}}{4^{1 / 3}\left|Z_{\mathrm{Me}}\right|}\left(K_{v_{0}}\right)^{1 / 3} D_{v_{0}}\left\{\left(P_{\mathrm{O}_{2}}{ }^{8}\right)^{-1 / 6}-\left(P_{\mathrm{O}_{2}}\right)^{-1 / 6}\right\} \tag{9.21}
    \end{equation*}
    $$

    b. If $D_{M e} \gg D_{0}$ and we assume singly charged metal vacancies $V_{M_{c}}^{\prime}$, the rate constant is

    $$
    \begin{equation*}
    K \approx 2\left(K_{V_{\dot{M}_{\mathrm{c}}}}\right)^{1 / 2} D_{V_{\dot{M}_{c}}}\left(\left(P_{\mathrm{O}_{2}}{ }^{8}\right)^{1 / 4}-\left(P_{\mathrm{O}_{2}}\right)^{1 / 4}\right\} c_{\mathrm{Me}} \tag{9.22}
    \end{equation*}
    $$

    note that $D_{V_{c}}\left[V_{M_{c}^{\prime}}^{\prime}\right]=D_{M c}$.
    2. If the electral current is carried primarily by the ions, $\left(t_{0}+t_{\mathrm{Mc}}\right) \approx 1$, the rate constant from Eq. 9.16 becomes

    $$
    \begin{equation*}
    K \approx \frac{k T}{8\left|Z_{\mathrm{Mc}}\right| e^{2}} \int_{\mathrm{P}_{\mathrm{o}^{2^{1}}}}^{P_{\mathrm{o}_{2}^{\prime}}} \sigma_{\mathrm{c} 1} d \ln P_{\mathrm{O}_{2}} \tag{9.23}
    \end{equation*}
    $$

    where $\sigma_{e 1}$ is the conduction due to electrons and holes which have mobilities $\mu_{c}$ and $\mu_{h}$, respectively (see Table $6.1 \mu_{i}=B_{i}^{\prime \prime}$ ).

    $$
    \begin{equation*}
    \sigma_{c 1}=\operatorname{en} \mu_{c}+\operatorname{ep} \mu_{n} \tag{9.24}
    \end{equation*}
    $$

    $t_{\text {Me }} \approx 1$,
    ch have
    If we assume that the defect concentration does not have a large variation over the oxide layer

    $$
    \begin{equation*}
    K \approx \frac{\sigma_{\mathrm{c}} k T}{8\left|Z_{\mathrm{Mc}}\right| e^{2}}\left[\ln P_{\mathrm{O}_{2}}{ }^{8}-\ln P_{\mathrm{O}_{2}^{\prime}}\right] \tag{9.16}
    \end{equation*}
    $$

    An example of the applicability of this relationship is the diffusive transport of oxygen through calcia-stabilized zirconia. The oxygen diffusion coefficient plotted in Fig. 6.11 is very large and accounts for $t_{0} \approx 1$. Thus, the slower-moving specie, the electron hole, becomes rate-limiting for oxygen permeation (Eq. 9.25), as shown in Fig. 9.11.
    3. If the metal undergoing oxidation has an impurity with a different oxidation state, for example, Li in Ni , the defect concentration in the oxide may be determined by the impurity concentration. As an example, consider the analogous case to Eq. 9.22 for which $D_{M e} \gtrdot D_{0}$ but where [ $\left.V_{\text {Mc }}^{\prime}\right]=\left[F_{\mathrm{Mc}}\right]$. The thickness of this extrinsic layer is again determined by the parabolic rate law, Eq. 9.16, but with the reaction constant,

    $$
    \begin{equation*}
    K_{\mathrm{ex}}=2 D_{v_{\mathrm{m}}}\left[V_{\mathrm{Me}}^{\prime}\right]\left[\ln P_{\mathrm{o}_{2}^{\prime}}-\ln P_{\mathrm{o}_{2}^{\prime}}^{\prime}\right] c_{\mathrm{Me}_{\mathrm{c}}} \tag{9.26}
    \end{equation*}
    $$

    If the impurity concentration and oxygen pressure are such that the defect concentrations are in an intermediate range, an intrinsic layer may
    

    Fig. 9.11. Oxygen permeation through calcia-stabilized zirconia as a function of temperature. The oxygen transport is controlled by the concentration and mobility of electron holes, Eq. 9.2S. From K. Kitazawa, Ph.D. thesis, MIT. 1972.

    ## INTRODUCTION TO CERAMICS

    form on the oxygen-rich side (external) and an extrinsic oxide layer on the metal-rich side (at the oxide-metal interface)
    Short-Circuit Diffusion Paths. In each of the examples of metal oxidation, lattice diffusion $D_{1}$ was assumed to be the rate-determining transport process. In Section 6.6 the importance of other more rapid diffusion paths was discussed. The effects of short-circuit paths can be incorporated into the parabolic rate equations. For example, an apparent diffusivity $D_{a}$ from Eq. 6.67 can be used in Eq. 9.16 to include the contributions from lattice $D_{1}$ and boundary diffusion $D_{b}$;

    $$
    \begin{align*}
    & D_{a}=D_{1}(1-f)+f D_{b} \\
    & \frac{d x}{d t}=\frac{K^{\prime} D_{a}}{x} \tag{9.27}
    \end{align*}
    $$

    where the diffusion coefficient has been extracted from the rate constant to give another constant $K^{\prime}$. Low-temperature oxidation and oxide layers with fine grain sizes are expected to form by boundary diffusion.
    Chemical Diffusion in Nonstoichiometric Oxides. The chemical diffusion coefficient for the counter diffusion of cations and anions can also be determined from the Wagner analysis. If we assume that electrical conduction is mainly electronic ( $t_{\mathrm{el}} \approx 1$ ) that is, movement of electrical charge is not the rate-limiting step for mass transport (ions), the chemical diffusion coefficient $\bar{D}$ can be determined. In terms of diffusion coefficients rather than transference numbers Eq. 9.15 becomes

    $$
    \begin{equation*}
    J_{\mathrm{ox}}=\frac{c_{0}}{\left|Z_{\mathrm{Mc}}\right|}\left(\left|Z_{\mathrm{Mc}}\right| D_{0}+\left|Z_{\mathrm{o}}\right| D_{\mathrm{Mc}}\right) \frac{1}{k T} \frac{d \mu_{0}}{d x} \tag{9.28}
    \end{equation*}
    $$

    In terms of Fick's first law this can be rewritten

    $$
    \begin{equation*}
    J_{\mathrm{ox}}=\left[\left(\left|Z_{\mathrm{Me}}\right| D_{\mathrm{o}}+\left|Z_{\mathrm{o}}\right| D_{\mathrm{Mc}}\right) \frac{c_{0}}{\left|Z_{\mathrm{Mc}}\right|}\left(\frac{1}{k T} \frac{d \mu_{0}}{d \bar{c}}\right)\right] \frac{d \bar{c}}{d x}=\bar{D} \frac{d \tilde{c}}{d x} \tag{9.29}
    \end{equation*}
    $$

    where $\bar{c}$ represents the excess (or deficit) of the metal or oxygen in the nonstoichiometric compound. The chemical diffusion coefficient is the bracketed term. Consider, for example, the transition metal monoxides ( $\mathrm{Fe}_{\mathrm{t}_{1-\delta} \mathrm{O}} \mathrm{O}, \mathrm{Ni}_{1-8} \mathrm{O}, \mathrm{Co}_{1-\delta} \mathrm{O} \cdots$ ) for which $\bar{c} \propto\left[V_{\mathrm{me}^{\circ}}{ }^{\circ}\right]$, where $\alpha$ is the effective charge on the vacancy and where $D_{M_{c}} \gg D_{0}$. The chemical diffusion coefficient can be written from Eq. 9.29 in the form

    $$
    \begin{equation*}
    \bar{D}=\frac{1}{2} \frac{c_{\mathrm{Mc}_{c}}}{\left[V_{\mathrm{Mc}_{c}{ }^{\circ}}\right]} D_{\mathrm{Mc}_{\mathrm{c}}} \frac{d \ln P_{\mathrm{O}_{2}}}{d \ln \left[V_{\left.\mathrm{Me}_{c}{ }^{\sigma^{\prime}}\right]}\right.} \tag{9.30}
    \end{equation*}
    $$

    for which the substitution $d \mu_{0}=1 / 2 k T d \ln P_{O_{2}}$ has been made. From the defect equilibrium reaction, the mass action law gives

    ## $\checkmark$

    ## REACTIONS WITH AND BETWEEN SOLIDS

    ron the
    metal rmining e rapid can be ?parent Ide the
    onstant $z$ layers 1.

    11 diffualso be ectrical ectrical remical coeffi-

    1 in the
    : is the roxides is the remical
    om the

    The derivative in Eq. 9.30 can now be determined;

    $$
    \begin{equation*}
    \frac{d \ln P_{O_{3}}}{d \ln \left[V_{M e}{ }^{a^{\prime}}\right]}=2(\alpha+1) \tag{9.32}
    \end{equation*}
    $$

    Substituting this into Eq. 9.30 and recalling that $c_{M_{c}} D_{M c}=c_{V} D_{V}$, the chemical diffusion coefficient is given by

    $$
    \begin{equation*}
    \bar{D}=(\alpha+1) D_{v_{\mu e_{0}}} \tag{9.33}
    \end{equation*}
    $$

    Thus for singly charged vacancies, $\tilde{D}=2 D_{v_{u c}}$, and for doubly charged vacancies, $\bar{D}=D_{V \mathcal{H}_{c}}$.
    If the oxygen pressure is changed from one value to another, a new $\mathrm{O} / \mathrm{Me}$ value is established in a nonstoichiometric oxide, and the oxidation-reduction rate is determined by a diffusion coefficient of the type in Eq. 9.33. This value is larger than the diffusivity of the cation or the anion. Figure 9.12 shows the chemical diffusion coefficient determined
    in $\mathrm{Fe}_{1-\delta} \mathrm{O}$ controlled changes in the composition. The value of the chemical diffu-
    

    Fig. 9.12. Temperature dependence of the chemical-diffusion coefficient of wustite for several composition increments. From R. L. Levin and J. B. Wagner, Trans. AIME, 233, 159 (1965).
    sion coefficient correlates with the tracer value (Eq. 9.30) when the defect equilibrium relationships are known.
    Ambipolar Diffusion. The formality used to derive Eqs. 9.11 and 9.13 also allows us to determine the effective diffusion constants when cations and anions are flowing in the same direction. Referred to as ambipolar diffusion, a description of the atomistic process must again consider the coupling between the oppositely charged species when the transport of electrons and holes is slower than ion transport. If the flux of cations becomes excessive, a local internal electric field builds up to "drag" along the anions. This behavior is important in processes involving reactions which cause product formation, in processes which are in response to an applied electric field, and in processes which result in a shape change due to mechanical or surface tension forces such as sintering and creep.
    As an example, consider a pure oxide for which $t_{\mathrm{el}} \approx 0$. Equation 9.11 can be written for anion and cation transport as in Eq. 9.13. Since the transport of each ion is in the same direction, electrical neutrality is maintained when

    $$
    \begin{equation*}
    J_{T}=\frac{J_{0}}{\left|Z_{\mathrm{Mc}}\right|}=\frac{J_{\mathrm{Mc}}}{\left|Z_{0}\right|} \tag{9.34}
    \end{equation*}
    $$

    where $J_{T}$ refers to the total molecular flux. Equating the anion and cation charge flux allows for the solution of the internal electric field, $\partial \phi / \partial x$,

    $$
    \begin{equation*}
    \left|Z_{0}\right| c_{0} B_{0}\left[\frac{\partial \mu_{0}}{\partial x}+Z_{0} F \frac{\partial \phi}{\partial x}\right]=\left|Z_{\mathrm{Me}}\right| c_{\mathrm{Me}} B_{\mathrm{Me}}\left[\frac{\partial \mu_{\mathrm{Me}}}{\partial x}+Z_{\mathrm{Mc}} F \frac{\partial \phi}{\partial x}\right] \tag{9.35}
    \end{equation*}
    $$

    in terms of the chemical potential of the oxide, $\mu\left(\mathrm{Me}_{\mathrm{z}_{\mathrm{O}}} O_{\mathrm{z}_{\mathrm{m}}}\right)$. The chemical potential of the oxide is the sum of the chemical potentials of cations and anions,

    $$
    \begin{equation*}
    d \mu\left(\mathrm{Me}_{z_{0}} O_{Z_{\mathrm{m}_{c}}}\right)=Z_{\mathrm{Mc}} d \mu_{0}+Z_{0} d \mu_{M_{c}} \tag{9.36}
    \end{equation*}
    $$

    which yields the coupling field in terms of mobilities, concentrations, and the chemical potential,
    where we have assumed local equilibrium, $\left|Z_{\mathrm{Mc}}\right| d c_{\mathrm{Mc}}=\left|Z_{0}\right| d c_{0}$. Substitution of Eq. 9.37 into Eqs. 9.34 and 9.13 yields

    This term is the correction due to ambipolar effects to the diffusion transport resulting from a chemical potential gradient. Consider as an

    0 REACTIONS WITH AND BETWEEN SOLIDS
    : defect
    nd 9.13 cations ibipolar .der the port of cations $\because$ along :actions se to an nge due reep. :on 9.11 nce the ality is

    1 cation
    $\partial x$,
    hemical ons and ins, and
    sbstitu-
    iffusion ` r as an
    example of the applicability of Eq. 9.38 to sintering of pure MgO for which the values of $Z_{\mathrm{Mg}_{\mathrm{g}}}=\left|Z_{0}\right|=2$ and $c_{\mathrm{Mg}_{8}}=c_{0}=c$ :

    $$
    \begin{equation*}
    J_{T}=-\frac{c B_{M_{B}} B_{0}}{\left[B_{M_{z}}+B_{0}\right]} \frac{\partial \mu_{M_{50}}}{\partial x} \tag{9.39}
    \end{equation*}
    $$

    Since $\mu_{\mathrm{Mg}}=\mu_{\mathrm{Mg}_{g}}^{\circ}+R T \ln a \approx \mu_{\mathrm{Mg}}^{\circ}+R T \ln c$, Eq. (9.39) can be expressed as
    where $\frac{d c_{M_{k} O}}{d x}$ is the concentration gradient due to curvature (Chapter 10 ). Recalling that the tracer diffusion coefficient and mobility are related by Eq. (6.11),

    $$
    \begin{equation*}
    J_{T} \approx-\frac{D_{M_{8}}{ }^{T} D_{0}^{T}}{\left[D_{M_{B}}{ }^{T}+D_{0}{ }^{T}\right]} \frac{d c_{\mathrm{M}_{8} \mathrm{O}}}{d x} \tag{9.41}
    \end{equation*}
    $$

    Thus the total molecular transport may be governed by the slowestmoving specie if there is a large difference in diffusivities (e.g., $D_{M_{g}} \gg D_{0}$; $J_{T} \propto D_{0}$ ) or by an intermediate value when they are not too disimilar (e.g., $\left.D_{M_{R}}=3 D_{0} ; J_{T} \propto D_{M_{g}} / 4\right)$.

    Since some ions transport more rapidly in boundaries or along dislocations, a relationship for ambipolar diffusion can be derived when paths other than the lattice are assumed. A simple case has been derived for steady-state grain boundary and lattice transport.* The effective area of transport in the lattice $A^{t}$ and boundary $A^{b}$ must be incorporated in the equation for total mass flow. For the case of a pure material MO the effective diffusion coefficient is similar in form to Eq. 9.41 and given by

    $$
    \begin{equation*}
    D_{\text {effective }}=\frac{\left(A^{\prime} D_{M_{c}}{ }^{\prime}+A^{b} D_{M_{c}}^{b}\right)\left(A^{\prime} D_{0}^{\prime}+A^{b} D_{0}^{b}\right)}{\left(A^{\prime} D_{M c}{ }^{\prime}+A^{b} D_{M c}^{b}\right)+\left(A^{\prime} D_{0}^{\prime}+A^{b} D_{0}^{b}\right)} \tag{9.42}
    \end{equation*}
    $$

    where $D^{\prime}$ refers to lattice diffusion and $D^{b}$ refers to boundary diffusion. In many oxides, it has been observed that $A^{b} D_{0}^{b} \gg A^{\prime} D_{0}{ }^{\prime}$ and that $A^{l} D_{\text {me }}{ }^{\prime}>A^{b} D_{\text {Me }}{ }^{b}$; thus Eq. 9.42 reduces to

    $$
    \begin{equation*}
    D_{\text {effective }} \approx \frac{A^{\prime} D_{M_{c}^{\prime}} A^{b} D_{0}^{b}}{A^{\prime} D_{M_{c}}{ }^{\prime}+A^{b} D_{0}^{b}} \tag{9.43}
    \end{equation*}
    $$

    Diffusive transport in real materials is more complex, owing to impurities and imperfections, but relationships like these can be derived to include more complex situations. $\dagger$
    *R. S. Gordon, J. Am. Ceram. Soc., 56, 147 (1973).
    tD. W. Readey, J. Am. Ceram. Soc., 49, 366 (1966).

    ## INTRODUCTION TO CERAMICS

    ### 9.3 Reactant Transport through a Fluid Phase

    As discussed in Section 9.1, heterogeneous reactions at high temperatures require, first, material transfer to the reaction interface, second, reaction at the phase boundary, and in some cases diffusion of products away from the reaction site. Any of these steps can have the lowest virtual reaction rate and be rate-controlling for the overall process. Generally, once a reaction is initiated, material-transfer phenomena determine the overall rate in the high-temperature systems of importance in ceramics. As discussed in the previous section, the diffusion of ions and electrons through a stable oxide film on the surface of a metal determines the reaction rate. If, however, the film forms with cracks and fissures, the rate may be determined by gaseous diffusion through these channels. In this section we wish to consider several important examples of the way ceramic materials interact with gases and liquids and to determine the rate-limiting kinetic equations.

    Gas-Solid Reactions: Vaporization. The simplest kind of solid-gas reactions are those related to vaporization or thermal decomposition of the solid. Section 9.4 contains a discussion of the decomposition of a solid to a gas and another solid; in this section we are primarily concerned with reactions in which the solid forms only gaseous products. The rate of decomposition is dependent on the thermodynamic driving forces, on the surface-reaction kinetics, on the condition of the reaction surface, and on the ambient atmosphere; for example, at high temperatures oxides volatilize much more rapidly in a vacuum than in air.
    The loss of silica from glass and refractories in reducing atmospheres is an important factor which limits the usefulness of these ceramic products. Consider the following reaction which can cause the volatilization of $\mathrm{SiO}_{2}$ :

    $$
    \begin{equation*}
    2 \mathrm{SiO}_{2}(s)=2 \mathrm{SiO}(g)+\mathrm{O}_{2}(g) \tag{9.44}
    \end{equation*}
    $$

    At $1320^{\circ} \mathrm{C}$, the equilibrium constant is

    $$
    \begin{equation*}
    K_{\mathrm{eq}}=\frac{P_{\mathrm{SiO}}^{2} P_{\mathrm{O}_{2}}}{a_{\mathrm{SiO}_{2}}^{2}}=10^{-25} \tag{9.45}
    \end{equation*}
    $$

    Assuming unit activity for the silica, it is apparent that the ambient oxygen partial pressure controls the pressure of $\mathrm{SiO}(g)$ and therefore the rate of vaporization. Under reducing conditions (inert atmosphere, $\mathrm{H}_{2}$ or CO atmosphere) of $P_{\mathrm{O}_{2}}=10^{-16} \mathrm{~atm}$, the SiO pressure is $3 \times 10^{-4} \mathrm{~atm}$ (0.23 torr).

    The rate of evaporation near equilibrium is given by the Knudsen
    equation:*
    where $\frac{d n_{1}}{d t}$ is sample area, weight of $i$, a gas flow rate sample is no evaporation I be in equilib: total pressur
    where $A$ is i
    When the . mixtures $P_{\mathrm{O}_{2}}$
    where $P_{O_{2}}$ is tion reaction

    For the va rate of abou actual $\mathrm{SiO}_{2} \mathbf{k}$ in hydrogen.

    The effect of from Fig. 9. decreased b)

    Chemical ' active transf vapor-phase film electron controlling tI rate of depos the temperat


    :mperasecond, roducts lowest rocess. 10mena ortance ons and ermines res, the nels. In the way ine the
    slid-gas ition of fa solid ed with rate of , on the and on oxides
    heres is oducts. ition of
    umbient iore the
    $2, \mathrm{H}_{2}$ or $0^{-4} \mathrm{~atm}$
    nudsen
    \[

    $$
    \begin{equation*}
    \frac{d n_{i}}{d t}=\frac{A P_{i} \alpha_{i}}{\sqrt{2 \pi M_{i} R T}} \tag{9.46}
    \end{equation*}
    $$

    \]

    where $\frac{d n_{1}}{d t}$ is the loss of component $i$ in moles per unit time, $A$ is the sample area, $\alpha_{i}$ is the evaporation coefficient ( $\alpha_{i} \leq 1$ ), $M_{i}$ is the molecular weight of $i$, and $P_{1}$ is the pressure of $i$ above the sample. If there is a high gas flow rate over the sample or if the evaporation is into a vacuum, the sample is not able to maintain its equilibrium vapor pressure $P_{i}$, and the evaporation rate is controlled by the interface reaction rate. For the gas to be in equilibrium with the solid, the gas flow rate $S$ (moles/sec) and the total pressure $P^{T}$ (atm) must satisfy the inequality

    $$
    \begin{equation*}
    \frac{A \alpha_{1} P^{\tau}}{S\left(M_{i} T\right)^{1 / 2}} \gg 2.3 \times 10^{-9} \tag{9.47}
    \end{equation*}
    $$

    where $A$ is in square centimeters and $T$ in degrees Kelvin.
    When the oxygen partial pressure in the gas phase is controlled by gas mixtures $\mathrm{P}_{\mathrm{O}_{2}}{ }^{\text {ex1 }}$, the equation (9.46) becomes

    $$
    \begin{equation*}
    J_{\mathrm{O}_{2}}=\frac{\left.\left(\mathrm{P}_{\mathrm{O}_{2}}-P_{\mathrm{O}_{2}}{ }^{\text {cxt }}\right)\right)_{\mathrm{O}_{2}}}{\left(2 \pi M_{\mathrm{o}_{2}} R T\right)^{1 / 2}} \tag{9.48}
    \end{equation*}
    $$

    where $P_{\mathrm{O}_{2}}$ is calculated from the standard free energy of the decomposition reaction (e.g. Eq. 9.45).
    For the vaporization of $\mathrm{SiO}_{2}$ by reaction ( 9.44 ), Eq. 9.46 predicts a loss rate of about $5 \times 10^{-5}$ moles $\mathrm{SiO}_{2} / \mathrm{cm}^{2} \mathrm{sec}$ at $1320^{\circ} \mathrm{C}$. Figure 9.13 shows actual $\mathrm{SiO}_{2}$ loss rates from various silica-containing refractories annealed in hydrogen. The overall decomposition reaction in this case is

    $$
    \begin{equation*}
    \mathrm{H}_{2}(\mathrm{~g})+\mathrm{SiO}_{2}(\mathrm{~s})=\mathrm{SiO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \tag{9.49}
    \end{equation*}
    $$

    The effect of a few mole percent water vapor in the gas stream is evident from Fig. 9.14. As predicted from Eq. 9.49, the $\mathrm{SiO}(g)$ pressure is decreased by an increase in the $\mathrm{H}_{2} \mathrm{O}(g)$ pressure.
    Chemical Vapor Transport. Next let us consider the reaction of an active transport gas with a ceramic. The net effect is to increase the vapor-phase transport. Some high-temperature ceramics and many thinfilm electronic devices are prepared by chemical vapor deposition. By controlling the chemical potential (concentration) of reaction gases, the rate of deposition can be controlled. Generally the rate of deposition and the temperature of deposition determine the reaction kinetics and rates at


    
    (a)
    
    (b)

    Fig. 9.13. (a) Weight loss of brick at $1425^{\circ} \mathrm{C}$ in $100 \%$ hydrogen. (b) Weight loss of brick after 50 hr in $100 \%$ hydrogen. From M. S. Crowley. Bull. Am. Ceram. Soc.. 46, 679 (1967).

    Fig. 9.14
    vapor w:
    which surface tion. or supers: a poly porosit materic temper
    single-s epitaxi: orienta

    To u
    a knou respect reactan nations of the $s$ system Consid held at chambe
    

    Fig. 9.14. Weight loss of brick at $1370^{\circ} \mathrm{C}$ in $75 \% \mathrm{H}_{2}-25 \% \mathrm{~N}_{2}$ atmosphere. After 32 hr water vapor was added for 150 hr . From M.S. Crowley, Bull. Am. Ceram. Soc.,46,679 (1967).
    which the decomposition products can "crystallize" on the reaction surface. If the supersaturation is large, homogeneous gas-phase nucleation occurs; that is, a heterogeneous surface is not needed. As the supersaturation is reduced, the gases react in the vicinity of a surface, and a polycrystalline deposit is formed. The perfection of the deposit, porosity, preferred grain orientation, and so on, depend on the particular material and the rate of deposition; usually slower deposition and higher temperatures result in a more perfect reaction product. Finally, when a single-crystal substrate is used as the heterogeneous reaction surface, epitaxial deposition occurs. In the latter case, a single crystal with an orientation determined by the substrate is formed.
    To understand the kinetics of chemical vapor deposition fully requires a knowledge of all of the thermodynamic equilibria involved and the respective kinetic processes for the generation of reactants, mixing of reactant gases, diffusion through the boundary layers, molecular combinations at the interface, exsolution of gaseous products, surface diffusion of the solid products, and so on. We have chosen, as an example, a simple system for which the rate-determining step is diffusion in the gas phase. Consider the closed system shown in Fig. 9.15 in which two chambers are

    ## 406

    INTRODUCTION TO CERAMICS
    
    $\mathrm{FeO}(s)+2 \mathrm{HCl}(\mathrm{g}) \stackrel{T_{h}}{\underset{T_{C}}{\rightleftarrows}} \mathrm{FeCl}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$

    $$
    D(\text { gas })=4 \times 10^{-7} \frac{T_{\mathrm{Ar}}^{1.8}}{P_{\text {System }}} \mathrm{cm}^{2} / \mathrm{sec}
    $$

    Fig. 9.15. Schematic diagram of chemical vapor transport of iron oxide in a temperature gradient.
    matter is from the hot chamber to the cooler chamber because of the concentration gradient (the direction of transport is determined by the sign of the enthalpy of the reaction).

    The kinetics of mass transport as determined by the diffusion of the rate-limiting specie-for example, diffusion of $\mathrm{FeCl}_{2}(g)$-is given by Fick's law:

    $$
    \begin{equation*}
    \frac{d n}{d t}=-A D \frac{\partial c}{\partial x}=-A D \frac{\Delta c}{l}=-A D \frac{\left(c_{h}-c_{c}\right)}{l} \tag{9.50}
    \end{equation*}
    $$

    where $n$ is the number of moles transported, $A$ the cross-sectional area of the connecting tube $\left(\mathrm{cm}^{2}\right), D$ the diffusion coefficient of the rate-limiting specie, and $c$ the concentrations in the respective isothermal chambers. For an ideal gas

    $$
    \begin{equation*}
    c_{h}=\frac{n_{h}}{V_{1}}=\frac{P_{h}}{R T_{h}} \tag{9.51}
    \end{equation*}
    $$

    and the composition difference is

    $$
    \begin{equation*}
    \left(c_{h}-c_{c}\right)=\frac{\left(P_{h}-P_{c}\right)}{R T_{a v}} \tag{9.52}
    \end{equation*}
    $$

    The equilit of formatic

    In a clos
    $B$ atm re formation (9.54) redı
    which car prediction

    In genel total pres gas-phase line-of-sig diffusion-1 pressures convectio boundary Liquidof the kin in liquids, by molteI compones ceramic t required 1 rate of th fixed by $t$ crystal gr leads to a away fros material 1 the liquic natural c

    For a :
    

    ## INTRODUCTION TO CERAMICS

    fluid flow produced by hydrodynamic instabilities, the rate of dissolution is governed by molecular diffusion. The kinetics are similar to those discussed in Chapter 6 on diffusion. The effective diffusion length over which mass is transported is proportional to $\sqrt{\overline{D t}}$, and therefore the change in thickness of the specimen, which is proportional to the mass dissolved, varies with $t^{1 / 2}$. Even in a system which may undergo convection due to hydrodynamic instabilities from density gradients which arise from thermal gradients or from concentration gradients (due to dissolution), the initial dissolution kinetics should be governed by molecular diffusion.
    The diffusion coefficient for dissolution kinetics must be considered in the same light as in Section 9.2; the electrical and chemical effects of the various possible species must be accounted for. For example, the dissolution of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in a silicate slag may be controlled by any of the cations or anions in the $\mathrm{Al}_{2} \mathrm{O}_{3}$ or slag or more probably a combination (e.g., Eq. 9.41). An example of dissolution controlled by molecular diffusion is shown in Fig. 9.16 for the dissolution of sapphire in a $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ melt containing $21 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$.
    Natural or free convection occurs, owing to hydrodynamic instabilities in the liquid which give rise to fluid flow over the solid. This enhances the dissolution kinetics. It has often been observed in metals processing that the amount of dissolution is dependent on whether or not the ceramic is totally immersed in the liquid. Generally, a partially submerged sample undergoes more extensive dissolution near the liquid-gas interface, called
    

    Fig. 9.16. Dissolution of sapphire square root of time. From Ref. 6 .
    the metal lin from free ec induction pe of dissolutio sion for mas
    where $j$ is removed, $c_{\infty}$ at the inter thickness, $L$ layer, and $\bar{V}$ Fig. 9.17 an
    where ( $d c /$. boundary-la of fluid flow slower mate layers and $\mathbf{p}$ in glasses a combine to boundary la aqueous sol ter. Also the

    ## $\boldsymbol{p}$

    7

    ## REACTIONS WITH AND BETWEEN SOLIDS

    slution those $h$ over re the = mass onvec$h$ arise issolu'ecular
    zred in of the e, the of the nation
    lecular
    $z$ in $a$
    bilities准 the ig that amic is :ample called
    the metal line. Below this interface the corrosion kinetics can be analyzed from free convection principles. It is clear that after a relatively short induction period during which molecular diffusion kinetics prevail the rate of dissolution becomes nearly independent of time. The general expression for mass transport during convection is

    $$
    \begin{equation*}
    j=\frac{d n / d t}{A}=\frac{D\left(c_{1}-c_{\mathbf{o}^{\prime}}\right)}{\delta\left(1-c_{1} \bar{V}\right)} \tag{9.56}
    \end{equation*}
    $$

    where $\mathbf{j}$ is the number of moles per second per square centimeter removed, $c_{\infty}$ is the concentration in the bulk liquid, $c_{1}$ is the concentration at the interface (saturation concentration), $\delta$ is the boundary layer thickness, $D$ is the effective diffusion coefficient through the boundary layer, and $\bar{V}$ is the partial molar volume. The boundary layer is shown in Fig. 9.17 and defined by

    $$
    \begin{equation*}
    \delta=\frac{c_{i}-c_{\infty}}{(d c / d y)} \tag{9.57}
    \end{equation*}
    $$

    where (dc/dy): is the concentration gradient at the interface. The boundary-layer thickness is determined by the hydrodynamic conditions of fluid flow. Viscous liquids form thicker boundary layers and cause slower material transfer. Higher liquid velocities form thinner boundary layers and permit more rapid material transfer. For refractory dissolution in glasses and silicate slags, the high viscosity and slow fluid velocity combine to give relatively thick boundary layers. The thickness of the boundary layer may be a centimeter. In comparison, for rapidly stirred aqueous solutions the boundary-layer thickness is a fraction of a millimeter. Also the diffusion rate is much slower in viscous silicate liquids than
    

    Distance from interface (cm)
    Fig. 9.17. Concentration gradient through diffusion layer at a solution interface.
    in aqueous solutions, so that there is more of a tendency for the reaction process to be controlled by material-transfer phenomena rather than interface reactions.

    Values for the boundary-layer thickness have been derived for special cases in fluid flow. The boundary-layer thickness for mass transport from a vertical slab with natural convection caused by density-difference driving forces is

    $$
    \begin{equation*}
    \delta=1.835 \times\left[\frac{D \nu \rho_{\infty}}{g x^{3}\left(\rho_{i}-\rho_{\infty}\right)}\right]^{1 / 4} \tag{9.58}
    \end{equation*}
    $$

    where $x$ is the distance from the leading edge of the plate, $\nu$ is the kinematic viscosity $\eta / \rho, g$ is the gravitational constant, $\rho_{-}$is the density of the bulk liquid, and $\rho_{i}$ is the density of the saturated liquid (the liquid at the interface). Thus the average dissolution rate for a plate of height $h$ is given by

    $$
    \begin{equation*}
    J=\frac{d n / d t}{A}=0.726 D\left(\frac{g\left(\rho_{i}-\rho_{\infty}\right)}{\nu D h \rho_{\infty}}\right)^{1 / 4}\left(c_{i}-c_{\infty}\right) \tag{9.59}
    \end{equation*}
    $$

    The boundary-layer thickness for mass transport from a rotating disc is

    $$
    \begin{equation*}
    \delta=1.611\left(\frac{D}{\nu}\right)^{1 / 3}\left(\frac{\nu}{\omega}\right)^{1 / 2} \tag{9.60}
    \end{equation*}
    $$

    where $\omega$ is the angular velocity ( $\mathrm{rad} / \mathrm{sec}$ ). The mass transfer for a rotating disc is proportional to the square root of the angular velocity:

    $$
    \begin{equation*}
    j=\frac{d n / d t}{A}=0.62 D^{2 / 3} \nu^{-i / 6} \omega^{1 / 2} \frac{\left(c_{1}-c_{\infty}\right)}{\left(1-c_{1} \bar{V}\right)} \tag{9.61}
    \end{equation*}
    $$

    Figure 9.18 shows the dissolution kinetics of sapphire into $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}$ $\mathrm{SiO}_{2}$ for the free convection kinetics and in Fig. 9.19 for forced flow. In each case the kinetics are time-independent, as predicted by Eqs. 9.59 and 9.61 .

    Comparison of the data for sapphire dissolution at $1550^{\circ} \mathrm{C}$ for kinetics limited by molecular diffusion, free convection, and forced convection ( $126 \mathrm{rad} / \mathrm{sec}$ ) show the dimensional change $\Delta R(\mathrm{~cm})$ to be related to time as

    $$
    \begin{align*}
    \Delta R(\text { molecular diffusion }) & =\left(1.77 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}^{1 / 2}\right) t^{1 / 2} \\
    \Delta R(\text { free convection }) & =\left(3.15 \times 10^{-6} \mathrm{~cm} / \mathrm{sec}\right) t  \tag{9.62}\\
    \Delta R(\text { forced convection }) & =\left(9.2 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}\right) t
    \end{align*}
    $$

    The important parameters for convective dissolution are fluid velocity, kinematic viscosity, the diffusivity, and the composition gradient.
    

    Fig.9.18. Dissolution at relatively long times of sapphire cylinders in $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ with $21 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ versus time. From Ref. 6 .

    It is clear from the data in Figs. 9.16 and 9.19 that the dissolution rate is extremely temperature-sensitive. Since we have assumed transportlimited kinetics, the temperature dependence is largely determined by the exponential temperature dependence of diffusion (Eq. 6.39). The dependence of the corrosion rate of several ceramics on temperature is shown in Fig. 9.20.
    

    Fig. 9.19. (a) Dependence of rate of dissolution of face of sapphire disk on square root of angular velocity.
    
    (b)

    Fig. 9.19 (continued). (b) Rate of dissolution of face of sapphire disk rotating at $126 \mathrm{rad} / \mathrm{sec}$ on $\mathrm{CaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ with $21 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$. From Ref. 6.
    

    Fig. 9.20. Temperature dependence of forced convection corrosion in the $40 \mathrm{CaO}-20 \mathrm{Al}_{2} \mathrm{O}_{3}-$ $40 \mathrm{SiO}_{2}$ slag of alumina, mullite, and fused silica. From Ref. 6 .

    Fig.9.21. Cor slag of indicate From Ref. 6.

    Refractor ities in the ideal surfac bodies and corrosion, : ceramics, c from the d $\varepsilon$ is about 40

    ### 9.4 React

    Of partis tions whicl the dehyc polymorph products ir of these re
    

    Fig.9.21. Corrosion rate under forced convection conditions in the $40 \mathrm{CaO}-20 \mathrm{Al}_{2} \mathrm{O}_{3}-40 \mathrm{SiO}_{2}$ slag of indicated specimens of sapphire, polycrystalline alumina, mullite, and vitreous silica. From Ref. 6.

    Refractory corrosion is often much more complex. Besides complexities in the hydrodynamics of a molten bath, refractories seldom have ideal surfaces and are usually not of uniform composition. Multiphase bodies and brick with extensive porosity provide centers for accelerated corrosion, spalling, and penetration by the liquid. In dense single-phase ceramics, corrosion may be greatest at grain boundaries. This can be seen from the data in Fig. 9.21, in which the corrosion of polycrystalline $\mathrm{Al}_{2} \mathrm{O}_{3}$ is about $40 \%$ greater than sapphire after 2500 sec.

    ### 9.4 Reactant Transport in Particulate Systems

    Of particular interest to ceramists is the large number of transformations which occur with granular or powdered raw materials; for example, the dehydration of minerals, decarbonization of carbonates, and polymorphic transformations. In general, the minerals and reaction products involved are used in large volumes; thus even though the nature of these reactions is complex, study of a few examples is important and

    ## 4

    ## INTRODUCTION TO CERAMICS

    elucidates the important kinetic parameters and illustrates the concept of the rate-limiting step.

    Calcination and Dehydration Reactions. Calcination reactions are common for the production of many oxides from carbonates, hydroxides, sulfates, nitrates, acetates, oxalates, alkoxides, and so on. In general the reactions produce an oxide and a volatile reaction product (e.g., $\mathrm{CO}_{2}, \mathrm{SO}_{2}$, $\mathrm{H}_{2} \mathrm{O}, \ldots$ ). The most extensively studied reactions are the decomposition of $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{MgCO}_{3}$, and $\mathrm{CaCO}_{3}$. Depending on the particular conditions of temperature, time, ambient pressure, particle size, and so on, the process may be controlled (1) by the reaction rate at the reaction surface, (2) by gas diffusion or permeation through the oxide product layer, or (3) by heat transfer. The kinetics of each of these rate-limiting steps is considered.

    Let us first consider the thermodynamics of decomposition, for example, the calcination of $\mathrm{CaCO}_{3}$ :

    $$
    \begin{equation*}
    \mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \quad \Delta H_{\text {react }}^{298}=44.3 \mathrm{kcal} / \mathrm{mole} \tag{9.63}
    \end{equation*}
    $$

    The standard heat of reaction is $44.3 \mathrm{kcal} / \mathrm{mole}$, that is, strongly endothermic, which is typical for most decomposible salts of interest. This means that heat must be supplied to the decomposing salt.
    The standard free energy for the decomposition of $\mathrm{CaCO}_{3}, \mathrm{MgCO}_{3}$, and $\mathrm{Mg}(\mathrm{OH})_{2}$ is plotted in Fig. 9.22. The equilibrium partial pressure of the gas for each of the reactions is also plotted in Fig. 9.22. Note, for example, that when $\Delta G^{\circ}$ becomes zero, $P_{\mathrm{co}_{2}}$ above $\mathrm{MgCO}_{3}$ and $\mathrm{CaCO}_{3}$ and $P_{\mathrm{H}_{2} \mathrm{O}}$ above $\mathrm{Mg}(\mathrm{OH})_{2}$ have become 1 atm . The temperatures at which this occurs are $1156^{\circ} \mathrm{K}\left(\mathrm{CaCO}_{3}\right), 672^{\circ} \mathrm{K}\left(\mathrm{MgCO}_{3}\right)$, and $550^{\circ} \mathrm{K}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$. The $P_{\mathrm{CO}_{2}}$ normally in the atmosphere and the range of $\boldsymbol{P}_{\mathrm{H}_{2} \mathrm{O}}$ (humidity) in air are also shown in Fig. 9.22. From these values we can determine the temperature at which the salt becomes unstable when fired in air. For example, CaCO , becomes unstable over $810^{\circ} \mathrm{K}, \mathrm{MgCO}_{3}$ above $480^{\circ} \mathrm{K}$. Depending on the relative humidity, $\mathrm{Mg}(\mathrm{OH})_{2}$ becomes unstable above 445 to $465^{\circ} \mathrm{K}$. Because acetates, sulfates, oxalates, and nitrates have essentially zero partial pressure of product gases in the ambient atmosphere, it is clear that they are unstable at room temperature. That they exist as salts to a decomposition temperature of about $450^{\circ} \mathrm{K}$ indicates that their decomposition is governed by atomistic kinetic factors and not by thermodynamics.

    The kinetics, as noted above, may be limited by the reaction at the surface, the flow of heat from the furnace to the reaction surface, or the diffusion (permeation) of the product gas from the reaction surface to the ambient furnace atmosphere. This is shown schematically in Fig. 9.23, which also includes the appropriate heat and mass flow equations. The
    

    Fig.9.22.
    the equilibi
    rate-limit decompo atures th tures su. atomistic
     tmosthey cates d not
    it the or the o the 9.23, The
    
    $\mathrm{CO}_{2}$ flow to furnace

    $$
    \begin{aligned}
    J_{\text {inicrisec }} & =k_{r} 4 \pi r^{2}\left(P_{e}-P_{r}\right) \\
    J_{2} & =4 \pi \frac{D_{\mathrm{CO}_{2}}^{\prime}\left(P_{s}-P_{s}\right) r r_{s}}{r_{s}-r} \\
    J_{1} & =4 \pi r_{s}^{2} \frac{D_{\mathrm{CO}}^{\prime \prime}}{\delta}\left(P_{s}-P_{f}\right) \\
    P_{s} & =e^{-\Delta G \cdot \pi T_{t}} \\
    \delta & =\text { boundary-layer thickness }
    \end{aligned}
    $$

    Heat flow to reaction interface

    $$
    \begin{aligned}
    q_{\text {interisec }} & =\frac{4 \pi r^{2} \rho}{M} \Delta H_{T}^{\circ}, \frac{d r}{d t} \\
    q_{1} & =h_{s} 4 \pi r_{s}^{2}\left(T_{f}-T_{s}\right) \\
    q_{2} & =\frac{4 \pi k\left(T_{s}-T_{f}\right) r r_{s}}{r_{s}-r} \\
    \rho & =\text { density of } \mathrm{CaCO}_{3} \\
    M & =\text { molecular weight } \\
    h_{s} & =\text { heat-transfer coefficient } \\
    k & =\text { thermal conductivity of } \mathrm{CaO}
    \end{aligned}
    $$

    Fig. 9.23. Schematic representation of the decomposition of a spherical particle (e.g., $\mathrm{CaCO}_{3}$ ) of a salt which yields a porous oxide product (e.g., CaO ) and a gas ( $\mathrm{CO}_{2}$ ). The reaction is endothermic, requiring heat transfer. The driving forces for heat and mass transport for steady-state decomposition are expressed as temperatures and pressures in the furnace ( $T_{f}, P_{f}$ ), at the particle surface ( $T_{s}, P_{s}$ ), and at the reaction interface ( $T_{r}, P_{r}$ ).
    the transport of heat to the reaction interface or gaseous product away from the interface.

    The reaction shown schematically in Fig. 9.23 is heterogeneous; that is, the reaction occurs at a sharply defined reaction interface. Figure 9.24 shows this interfacial area for $\mathrm{MgCO}_{3}$ for which the reaction proceeds

    Fig. 9.24. of basic n approachii crystallite: Ceram. Ş from nucleation sites on the surface of the $\mathrm{MgCO}_{3}$ platelets. The
    

    ## INTRODUCTION TO CERAMICS

    decomposition kinetics for cylindrical geometry is

    $$
    \begin{equation*}
    (1-\alpha)^{1 / 2}=1-k t / r_{0} \tag{9.64}
    \end{equation*}
    $$

    where $\alpha$ is the fraction decomposed, $k$ is the thermally activated kinetic constant, $t$ is the time (assumed constant temperature), and $r_{0}$ is the initial particle radius. The first-order kinetics (Eq. 9.2) for this reaction at several temperatures is shown in Fig. 9.25 for decomposition of $\mathrm{Mg}(\mathrm{OH})_{2}$.
    The importance of the surface on the decomposition rate is indicated by the time to decompose $\left(700^{\circ} \mathrm{C}\right)$ a cleaved calcite crystal $\left(\mathrm{CaCO}_{3}\right), 60 \mathrm{hr}$, compared with an equivalent mass of the same material in powder form, 4 hr .

    At low temperatures the crystallite size strongly affects the decomposition rate; however, at higher temperatures, as the chemical driving force increases and as the thermal energy to motivate diffusional processes and reaction kinetics increases, other steps may become rate-controlling, for example the rate of heat transfer. Figure 9.26 shows the center-line temperature of a cylindrical sample of pressed $\mathrm{CaCO}_{3}$ powder which was thrust into a hot furnace. The sample temperature increases to a maximum, at which nucleation of CaO finally occurs. The decrease in temperature represents the endothermic heat absorbed by the reaction.
    The effect of varying the ambient $\mathrm{CO}_{2}$ pressure is illustrated in Fig.
    

    Fig. 9.25. Decomposition of $\mathrm{Mg}(\mathrm{OH})_{2}$ showing first-order kinetics. From R. S. Gordon and W. D. Kingery, J. Am. Ceram. Soc., 50, 8 (1967).

    Fig. 9.26. sample of A.I.CH.E.J
    9.27. As decrease

    Fig. 9.4
    (1-Pcol
    $\mathrm{R}_{\mathrm{o}}=\mathrm{dec}$,
    E. Wads

    REACTIONS WITH AND BETWEEN SOLIDS
    

    Fig. 9.26. Comparison of the furnace temperature to center-line temperature of a cylindrical sample of CaCO , thrust into a preheated furnace. From C. N. Satterfield and F. Feales, A.I.CH.E.J., 5, 1 (1959).
    9.27. As the $\mathrm{PCO}_{2}$ is increased, the driving potential for the reaction decreases, and thus the reaction rate is decreased.

    Some of the clay minerals, kaolin in particular, do not decompose in the manner shown in Fig. 9.23; that is, they do not have a heterogeneous
    

    Fig. 9.27. Rate of decomposition of CaCO , in $\mathrm{CO}_{2}$ atmosphere; $R_{\text {theor }}=$ $\left(1-P_{\mathrm{Co}_{2}} / P_{\mathrm{CO}_{2}}\right) /\left(B P_{\mathrm{CO}_{2}}+1 / R_{0}\right)$, where $P_{\mathrm{CO}_{2}}=$ equilibrium $\mathrm{CO}_{2}$ pressure, $B=$ constant, and $\mathbf{R}_{0}=$ decomposition rate in a pure neutral atmosphere. From E. P. Hyatt, I. B. Cutler, and M. E. Wadsworth, J. Am. Ceram. Soc., 41, 70 (1958).
    reaction interface or a reaction product which breaks up into small crystallites. Above $500^{\circ} \mathrm{C}$ the water of crystallization is evolved, and a pseudomorphic structure remains until $980^{\circ} \mathrm{C}$. The pseudomorph is a matrix of the original crystal structure containing large concentrations of vacant anion sites. Above $980^{\circ} \mathrm{C}$ the structure collapses irreversibly into crystalline mullite and silica, which releases heat (see Fig. 9.28).
    The reaction kinetics is controlled by the diffusion of hydroxyl ions in the bulk rather than the heterogenous surface decomposition illustrated in Fig. 9.23. The kinetics is thus homogeneous and controlled by diffusion in the solid, which gives a parabolic rate law. The dehydration kinetics of kaolinite is given (1) in Fig. 9.29 for size fractions. A similar situation is observed for the decomposition of $\mathrm{Al}(\mathrm{OH})_{3}$.

    Powder Reactions. In most processes of interest in ceramic technology, solid-state reactions are carried out by intimately mixing fine powders. This changes the geometry from that considered in Fig. 9.6, and the actual reaction is more like that illustrated in Fig. 9.30.
    If the reaction is carried out isothermally, the rate of formation of the reaction zone depends on the rate of diffusion. For the initial parts of the reaction the rate of growth of the interface layer is given to a good
    

    Fig. 9.28. Differential thermal analysis curves of kaolin clays. The sample temperature leads $(+$ ) or lags $(-)$ the furnace temperature at levels at which heat is evolved or absorbed by chemical changes.
    
    approximation by the parabolic relationship in Eq. 9.8. If $V$ is the volume of material still unreacted at time $t$, then

    $$
    \begin{equation*}
    V=\frac{4}{3} \pi(r-y)^{3} \tag{9.65}
    \end{equation*}
    $$

    The volume of unreacted material is also given by

    $$
    \begin{equation*}
    V=\frac{4}{3} \pi r^{3}(1-\alpha) \tag{9.66}
    \end{equation*}
    $$

    where $\alpha$ is the fraction of the volume that has already reacted. Combining Eqs. 9.65 and 9.66,

    $$
    \begin{equation*}
    y=r(1-\sqrt[3]{1-\alpha}) \tag{9.67}
    \end{equation*}
    $$

    Combining this with Eq. 9.8 gives for the rate of reaction

    $$
    \begin{equation*}
    (1-\sqrt[3]{1-\alpha})^{2}=\left(\frac{K D}{r^{2}}\right) t \tag{9.68}
    \end{equation*}
    $$

    Note that this is for spherical geometry where Eq. 9.64 is for cylindrical geometry. By plotting ( $1-\sqrt[3]{1-\alpha})^{2}$ against time, a reaction-rate constant equivalent to $K D / r^{2}$ can be obtained which is characteristic of the reaction conditions. The constant $K$ is determined by the chemicalpotential difference for the species diffusing across the reaction layer and by details of the geometry.

    The relationship given in Eq. 9.68 has been found to hold for many solid-state reactions, including silicate systems, the formation of ferrites, reactions to form titanates, and other processes of interest in ceramics. The dependence on different variables is illustrated for the reaction between silica and barium carbonate in Fig. 9.31. In Fig. $9.31 a$ it is observed that there is a linear dependence of the function $(1-\sqrt[3]{1-\alpha})^{2}$ on time. The dependence on particle size illustrated in Fig. 9.31 b shows that the rate of the reaction is directly proportional to $1 / r^{2}$ in agreement with Eq . 9.68: in $9.31 c$ it is shown that the temperature dependence of the reaction-rate constant follows an Arrhenius equation, $K^{\prime}=$ $K_{0}^{\prime} \exp (-Q / R T)$, as expected from its major dependence on diffusion coefficient.
    There are two oversimplifications in Eq. 9.68 which limit its applicability and the range over which it adequately predicts reaction rates. First, Eq. 9.68 is valid only for a small reaction thickness, $\Delta y$; and second, there was no consideration of a change in molar volume between the reactants and the product layer. The time dependence of the fraction reacted

    Fig.9.: (b) pa
    
    corrected for these two constraints is given as*

    $$
    \begin{equation*}
    [1+(Z-1) \alpha]^{2 / 3}+(Z-1)(1-\alpha)^{2 / 3}=Z+(1-Z)\left(\frac{K D}{r^{2}}\right) t \tag{9.69}
    \end{equation*}
    $$

    where $Z$ is the volume of particle formed per unit volume of the spherical particle which is consumed, that is, the ratio of equivalent volumes. A demonstration that Eq. 9.69 is valid even to $100 \%$ reaction is shown in Fig. 9.32 for the reaction $\mathrm{ZnO}+\mathrm{Al}_{2} \mathrm{O}_{3}=\mathrm{ZnAl}_{2} \mathrm{O}_{4}$.
    

    Fig. 9.32. Reaction between ZnO and $\mathrm{Al}_{2} \mathrm{O}_{3}$ to form $\mathrm{ZnAl}_{2} \mathrm{O}_{4}$ at $1400^{\circ} \mathrm{C}$ in air (two spherical particle sizes). See reference 1, p. 102.

    Calculating the reaction rate given in Eqs. 9.68 and 9.69 on an absolute basis requires knowledge of the diffusion coefficient for all the ionic species together with a knowledge of the system's geometry and the chemical potential for each specie as related to their position in the reaction-product layer. The diffusing species which control the reaction


    rate are the mos arriving at a ph Section 9.2 mus

    Another diffis dependence of 1 many cases the coherent with th with many defe tunity for surfa indicated in Eq: through a single lower limit for rate. When new temperatures, tl be some noneqi structure with 1 and growth in nonequilibrium product. For ex observed at a This effect is 1 changes at the extensively in 1 Also, at the tra: forms tends to which increase transfer. At pre a quantitative

    Coarsening may undergo : represents a vi Generally terr dispersed in su varying size in ones dissolve : of the interfaci ter 5 ) relates $t$ t $a$ relative to t
    

    ## INTRODUCTION TO CERAMICS

    $\rho$ the density of the precipitate particle. This relation also assumes that the activity is given by the concentration. If $\frac{2 \gamma M}{R T a \rho}<1$, the increased solubility is given by

    $$
    \begin{equation*}
    c_{a}=c_{p . i}\left(1+\frac{2 \gamma M}{R T a \rho}+\cdots\right)=c_{p . i .}+\frac{2 \gamma M c_{p . i}}{R T a \rho} \tag{9.71}
    \end{equation*}
    $$

    For simplicity, consider a system of two particle sizes $a_{1}$ and $a_{2}$ where $a_{1}>a_{2}$. The $a_{2}$ particles are more soluble in the matrix and thus tend to dissolve because of the concentration driving force:

    $$
    \begin{equation*}
    c_{a_{1}}-c_{a_{2}}=\frac{2 M \gamma c_{\mathrm{p} . \mathrm{i}}}{R T \rho}\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right) \tag{9.72}
    \end{equation*}
    $$

    From Fick's law we can determine the rate of growth of these particles if we assume the rate is controlled by diffusion in the matrix, that is, solvent (see Fig. $9.33 a$ ). The rate of mass gain by $a_{1}$ is

    $$
    \begin{equation*}
    \frac{d Q}{d t}=-D\left(\frac{A}{x}\right)\left(c_{a_{1}}-c_{a_{2}}\right) \tag{9.73}
    \end{equation*}
    $$

    where $A / x$ is a representative area-to-length ratio for diffusion between two dissimilar particles. Substitution of Eq. 9.72 into 9.73 yields

    $$
    \begin{equation*}
    \frac{d Q}{d t}=-D\left(\frac{A}{x}\right) \frac{2 M \gamma c_{\text {p.i. }}}{R T \rho}\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right) \tag{9.74a}
    \end{equation*}
    $$

    As we have assumed spherical particles and must conserve mass,

    $$
    \begin{equation*}
    -\frac{d Q}{d t}=\rho 4 \pi a_{2}{ }^{2} \frac{d a_{2}}{d t}=-\rho 4 \pi a_{1}{ }^{2} \frac{d a_{1}}{d t} \tag{9.74b}
    \end{equation*}
    $$

    the growth of $a_{1}$ is

    $$
    \begin{equation*}
    \rho 4 \pi a_{1} \frac{d a_{1}}{d t}=-D\left(\frac{A}{x}\right) \frac{2 M \gamma c_{\text {p.i }}}{R T \rho}\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right) \tag{9.75}
    \end{equation*}
    $$

    Equation 9.75 can be integrated under various approximations, however, the same solution results by considering the following approximate solution. If we assume that the small particles contribute solute to the matrix faster than the solute is precipitated onto the large particles, the growth of large particles can be treated as a diffusion-limited-growth problem. The rate-limiting step is assumed to be diffusion of matter to the large particle from the matrix. Assume a diffusion field of $r\left(r \geqslant a_{1}\right)$
    
    (a)
    
    (b)
    

    Fig. 9.33. (a) Coarsening of particles in a two-size particle system; (b) growth of particle $a_{\text {, }}$ in a diffusion field of radius $r$; (c) variation in the particle growth rate with particle radius.
    around the growing particle (Fig. 9.33b); thus Fick's first law of spherical symmetry is
    where

    $$
    \begin{gather*}
    J=4 \pi D \Delta c\left(\frac{a_{1} \dot{r}}{r-a_{1}}\right)  \tag{9.76}\\
    \Delta c=\frac{2 M \gamma c_{\text {p.i }}}{R T \rho a_{1}}
    \end{gather*}
    $$

    Recalling that for dispersed particles $r \gg a_{1}$, the flux is given by

    $$
    \begin{equation*}
    J=\frac{4 \pi D 2 M y c_{p_{1.1}}}{R T \rho a_{1}}\left(\frac{a_{1} r}{r-a_{1}}\right) \approx \frac{4 \pi D c_{p .1} 2 M \gamma}{R T \rho}=\text { const } \tag{9.77}
    \end{equation*}
    $$

    ## INTRODUCTION TO CERAMICS

    The flux is a constant, independent of the growing particle radius,

    $$
    \begin{equation*}
    J=\text { constant }=\rho \frac{d V}{d t}=\rho 4 \pi a_{1}{ }^{2} \frac{d a_{1}}{d t}=\frac{4 \pi D c_{p . i} 2 M \gamma}{\rho R T} \tag{9.78}
    \end{equation*}
    $$

    which after integration becomes

    $$
    \begin{gather*}
    a_{j}^{3}-a_{i}^{3}=\frac{6 D c_{\text {p... }} M \gamma}{\rho^{2} R T}  \tag{9.79}\\
    \left(\frac{a(t)}{a_{i}}\right)^{3}=1+\frac{t}{\tau} \\
    \tau=\frac{6 D c_{i .1} M \gamma}{\rho^{2} R T a_{i}^{3}} \tag{9.80}
    \end{gather*}
    $$

    More rigorous analyses give essentially the same result for a distribution of precipitates.* The variation in the growth rate for varying particle size and for increases in the mean radius is illustrated in Fig. 9.33c. The diffusion-limited growth of precipitates and of grains during liquid-phase sintering have been observed to have this cubic time dependence (Figs. 9.34 and 9.35).
    

    Fig. 9.34. Coarsening of $\mathrm{Mg}_{1.2} \mathrm{Fe}_{1 .,} \mathrm{O}_{3,9}$ precipitates in MgO. From G. P. Wirtz and M. E. Fine, J: Am. Ceram. Soc., 51, 402 (1968).

    The coarsening relationships discussed above assumed spherical particles. The following discussion demonstrates that faceted particles and even those with different surface energies can be included in the growth expressions by properly defining $\Delta c$, the concentration difference.
    ${ }^{*}$ C. Wagner, Z. Electrochem., 65, 581-591 (1961); G. W. Greenwood, Acta Met., 4, 243-248 (1956).

    Fig. 9.35. Isotherı microns, $t=$ time ir Publishing Corpor:

    Consider a si to-volume ratio

    The chemical ${ }_{1}$ the planar inte
    

    ## INTRODUCTION TO CERAMICS

    where $\bar{V}$ is the molar volume for the particle phase. Let $x$ be some linear parameter of the particle size such that $S=a x^{2}=\frac{\alpha V}{x}$, where $a$ and $\alpha$ are characteristic shape constants. Then

    $$
    \begin{equation*}
    \left(\frac{d S}{d V}\right)_{S_{v}}=S_{v} \frac{d S / S}{d V / V}=\frac{2}{3} S_{v}=\frac{2}{3} \frac{\alpha}{x} \tag{9.83}
    \end{equation*}
    $$

    and

    $$
    \begin{equation*}
    \mu-\mu_{\mathrm{p} . \mathrm{I}}=\gamma \bar{\nabla} \frac{2}{3} \frac{\alpha}{x} \tag{9.84}
    \end{equation*}
    $$

    Equations 9.81 to 9.84 hold for any system of constant-shape particles, irrespective of whether they are spherical or faceted. If we assume the activity is given by the concentration,

    $$
    \begin{equation*}
    \Delta c=\frac{\left(\mu-\mu_{\text {p.i. }}\right) c_{p . i}}{R T}=\frac{\gamma \bar{V} c_{p . i}}{R T}\left(\frac{2}{3} \frac{\alpha}{x}\right) \tag{9.85}
    \end{equation*}
    $$

    For spheres $\alpha=3$ and $x=r$, we have the Thompson-Freundlich equation (9.71):

    $$
    \Delta c=\frac{2 \gamma \bar{V} c_{p, i}}{r R T}=\frac{2 \gamma M c_{p, i}}{R T r \rho}
    $$

    where $\bar{V}$ is the molar volume, $M$ the molecular weight and $\rho$ the density. For faceted interfaces with varying surface free energy the Wulff theorem is applicable:

    $$
    \begin{equation*}
    \mu-\mu_{\mathrm{ret}}=\frac{2}{3} \bar{V} \sum\left(\frac{\alpha_{1} \gamma_{1}}{x_{1}}\right) \tag{9.86}
    \end{equation*}
    $$

    where $x_{1}$ is the distance from the $i$ th facet to the particle center.

    ### 9.5 Precipitation in Crystalline Ceramics

    The nucleation and growth of a new phase has been discussed in Chapter 8 and applied there to processes occurring in a liquid or glass matrix. Polymorphic phase transformations in crystalline solids are discussed in Chapter 2. Precipitation processes from a crystalline matrix in which the precipitate has a composition different from the original crystal are important in affecting the properties of many ceramic systems, and as techniques such as transmission electron microscopy capable of observing and identifying fine precipitate particles are more fully applied, the widespread occurrence and importance of precipitation is becoming more fully recognized. Initiation of the process may occur by a spinodal process or by discrete particle nucleation (Chapter 8) when a driving force
    for phase separ mobility (Chap
    For nucleatic volume betwee, free-energy ch: replaced by
    where the strai strain, and $b$ is can be calcula expression for $\angle$ $\Delta G^{*}$, which co and $\beta$ structu crystalline phas stable nuclei aı sites. The strair when a decom] of precipitates minimum incre spherical partic is proportional the volume ch: Strain energy energy of the in which phase s lamellae in pre

    The energy structure and general kinds planes of aton second coordi) boundary. In . planes of atom giving rise to d described in Cl order of magr formation of mother matrix commonly the mation in whis
    
    
    (a)
    
    (b)

    Fig.9.36. (a) Coherent precipitate with continuous planes of atoms across the interface; (b) noncoherent precipitate with discontinuous planes of atoms across the interface.
    relatively slow. Therefore, coherency of the oxygen ion lattice is favorable both for the driving force of nucleation and for the rate of nucleation and crystal growth.
    Precipitation Kinetics. The kinetics of precipitation in a crystalline solid depend on both the rate of initiation or nucleation of the process and the rate of crystal growth, as discussed in Chapter 8. When the precipitation process consists of a combination of nucleation and growth, the sigmoidal curve characteristic of the Johnson-Mehl or Arrami relations (Chapter 8) results in an apparent incubation time period, as illustrated in Fig. 9.37. For precipitation processes far from an equilibrium phase boundary, which is the most usual case, both the nucleation rate and the growth rate increase with temperature, as illustrated in Fig. 9.38 such that the incubation time is decreased and the transformation time for formation of the new phase is decreased at higher temperatures, such as occurs for the process illustrated in Fig. 9.37. In many cases, however, the
    (

    Fig. 9.37. Effe $\mathrm{ZrO}_{T}-20$ mole $\%$ $1000^{\circ} \mathrm{C} ; \mathrm{B}, 1075^{\circ}$ Viechnicki, J. A
    nucleation $\mathbf{F}$ number of $\mathbf{n}$ which heters matrix cryst: precipitate. ured by the existing nuc precipitatior of magnesi paramagneti having an ar incubation F accordance

    Precipitat interfaces le precipitatiol many oxide ions descrit containing $\epsilon$ energy and
    ${ }^{*}$ G. P. Wirt:
    
    intermediate wi product* whick product, $\alpha$-alun metastable pre alumina. After 1 expense of the

    Synthetic stal titaniferous pre $0.3 \% \mathrm{TiO}_{2}$. Wh cence causes th times for precip $1500^{\circ} \mathrm{C}$. The lat As for precipita equilibrium pha

    Strong orien 1 believed to exh $\mathrm{SnO}_{2}-\mathrm{TiO}_{2}$ syst 5-min anneal a corner of Fig. 9 to the 001 dires formed by spir $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Cr}_{2} \mathrm{O}_{3}$ an this manner. A : spinel phase fri large metal defi Chapter 4) is $b$ agglomerates m forming the spi the resulting hig in this and rela 1 $300^{\circ} \mathrm{C}$. On cooli defect clusters,

    When growth change, the rate the morpholog dissipated or m : inverse radius $\mathbf{c}$ dendritic forms remaining smal

    - H. Jagodzinski (1962).
    
    

    Fig. 9.4 Courte:

    Deper illustr basic tion c along long F rate-d graph limite perior spher minin

    ## Het

    that $p$ when
    may :
    precij
    grain wüsti
    

    INTRODUCTION TO CERAMICS
    

    Fig. 9.42. Equimolar $\mathrm{TiO}_{2}-\mathrm{SnO}_{2}$ crystal homogenized at $1600^{\circ} \mathrm{C}$ and annealed 5 min at $1000^{\circ} \mathrm{C}$. Electron diffraction pattern in lower right; optical diffraction pattern in upper left.
    ily from differences in the growth rate adjacent to grain boundaries rather than from a nucleation process. In this system the grain boundaries act as high diffusivity paths, discussed in Chapter 6, which allow nuclei at the grain boundary to grow initially at a faster rate than nuclei in the bulk, which tends to denude the area adjacent to the grain boundary of solute; at later stages in the precipitation process (Fig. 9.45b) there is an area adjacent to the grain boundaries which tends to be precipitate free. In this system, as for many of those previously described, the precipitate particles are coherent with the matrix crystal, and all have the same orientation in each grain of wüstite. ;
    For samples in which solubility is small, direct observation of grain boundaries and dislocations indicates that second-phase precipitation at these sites is very common indeed. Particularly for many systems containing silicates as minor impurities, coherency is not to be expected;
    

    ## INTRODUCTION TO CERAMICS

    

    Fig. 9.44. Precipitation of $\mathrm{MgFe}_{2} \mathrm{O}_{4}$ from MgO in basic refractory brick as (a) platelets parallel to (100) planes in $\mathrm{MgO}(500 \times$ ); (b) dendritic precipitate $(975 \times$ ); (c) spheroidal B. Tavasci, Radex Rdsch., 7, 245 (1949).
    the smaller driving force and larger energy barrier to nucleation enhances the importance of heterogeneous nucleation and growth at dislocations and grain boundaries, as illustrated in Fig. 9.46.

    ### 9.6 Nonisothermal Processes

    We have considered diffusional processes as they occur under isothermal conditions; however, many ceramic processing procedures include substantial nonisothermal periods. One important example of the effect of nonisothermal kinetic processes is the segregation and precipitation of impurities at grain boundaries while a specimen cools from a high temperature.*
    If we assume that over the temperature range of interest, the diffusion coefficient is given by

    $$
    D=D_{0} e^{-Q / R T}
    $$


    

    Fig. 9.45. Pre \% oxygen (95
    
    

    Fig. 9.46. (a) Manganese zinc ferrite containing $0.042 \% \mathrm{SiO}_{2}$ heated 4 hr at $1200^{\circ} \mathrm{C}$ in $\mathrm{N}_{2}+1 \% \mathrm{O}_{2}$ showing $\mathrm{SiO}_{2}$ inclusions at grain-boundary fracture. Courtesy M. Paulus. (b) Precipitate particles at dislocations in MgO . Courtesy N . J. Tighe.
    
    and we assume the temperature to vary from $T_{1}$ to $T_{2}$ at a linear rate of $\alpha$, the time-dependent diffusion coefficient is

    $$
    \begin{equation*}
    D=D_{0} \exp \left[\frac{Q / R}{T_{1}-\alpha T}\right] \tag{9.88}
    \end{equation*}
    $$

    An approximate diffusion length $l$ may be estimated from the integral;

    $$
    \begin{align*}
    & l^{2}=D_{0} \int_{0}^{t} \exp \left(\frac{-Q / R}{T_{1}-\alpha t}\right) d t  \tag{9.89}\\
    & I^{2} \approx \frac{D_{0} R}{\alpha Q}\left(T_{1}^{2} e^{-Q / R T_{1}}-T_{2}^{2} e^{-Q / R T_{2}}\right)  \tag{9.90}\\
    & I^{2} \approx \frac{R}{\alpha Q}\left[D_{1} T_{1}^{2}-D_{2} T_{2}^{2}\right]
    \end{align*}
    $$

    Let us consider, as an example of the use of Eq. $9.89, \mathrm{Al}_{2} \mathrm{O}_{3}$ impurities in MgO . The diffusion of supersaturated aluminum ions from within a grain to the grain boundary is essentially that for the defect diffusion (vacancy) because of the impurity-vacancy pair which tends to form (see Section 6.4). From the data of impurity diffusion into MgO a value of 2 to 3 eV ( 50 to $75 \mathrm{kcal} / \mathrm{mole}$ ) seems a reasonable activation energy for vacancy diffusion. Assume a sample of MgO annealed at high temperature contains $100 \mathrm{ppm} \mathrm{Al}_{2} \mathrm{O}_{3}$. If the sample is cooled at $0.1^{\circ} \mathrm{C} / \mathrm{sec}$, the solubility limit at $1300^{\circ} \mathrm{C}$ produces the onset of grain-boundary precipitation. For an assumed diffusivity of $10^{-8} \mathrm{~cm}^{2} / \mathrm{sec}$ at $1300^{\circ} \mathrm{C}$ and $Q=2 \mathrm{eV}$, Eq. 9.89 yields a value of 30 microns for the effective diffusion distance. A similar calculation for 100 ppm MgO in $\mathrm{Al}_{2} \mathrm{O}_{3}\left(T_{s}=1530^{\circ} \mathrm{C}, Q=3 \mathrm{eV}\right.$, and $D \simeq 5 \times 10^{-8} \mathrm{~cm}^{2} / \mathrm{sec}$ ) yields a segregation thickness of 60 microns.

    There are many other examples of ceramic processes which occur during nonisothermal annealing. As porcelain or refractories are processed in production kilns, much of the densification and reaction between granular components takes place during the heating cycle. We consider finally two examples of nonisothermal kinetic processes which are described in detail in Section 9.4 and Section 10.3 for isothermal conditions.

    First, let us consider the nonisothermal decomposition reaction (Eq. 9.63 ) in which $\mathrm{CaCO}_{3}$ decomposes to CaO and $\mathrm{CO}_{2}$. The reaction rate is determined by decomposition at the surface and obeys linear kinetics. The reaction rate $R$ is equal to the change in weight per unit area of the $\mathrm{CaCO}_{3}$ with time, $d(\omega / a) / d t$. Thus Eq. 9.4 can be rewritten

    $$
    \begin{equation*}
    \frac{d(\omega / a)}{d t}=R=\frac{k T}{h} \exp \left(\frac{\Delta S^{\dagger}}{R}\right) \exp \left(-\frac{\Delta H^{\dagger}}{R T}\right)=A \exp \left(-\frac{\Delta H^{\prime}}{R T}\right) \tag{9.91}
    \end{equation*}
    $$

    ## INTRODUCTION TO CERAMICS

    If the temperature of the $\mathrm{CaCO}_{3}$ is changed at a constant rate, $T=\alpha t$, the weight change as a function of temperature is obtained from

    $$
    \begin{equation*}
    \frac{d(\omega / a)}{d T}=\frac{A}{\alpha} \exp \left(-\frac{\Delta H^{\dagger}}{R T}\right) \tag{9.92}
    \end{equation*}
    $$

    The integration of Eq. 9.92, assuming that $A$ is not a strong function of temperature, yields the approximate solution

    $$
    \begin{equation*}
    \frac{\Delta \omega}{\omega_{0}} \approx \frac{A R T^{2}}{\alpha \Delta H^{\dagger}} \exp \left(-\frac{\Delta H^{\dagger}}{R T}\right) \tag{9.93}
    \end{equation*}
    $$

    The form of the equation is similar to Eq. 9.89. A plot of the nonisothermal decomposition in vacuum of a single crystal of $\mathrm{CaCO}_{3}$ is given in Fig. 9.47. For this reaction and for several other endothermic decomposition reactions the activation energy for decomposition is identical with the heat of reaction (Eq. 9.63).

    As a final example of nonisothermal kinetic processes consider the sintering of glass spheres (discussed in Chapter 10). The shrinkage rate $\frac{d\left(\Delta L / L_{0}\right)}{d t}$, which is a function of the surface tension $\gamma$, the viscosity $\eta=B e^{Q / R T}$, and the particle radius $a$, can be determined from nonisother-
    

    Fig. 9.47. Nonisothermal decomposition of $\mathrm{CaCO}_{3}$ in vacuum.
    Fig. ${ }^{\prime}$ silica
    mal

    Kin

    Fig. 9.48. Kinetic data for nonisothermal sintering of $0.25-\mu \mathrm{m}$ glass particles (soda-limesilica). From I. B. Cutler, J. Am. Ceram. Soc., 52, 14 (1969).
    mal sintering from*

    $$
    \begin{equation*}
    \frac{\Delta L}{L_{0}} \approx\left(\frac{\gamma R T^{2}}{2 a \alpha B Q}\right) \exp (-Q / R T) \tag{9.94}
    \end{equation*}
    $$

    Kinetic data illustrating Eq. 9.94 are given in Fig. 9.48 for the sintering of 25 -micron soda-lime-silica particles in an atmosphere of oxygen and water vapor.

    ## Suggested Reading

    1. H. Schmalzried, Solid State Reactions, Academic Press, New York, 1974.
    2. G. C. Kuczynski, N. A. Hooton, and C. F. Gibbon, Eds., Sintering and Related Phenomena, Gordon and Breach, New York, 1967.
    3. G. C. Kuczynski, Ed., "Sintering and Related Phenomena," Materials Science Research, Vol. 6, Plenum Press, New York, 1973.
    4. T. J. Gray and V. D. Frechette, Eds., "Kinetics of Reaction in Ienic Systems," Materials Science Research, Vol. 4, Plenum Press, New York, 1969.
    *I. B. Cutler, J. Am. Ceram. Soc., 52, 14 (1969).

    ## INTRODUCTION TO CERAMICS

    5. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, John Wiley \& Sons, New York., 1972.
    6. For a discussion of dissolution kinetics see A. R. Cooper, Jr., B. N. Samaddar, Y. Oishi, and W. D. Kingery, J. Am. Ceram. Soc., 47, 37 (1964); 47, 249 (1964); and 48, 88 (1965).
    7. G. M. Schwab, Ed., Reactivity of Solids, Elsevier Publishing Company, New York, 1965.
    8. W. D. Kingery, Ed., Kinetics of High Temperature Processes, John Wiley \& Sons, New York, 1959.
    9. M. E. Fine, Introduction to Phase Transformations in Condensed Systems, McGraw-Hill, New York, 1964; Bull. Am. Ceram. Soc., 51, 510 (1972).

    ## Problems

    9.1. Rates of solution can be controlled by ( $a$ ) diffusion in the liquid, (b) diffusion through a reaction layer, or (c) phase-boundary reaction. How would you distinguish these?
    9.2. While measuring the rate of decomposition of alumina monohydrate, a student finds the weight loss to increase linearly with time up to about $50 \%$ reacted during an isothermal experiment. Beyond $50 \%$, the rate of the weight loss is less than linear. The linear isothermal rate increases exponentially with temperature. An increase of temperature from 451 to $493^{\circ} \mathrm{C}$ increases the rate tenfold. Compute the activation energy. Is this a diffusion-controlled reaction, a first-order reaction, or an interfacecontrolled reaction?
    9.3. Consider formation of $\mathrm{NiCr}_{2} \mathrm{O}$, from spherical particles of NiO and $\mathrm{Cr}_{2} \mathrm{O}$, when the rate is controlled by diffusion through the product layer.
    (a) Carefully sketch an assumed geometry, and then derive a relation for the rate of formation early in the process.
    (b) What governs the particles on which the product layer forms?
    (c) At $1300^{\circ} \mathrm{C}, D_{\mathrm{c}_{4}}>D_{\mathrm{Ni}}>\mathrm{D}_{\mathrm{o}}$ in $\mathrm{NiCr}_{2} \mathrm{O}_{4}$. Which controls the rate of formation of $\mathrm{NiCr}_{2} \mathrm{O}_{4}$ ? Why?
    9.4. Polymorphic transformations in solids result in polycrystalline materials of small size (fine-grained) or large size (coarse-grained), depending on the rates of nucleation and nuclei growth. How do these rates vary to produce fine-grained and coarse-grained products? Draw a time versus size for an individual grain illustrating the growth of a fine grain compared to a coarse grain. Start the time on the time axis at the moment of transformation.
    9.5. According to Alper et al. [J. Am. Ceram. Soc., 45(6) 263-66(1962)], $\mathrm{Al}_{2} \mathrm{O}$, is soluble in MgO to the extent of $3 \%$ by weight at $1700^{\circ} \mathrm{C}, 7 \%$ at $1800^{\circ} \mathrm{C}, 12 \%$ at $1900^{\circ} \mathrm{C}$, and $0 \%$ at $1500^{\circ} \mathrm{C}$. They observed crystallization of spinel crystals from the solid solution region on slow cooling. Fast quenching retained the solid sofution as a single phase at room temperature. The exsolved spinel appeared uniformly without regard to grain boundaries within the periclase grains but on specific planes. (a) Is the nucleation of spinel homogeneous or heterogeneous within the periclase grains? (b) Account for the appearance of spinel crystals along specific planes of periclase crystals. Predict the shape of the rate of crystallization versus temperature for nucleated periclase solid solution containing $5 \% \mathrm{Al}_{2} \mathrm{O}$, over the temperature range $0^{\circ} \mathrm{C}$ to $1850^{\circ} \mathrm{C}$.
    
    mductivity in
    N. Samaddar, 17, 249 (1964);

    נmpany, New
    iohn Wiley \&
    :sed Systems, 0 (1972).
    fusion through ıguish these?
    a student finds eted during an iss than linear. An increase of the activation ir an interface-
    : $\mathrm{r}_{2} \mathrm{O}$, when the
    I for the rate of
    of formation of
    is of small size nucleation and coarse-grained he growth of a the moment of
    $\mathrm{O}_{3}$, is soluble in $0^{\circ} \mathrm{C}$, and $0 \%$ at iolution region phase at room gard to grain : nucleation of ) Account for ystals. Predict ated periclase $=1850^{\circ} \mathrm{C}$.
    9.6. In the previous problem, we described a solid solution of $\mathrm{Al}_{2} \mathrm{O}_{\text {, }}$ in MgO . Assuming a manufacturer of basic refractories uses MgO contaminated with 5 to $7 \% \mathrm{Al}_{2} \mathrm{O}_{3}$, what microstructure differences will exist in slow-cooled refractory compared to fastcooled material? Would you predict sintering by self-diffusion (bulk), grain growth, and cation diffusion in this material would be different than in pure MgO? Why?
    9.7. Suppose that the formation of mullite from alumina and silica powder is a diffusioncontrolled process. How would you prove it? If the activation energy is $50 \mathrm{kcal} / \mathrm{mole}$ and the reaction proceeds to $10 \%$ of completion at $1400^{\circ} \mathrm{C}$ in 1 hr , how far will it go in 1 hr at $1500^{\circ} \mathrm{C}$ ? in 4 hr at $1500^{\circ} \mathrm{C}$ ?
    9.8. An amorphous $\mathrm{SiO}_{2}$ film on SiC builds up, limiting further oxidation. The fraction of complete oxidation was determined by weight gain measurements and found to obey a parabolic oxidation law. For a particular-particle-sized SiC and pure $\mathrm{O}_{2}$ the following data were obtained. Determine the apparent activation energy in $\mathrm{kcal} / \mathrm{mole}$. How can it be shown that this is a diffusion-controlled reaction?

    | Temp ( ${ }^{\circ} \mathrm{C}$ ) | Fraction Reacted | Time (hr) |
    | :---: | :---: | :---: |
    | 903 | $2.55 \times 10^{-2}$ | 100 |
    | 1135 | $1.47 \times 10^{-2}$ | 10 |
    |  | $4.26 \times 10^{-2}$ | 100 |
    | 1275 | $1.965 \times 10^{-2}$ | 10 |
    |  | $6.22 \times 10^{-2}$ | 100 |
    | 1327 | $1.50 \times 10^{-2}$ | 5 |
    |  | $4.74 \times 10^{-2}$ | 50 |

    9.9. The slow step in the precipitation of $\mathrm{BaSO}_{4}$ from aqueous solution is the interface addition of the individual $\mathrm{Ba}^{++}$and $\mathrm{SO}_{4}^{-}$. Diffusion to the surface is assumed sufficiently fast that we may neglect any concentration differences in the solution. Assume that the rate of addition is first-order in both $\mathrm{Ba}^{++}$and $\mathrm{SO}_{4}^{-}$.
    (a) Derive an expression for the approach to equilibrium in terms of the rate constants for the forward and back reaction and the surface area.
    (b) What is the effect of an excess of $\mathrm{Ba}^{++}$?
    (c) Why can you assume the surface area to be constant?
    (d) How would you modify your approach to include a correction for diffusion?
    9.10. One-micron spheres of $\mathrm{Al}_{2} \mathrm{O}$, are surrounded by excess MgO powder in order to observe the formation of spinel. Twenty percent of the $\mathrm{Al}_{2} \mathrm{O}_{3}$ was reacted to form spinel during the first hour of a constant-temperature experiment. How long before all the $\mathrm{Al}_{2} \mathrm{O}_{3}$ will be reacted? Compute the time for completion on the basis of (a) no spherical geometry correction and (b) the Jander equation for correction of spherical geometry.
    9.11. In fired chrome ore refractories, an $\mathrm{R}_{2} \mathrm{O}_{3}$ phase precipitates as platelets in the spinel phase matrix. Write the chemical equation for this reaction, and explain why it occurs. The precipitate is oriented so that the basal plane in the $\mathrm{R}_{2} \mathrm{O}$, phase is parallel to the (111) plane in the spinel. Explain why this should occur in terms of crystal structure.

    ## Grain Growth, Sintering, and Vitrification

    We have previously discussed phase changes, polymorphic transformations, and other processes independent of, or subsequent to, the fabrication of ceramic bodies. Phenomena that are of great importance are the processes taking place during heat treatment before use; these are the subject of this chapter.

    During the usual processing of ceramics, crystalline or noncrystalline powders are compacted and then fired at a temperature sufficient to develop useful properties. During the firing process changes may occur initially because of decomposition or phase transformations in some of the phases present. On further heating of the fine-grained, porous compact, three major changes commonly occur. There is an increase in grain size; there is a change in pore shape; there is change in pore size and number, usually to give a decreased porosity. In many ceramics there may. be solid-state reactions forming new phases, polymorphic transformations, decompositions of crystalline compounds to form new phases or gases, and a variety of other changes which are frequently of great importance in particular cases but are not essential to the main stream of events.
    We shall be mainly concerned with developing an understanding of the major processes taking place. There are so many things which can happen, and so many variables that are occasionally important, that no mere cataloging of phenomena can provide a sound basis for further study. In general, we shall be concerned first with recrystallization and grain-growth phenomena, second with the densification of single-phase systems, and finally with more complex multiphase processes. There are many important practical applications for each of these cases.
    10.1 Recryst:

    The terms r indefinite usal been used to and other phe are mainly col tallization is generation of plastically de grain size of ously during 1 Secondary re, grain growth, grow at the e Although all t secondary re

    Primary $\mathbf{R}_{\mathbf{r}}$ increased ent energy storer Although thi: (which is a 11 change to eff

    If the isol deformed ma constant rate size is $d$,
    where $U$ is t period. This chloride crys $470^{\circ} \mathrm{C}$. The nucleation $p$. mined by th

    The nucle: nucleus to bi which the lo surface free required for nucleus. If a increases to

    ### 10.1 Recrystallization and Grain Growth

    The terms recrystallization and grain growth have had a very broad and indefinite usage in much of the ceramic literature; they have sometimes been used to include phase changes, sintering, precipitation, exsolution, and other phenomena which produce changes in the microstructure. We are mainly concerned with three quite distinct processes. Primary recrys tallization is the process by which nucleation and growth of a new generation of strainfree grains occurs in a matrix which has been plastically deformed. Grain growth is the process by which the average grain size of strainfree or nearly strainfree material increases continuously during heat treatment without change in the grain-size distribution. Secondary recrystallization, sometimes called abnormal or discontinuous grain growth, is the process by which a few large grains are nucleated and grow at the expense of a fine-grained, but essentially strain-free, matrix. Although all these processes occur in ceramic materials, grain growth and secondary recrystallization are the ones of major interest.
    Primary Recrystallization. This process has as its driving force the increased energy of a matrix which has been plastically deformed. The energy stored in the deformed matrix is of the order of 0.5 to $1 \mathrm{cal} / \mathrm{g}$. Although this is small compared with the heat of fusion, for example (which is a $\mathbf{1 0 0 0}$ or more times this value), it provides a sufficient energy change to effect grain-boundary movement and changes in grain size.

    If the isothermal change in grain size of strainfree crystals in a deformed matrix is measured after an initial induction period, there is a constant rate of grain growth for the new strainfree grains. If the grain size is $d$,

    $$
    \begin{equation*}
    d=U\left(t-t_{0}\right) \tag{10.1}
    \end{equation*}
    $$

    where $U$ is the growth rate $(\mathrm{cm} / \mathrm{sec}), t$ is the time, and $t_{0}$ is the induction period. This is illustrated in Fig. 10.1 for recrystallization of a sodium chloride crystal which had been deformed at $400^{\circ} \mathrm{C}$ and then annealed at $470^{\circ} \mathrm{C}$. The induction period corresponds to the time required for a nucleation process, so that the overall rate of recrystallization is determined by the product of a nucleation rate and a growth rate.
    The nucleation process is similar to those discussed in Chapter 8. For a nucleus to be stable, its size must be larger than some critical diameter at which the lowered free energy of the new grain is equal to the increased surface free energy. The induction period corresponds to the time required for unstable embryos present to grow to the size of a stable nucleus. If an unlimited number of sites is available, the rate of nucleation increases to some constant rate after an initial induction period. In
    

    Fig. 10.1. Recrystallization of NaCl deformed at $400^{\circ} \mathrm{C} \quad$ (stress $=$ $4000 \mathrm{~g} / \mathrm{mm}^{2}$ ) and recrystallized at $470^{\circ} \mathrm{C}$. From H. G. Muller, Z. Phys., 96,
    279 (1935).
    practice the number of favorable sites available is limited, and the rate of nucleation passes through a maximum as they are used up. H. G. Müller* observed that nuclei in sodium chloride tended to form first at grain corners, for example. As the temperature is increased, the rate of nucleation increases exponentially:

    $$
    \begin{equation*}
    \frac{N}{d t}=N_{0} \exp \left(-\frac{\Delta G_{N}}{R T}\right) \tag{10.2}
    \end{equation*}
    $$

    where $N$ is the number of nuclei and $\Delta G_{N}$ is the experimental free energy for nucleation. Consequently, the induction period, $t_{0} \sim 1 /(d N / d t)$, decreases rapidly as the temperature level is raised.
    As indicated in Eq. 10.1, the growth rate remains constant until the grains begin to impinge on one another. The constant in growth rate results from the constant driving force (equal to the difference in energy between the strained matrix and strainfree crystals). The final grain size is determined by the number of nuclei formed, that is, the number of grains present when they finally impinge on one another. The atomistic process necessary for grain growth is the jumping of an atom from one side of a Consequently the temper and is similar to a diffusional jump in the boundary. Consequently the temperature dependence is similar to that of diffusion:

    $$
    \begin{equation*}
    U=U_{0} \cdot \exp \left(-\frac{E_{U}}{R T}\right) \tag{10.3}
    \end{equation*}
    $$

    where the activation energy $E_{U}$ is normally intermediate between that for boundary and lattice diffusion. The growth-rate-temperature curve for


    on of NaCl
    (stress =
    itallized at Z. Phys., 96,
    he rate of . Müller* at grain rate of
    $\geq$ energy
    $d t$ ), de-
    intil the $\geq$ results retween size is f grains rocess de of a indary. sion:
    lat for ve for
    recrystallization of sodium chloride has a knee similar to that observed for diffusion and conductivity data, as discussed in Chapter 6.
    Since both the nucleation rate and the growth rate are strongly temperature-dependent, the overall rate of recrystallization changes rapidly with temperature. For a fixed holding time, experiments at different temperatures tend to a show either little or nearly complete recrystallization. Consequently, it is common to plot data as the amount of cold work or the final grain size as a function of the recrystallization temperature. Since the final grain size is limited by impingement of the grains on one another, it is determined by the relative rates of nucleation and growth. As the temperature is raised, the final grain size is larger, since the growth rate increases more rapidly than the rate of nucleation. However, at higher temperatures recrystallization is completed more rapidly, so that the larger grain size observed in constant-time experiments (Fig. 10.2) may be partly due to the greater time available for grain growth following recrystallization. The growth rate increases with increasing amounts of plastic deformation (increased driving force), whereas the final grain size decreases with increasing deformation.
    In general, it is observed that (1) some minimum deformation is required for recrystallization, (2) with a small degree of deformation a higher temperature is required for recrystallization to occur, (3) an increased annealing time lowers the temperature of recrystallization, and
    

    Fig. 10.2. Effect of annealing temperature on grain size of $\mathrm{CaF}_{2}$ following compression at 80,000 psi and 10 hr at temperature. From M. J. Buerger, Am. Mineral., 32, 296 (1947).

    ## INTRODUCTION TO CERAMICS

    (4) the final grain size depends on the degree of deformation, the initial grain size, and the temperature of recrystallization. In addition, continued heat after recrystallization is completed leads to the continuation of grain
    growth.

    Primary recrystallization is particularly common in metals which are extensively deformed in normal processing techniques. Ceramic materials are seldom plastically deformed during processing, so that primary recrystallization is not commonly observed. For relatively soft materials, such as sodium chloride or calcium fluoride, deformation and primary recrystallization do occur. It has also been observed directly in magnesium oxide; also, the polygonization process described in Chapter 4 (see Fig. 4.24) for aluminum oxide has many points of similarity.

    Grain Growth. Whether or not primary recrystallization occurs, an aggregate of fine-grained crystals increases in average grain size when heated at elevated temperatures. As the average grain size increases, it is obvious that some grains must shrink and disappear. An equivalent way the driving force for the is as the rate of disappearance of grains. Then fine-grained material and the larger-grain-sizence in energy between the decrease in grain-boundary arger-grain-size product resulting from the energy change corresponds to and the total boundary energy. This 1 -micron to a $1-\mathrm{cm}$ grain size

    As discussed in Chapter 5, an interface energy is associated with the boundary between individual grains. In addition, there is a free-energy difference across a curved grain boundary which is given by

    $$
    \begin{equation*}
    \Delta G=\gamma \bar{V}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \tag{10.4}
    \end{equation*}
    $$

    where $\Delta G$ is the change in free energy on going across the curved interface, $\gamma$ is the boundary energy, $\bar{V}$ is the molar volume, and $r_{1}$ and $r_{2}$ are the principal radii of curvature. (This relationship has been derived and discussed in Chapter 5. That part of Chapter 5 should be reviewed if its meaning is not clear.) This difference in the free energy of material on the two sides of a grain boundary is the driving force that makes the boundary move toward its center of curvature. The rate at which a boundary moves is proportional to its curvature and to the rate at which atoms can jump across the boundary.
    Grain growth provides an opportunity to apply the absolute-reactionrate theory already discussed in Chapter 6. If we consider the structure of a boundary (Fig. 10.3), the rate of the overall process is fixed by the rate at which atoms jump across the interface. The change in energy with an atom's position is shown in Fig. 10.3b, and the frequency of atomic jumps
    

    GRAIN GROWTH, SINTERING, AND VITRIFICATION
    453
    e initial ntinued of grain
    lich are taterials primary iterials, orimary in magapter 4 Y. :urs, an e when ies, it is int way s. Then een the om the y. This from a jith the -energy
    curved , and $r_{2}$ derived ewed if srial on ses the hich a which
    actionture of : rate at vith an : jumps
    
    (a)
    
    (b)

    Fig. 10.3. (a) Structure of boundary and (b) energy change for atom jump.
    in the forward direction is given by

    $$
    \begin{equation*}
    f_{\mathrm{AB}}=\frac{R T}{N h} \exp \left(-\frac{\Delta G^{\dagger}}{R T}\right) \tag{10.5}
    \end{equation*}
    $$

    and the frequency of reverse jumps is given by

    $$
    \begin{equation*}
    f_{\mathrm{BA}}=\frac{R T}{N h} \exp \left(-\frac{\Delta G^{\dagger}+\Delta G}{R T}\right) \tag{10.6}
    \end{equation*}
    $$

    so that the net growth process, $U=\lambda f$, where $\lambda$ is the distance of each jump is given by

    $$
    \begin{equation*}
    U=\lambda f=\lambda\left(f_{A \mathrm{~B}}-f_{\mathrm{BA}}\right)=\frac{R T}{N h}(\lambda) \exp \left(-\frac{\Delta G^{\dagger}}{R T}\right)\left(1-\exp \frac{\Delta G}{R T}\right) \tag{10.7}
    \end{equation*}
    $$

    and since $1-\exp \frac{\Delta G}{R T} \cong \frac{\Delta G}{R T}$, where $\Delta G=\gamma \bar{V}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)$ and $\Delta G^{\dagger}=$ $\Delta H^{\dagger}-T \Delta S^{\dagger}$,

    $$
    \begin{equation*}
    U=\left(\frac{R T}{N h}\right)(\lambda)\left[\frac{\gamma \bar{V}}{R T}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\right] \exp \frac{\Delta S^{\dagger}}{R} \exp \left(-\frac{\Delta H^{\dagger}}{R T}\right) \tag{10.8}
    \end{equation*}
    $$

    which is equivalent in form to Eq. 10.3 given previously. That is, the rate of growth increases exponentially with temperature. The unit step involved is the jump of an atom across the boundary, so that the activation energy should correspond approximately to the activation energy for boundary diffusion.

    ## INTRODUCTION TO CERAMICS

    If all the grain boundaries are equal in energy, they meet to form angles of $120^{\circ}$. If we consider a two-dimensional example for illustrative purposes, angles of $120^{\circ}$ between grains with straight sides can occur only for six-sided grains. Grains with fewer sides have boundaries that are concave when observed from the center of the grain. Shapes of grains having different numbers of sides are illustrated in Fig. 10.4; a sample with uniform grain size is shown in Fig. 10.5. Since grain boundaries migrate toward their center of curvature, grains with less than six sides tend to grow smaller, and grains with more than six sides tend to grow larger. For any one grain, the radius of curvature of a side is directly proportional to the grain diameter, so that the driving force, and therefore the rate of grain growth, is inversely proportional to grain size:

    $$
    \begin{equation*}
    \dot{d}=\frac{\mathrm{d}(d)}{\mathrm{d} t}=\frac{k}{d} \tag{10.9}
    \end{equation*}
    $$

    and integrating,

    $$
    \begin{equation*}
    d-d_{0}=(2 k)^{1 / 2} t^{1 / 2} \tag{10.10}
    \end{equation*}
    $$

    where $d_{0}$ is the grain diameter at time zero. Experimentally it is found that when $\log d$ is plotted versus $\log t$, a straight line is obtained (Fig. 10.6). Frequently the slope of curves plotted in this way is smaller than one-half,
    

    Fig. 10.4. Schematic drawing of polycrystalline specimen. The sign of curvature of the boundaries changes as the number of sides increases from less than six to more than six, and the radius of curvature is less, the more the number of sides differs from six. Arrows indicate the directions in which boundaries migrate. From J. E. Burke.

    Fig. 10.6. Li Burke.
    angles rative rr only at are grains ample daries sides grow rectly refore d that 10.6). :-half,
    of the ix, and idicate
    

    Fig. 10.5. Polycrystalline $\mathrm{CaF}_{2}$ illustrating normal grain growth. Average angle at grain junctures is $120^{\circ}$.
    usually falling between 0.1 and 0.5 . This may occur for several reasons, one being that $d_{0}$ is not a large amount smaller than $d$; another common reason is that inclusions or solute segregation or sample size inhibits grain growth.

    A somewhat different approach is to define a grain-boundary mobility $B_{i}$ such that the boundary velocity $v$ is proportional to the applied driving force $F_{i}$ resulting from boundary curvature:

    $$
    \begin{equation*}
    v=B_{i} F_{i} \tag{10.11a}
    \end{equation*}
    $$

    

    Fig. 10.6. Log grain diameter versus $\log$ time for grain growth in pure $\alpha$-brass. From J. E. Burke.

    For the atomic-jump mechanism illustrated in Fig. 10.3, the boundary mobility is given by the atomic mobility divided by the number of atoms involved, $n_{a}$ :

    $$
    \begin{equation*}
    B_{i}=\frac{B_{a}}{n_{a}}=\left(\frac{D_{b}}{k T}\right)\left(\frac{\Omega}{S w}\right) \tag{10.11b}
    \end{equation*}
    $$

    where $D_{b}$ is the grain-boundary diffusion coefficient, $\Omega$ is the atomic volume, $S$ is the boundary area, and $w$ is the boundary width. Since the average boundary velocity is equal to $v$ and the driving force is inversely proportional to grain size, a grain-growth law of the form of Eqs. 10.9 and 10.10 results. However, as discussed in Chapter 5, the actual structure of a ceramic grain boundary is not quite so simple as pictured in deriving Eqs. 10.8 and 10.11 b Even for a completely pure material there is a space-charge atmosphere of lattice defects associated with the boundary and usually solute segregation as well, as shown in Figs. 5.11, 5.12, 5.17, and 5.18. The effect of this lattice defect and impurity atmosphere is to sharply reduce the grain-boundary velocity at low driving forces, as shown in Fig. 10.7 and analysed by J. Cahn* and K. Lücke and H. D. Stuwe. $\dagger$ The influence of this atmosphere becomes stronger as the grain
    

    Fig. 10.7. Variation of boundary velocity $v$ with driving force $F$ at $750^{\circ} \mathrm{C}$ for a $20^{\circ}$ till boundary in NaCl. From R. C. Sun and C. L. Bauer, Acta Met., 18, 639 (1970).
    size increases, the solute segregate concentration increases, and the average boundary curvature decreases. Additions of MgO to $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaCl}_{2}$


    

    GRAIN GROWTH, SINTERING, AND VITRIFICATION
    boundary of atoms
    le atomic Since the inversely i. 10.9 and ructure of 1 deriving there is a boundary 5.12, 5.17, here is to iorces, as and H . D. ; the grain
    for a $20^{\circ}$ tilt 70).
    ; , and the $\mathrm{I}_{2} \mathrm{O}_{3}, \mathrm{CaCl}_{2}$
    to KCl and of $\mathrm{ThO}_{2}$ to $\mathrm{Y}_{2} \mathrm{O}_{3}$ in amounts below the solubility limit have proved effective as grain-growth inhibitors.

    When grains grow to such a size that they are nearly equal to the specimen size, grain growth is stopped. In a rod sample, for example, when the grain size is equal to the rod diameter, the grain boundaries tend to form flat surfaces normal to the axis so that the driving force for boundary migration is eliminated and little subsequent grain growth occurs. Similarly, inclusions increase the energy necessary for the movement of a grain boundary and inhibit grain growth. If we consider a boundary such as the one illustrated in Fig. 10.8, the boundary energy is decreased when it reaches an inclusion proportional to the cross-sectional area of the inclusion. The boundary energy must be increased again to pull it away from the inclusion. Consequently, when a number of inclusions are present on a grain boundary, its normal curvature becomes insufficient for continued grain growth after some limiting size is reached. It has been found that this size is given by

    $$
    \begin{equation*}
    d_{t} \approx \frac{d_{i}}{f_{d_{i}}} \tag{10.12}
    \end{equation*}
    $$

    where $d_{1}$ is the limiting grain size, $d_{i}$ is the particle size of the inclusion, and $f_{d_{i}}$ is the volume fraction of inclusions. Although this relationship is only approximate, it indicates that the effectiveness of inclusions increases as their particle size is lowered and the volume fraction increases.

    For the process illustrated in Fig. 10.8, the boundary approaches, is attached to, and subsequently breaks away from a second-phase particle. Another possibility is that the grain boundary drags along the particle

    Fig. 10.8. Changing configuration of a boundary while passing an inclusion.

    ## INTRODUCTION TO CERAMICS

    which remains attached to the boundary as it moves. This requires material transport across the particle, which may occur by interface or surface or volume diffusion, by viscous flow, or by solution (precipitation in a liquid or glass inclusion), or by evaporation (condensation in a gas inclusion). We can define an inclusion particle mobility $B_{p}$ relating the driving force and particle velocity $v_{p}=B_{p} F_{p}$ in the same way as has been done for the boundary (Eq. 10.11 b ) and for atomic diffusion in Chapter 6. When the inclusion is dragged by the boundary, their velocities are identical; in the case in which $B_{p} \ll B_{b}$ we can neglect the intrinsic boundary mobility, and the resulting grain-boundary velocity is controlled by the driving force on the boundary together with the mobility and number of inclusions per grain boundary, $p$ :

    $$
    \begin{equation*}
    v_{b}=\frac{B_{p} F_{b}}{P} \tag{10.13}
    \end{equation*}
    $$

    The inclusion particle moves along with the boundary, gradually becoming concentrated at boundary intersections and agglomerating into larger particles as grain growth proceeds. This is illustrated for the special case of pore agglomeration in Figs. 10.9 and 10.10.
    Thus, second-phase inclusions can either (1) move along with boundaries, offering little impedance; (2) move along with boundaries, with the inclusion mobility controlling the boundary velocity; or (3) be so immobile that the boundary pulls away from the inclusion, depending on the relative values of the boundary driving force (inversely proportional to grain size), the boundary mobility (Fig. 10.7), and the inclusion particle mobility, which, depending on the assumed mechanism and particle shape, may be proportional to $r_{p}^{-2}, r_{p}^{-3}$, or $r_{p}^{-4} . *$ As grain growth proceeds, the driving force diminishes, and any inclusions dragged along by the boundary increase in size so that their mobility decreases. As a result, the exact way in which second-phase inclusions inhibit grain growth not only depends on the properties of the particular system but also can easily change during the grain-growth process. Sorting out these effects requires a careful evaluation of the microstructure evolution in combination with the kinetics of grain growth and a detailed knowledge of system properties. Inhibition of grain growth by solid second-phase inclusions has been observed for MgO additions to $\mathrm{Al}_{2} \mathrm{O}_{3}$, for CaO additions to $\mathrm{ThO}_{2}$, and in other systems.
    A second phase that is always present during ceramic sintering and in almost all ceramic products prepared by sintering is residual porosity

    Fig.
    agglc
    rem
    com
    (inte
    sam
    (intc
    part
    by 1
    glon
    earl!
    forc
    clus
    resu
    larg,
    usue
    grov
    
    $s$ requires terface or ecipitation $n$ in a gas slating the $s$ has been Chapter 6. scities are $\geq$ intrinsic controlled bility and
    ly becomnto larger ecial case
    rith boun;, with the se so iming on the irtional to n particle 1 particle proceeds, ig by the esult, the 1 not only :an easily s requires tion with n properhas been $)_{2}$, and in ng and in porosity

    Centamore.
    
    (b)

    Fig. 10.9. (a) Pore shape distorted from spherical by moving boundary and (b) pore agglomeration during grain growth.
    remaining from the interparticle space present in the initial powder compact. This porosity is apparent both on the grain boundaries (intergranular) and within the grains (intragranular) in the sintered $\mathrm{CaF}_{2}$ sample shown in Fig. 10.5. It is present almost entirely at the grain corners (intergranular) in the sintered $\mathrm{UO}_{2}$ samples shown in Fig. 10.10. As with particulate inclusions, pores on the grain boundaries may be left behind by the moving boundary or migrate with the boundary, gradually agglomerating at grain corners, as illustrated in Figs. 10.9 and 10.10. In the early stages of sintering, when the boundary curvature and the driving force for boundary migration are high, pores are often left behind, and a cluster of small pores in the center of a grain is a commonly observed result (see Fig. 10.5). In the later stages of sintering, when the grain size is larger and the driving force for boundary migration is lower, it is more usual for pores to be dragged along by the boundary, slowing grain growth.
    

    Fig. 10.10. Grain growth and pore growth in sample of $U_{2}$ after (a) $2 \mathrm{~min}, 91.5 \%$ dense, and (b) $5 \mathrm{hr}, 91.9 \%$ dense, at $1600^{\circ} \mathrm{C}(400 \times$ ). From Francois and Kingery.

    Another factor that may restrain grain growth is the presence of a liquid phase. If a small amount of a boundary liquid is formed, it tends to slow grain growth, since the driving force is reduced and the diffusion path is increased. There are now two solid-liquid interfaces, and the driving force is the difference between them, that is, $\left(1 / r_{1}+1 / r_{2}\right)_{A}-\left(1 / r_{1}+1 / r_{2}\right)_{B}$, which
    is smaller tl the interfac Also, the precipitatio ever, this c: the presenc discussed it enhance se amounts o: described is amount of : grain grow 1

    Secondar tion, somet when some uniform-gr: has many r fifty sides i and it grou increased c Fig. 10.11, a uniform-

    Seconda: ous grain Under thes curvature । with highl: material re grains is $\mathbf{i}$ growth has much largi mined by $t$ an inductis formation grain-size grain size 1 secondary even thoug

    Second ceramics i of second resultant $\leq$
    
    is smaller than either alone; in addition, if the liquid wets the boundary, the interface energy must be lower than the pure-grain-boundary energy. Also, the process of solution, diffusion through a liquid film, and precipitation is usually slower than the jump across a boundary. However, this case is more complex in that grain growth may be enhanced by the presence of a reactive liquid phase during the densification process, as discussed in Section 10.4. In addition, a very small amount of liquid may enhance secondary recrystallization, as discussed later, whereas larger amounts of liquid phase may give rise to the grain-growth process described in Chapter 9. In practice, it is found that addition of a moderate amount of silicate liquid phase to aluminum oxide prevents the extensive grain growth which frequently occurs with purer materials.
    Secondary Recrystallization. The process of secondary recrystallization, sometimes called discontinuous or exaggerated grain growth, occurs when some small fraction of the grains grow to a large size, consuming the uniform-grain-size matrix. Once a single grain grows to such a size that it has many more sides than the neighboring grains (such as the grain with fifty sides illustrated in Fig. 10.4), the curvature of each side increases, and it grows more rapidly than the smaller grains with fewer sides. The increased curvature on the edge of a large grain is particularly evident in Fig. 10.11, which shows a large alumina crystal growing at the expense of a uniform-particle-size matrix.
    Secondary crystallization is particularly likely to occur when continuous grain growth is inhibited by the presence of impurities or pores. Under these conditions the only boundaries able to move are those with a curvature much larger than the average; that is, the exaggerated grains with highly curved boundaries are able to grow, whereas the matrix material remains uniform in grain size. The rate of growth of the large grains is initially dependent on the number of sides. However, after growth has reached the point at which the exaggerated grain diameter is much larger than the matrix diameter, $d_{g} \gg d_{m}$, the curvature is determined by the matrix grain size and is proportional to $1 / d_{m}$. That is, there is an induction period corresponding to the increased growth rate and the formation of a grain large enough to grow at the expense of the constant-
    $11.5 \%$ dense,
    of a liquid ds to slow on path is ving force $\left.\ddot{z}_{2}\right)_{\mathrm{B}}$, which grain-size matrix. Therefore, the growth rate is constant as long as the grain size of the matrix remains unchanged. Consequently, the kinetics of secondary recrystallization is similar to that of primary recrystallization, even though the nature of the nucleation and driving force is different.

    Secondary recrystallization is common for oxide, titanate, and ferrite ceramics in which grain growth is frequently inhibited by minor amounts of second phases or by porosity during the sintering process. A typical resultant structure is illustrated for barium titanate in Fig. 10.12, and the
    

    Fig. 10.11. Growth of a large $\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal into a matrix of uniformly sized grains (495x). Compare with Fig. 10.4. Courtesy R. L. Coble.
    

    Fig. 10.12. Large grains of barium titanate growing by secondary recrystallization from a fine-grained matrix (250x). Courtesy R. C. DeVries.
    
    progressive growth of aluminum oxide crystals during secondary recrystallization is illustrated in Fig. 10.13.

    When polycrystalline bodies are made from fine powder, the extent of secondary recrystallization depends on the particle size of the starting material. Coarse starting material gives a much smaller relative grain growth, as illustrated in Fig. 10.14 for beryllia. This is caused by both the rate of nucleation and the rate of growth. There are almost always present in the fine-grained matrix a few particles of substantially larger particle size than the average; these can act as embryos for secondary recrystallization, since already $d_{s}>d_{m}$, and growth proceeds to a rate proportional to $1 / d_{m}$. In contrast, as the starting particle size increases, the chances of grains being present which are much larger in particle size than the average are much decreased, and consequently the nucleation of secondary recrystallization is much more difficult; the growth rate, proportional to $1 / d_{m}$, is also smaller. In the data shown in Fig. 10.14, material having a starting particle size of 2 microns grows to a final particle size of about 50 microns, whereas material with an initial particle size of 10 microns shows a final grain size of only about 25 microns. This result of a much larger final grain size for a smaller initial particle size would be very puzzling if the process of secondary recrystallization was not known to occur.

    Secondary recrystallization has been observed to occur with the boundaries of the large grains apparently perfectly straight (Fig. 10.15). Here the previous discussion of the surface tension and curvature of the phase boundary does not apply directly. That is, the boundary energy is
    

    Fig. 10.14. Relative grain growth during secondary recrystallization of BeO heated $2 \frac{1}{2}$ hr at $2000^{\circ} \mathrm{C}$. From P. Duwez, F. Odell, and J. L. Taylor, J. Am. Ceram. Soc., 32, 1 (1949).
    not indepen low surface a small cons boundary pl lower surfa energy face material un, mediate bol grains. The boundaries the system, amount of 1 and this kin sed previou

    Secondar resultant p1 mechanical magnetic pr improved $\mathbf{p}$ : literature as this is not $t$ oxide with ture so tha has left alr

    Fig. 10.15: straight, whe Courtesy R. I
    
    :ecrys-
    tent of tarting : grain th the resent article ystallirtional ices of an the seconrtional rving a ,out 50 shows larger zling if ur. th the 10.15). of the
    ergy is


    not independent of crystal directions, and the growth planes are those of low surface energy. These structures all seem to occur in systems having a small concentration of impurity which gives rise to a small amount of a boundary phase. The driving force for secondary recrystallization is the lower surface energy of the large grain compared with the high-surfaceenergy faces or small radius of curvature of adjacent grains. Transfer of material under these conditions can only occur when there is an intermediate boundary phase separating the surfaces of the small and large grains. The amount of second phase present tends to increase at the boundaries of the large crystals compared with that at other boundaries in the system, and a large grain continues to grow once it is initiated. If the amount of boundary phase is increased, however, normal grain growth and this kind of secondary recrystallization are both inhibited, as discussed previously.

    Secondary recrystallization affects both the sintering of ceramics and resultant properties. Excessive grain growth is frequently harmful to mechanical properties (see Sections 5.5 and 15.5). For some electrical and magnetic properties either a large or a small grain size may contribute to improved properties. Occasionally grain growth has been discussed in the literature as if it were an integral part of the densification process. That this is not true can best be seen from Fig. 10.16. A sample of aluminum oxide with an initial fine pore distribution was heated to a high temperature so that secondary recrystallization occurred. The recrystallization has left almost the same amount of porosity as was present in the initial
    

    Fig. 10.15. (a) Idiomorphic grains in a polycrystalline spinel. The large grain edges appear straight, whereas the shape of the small grains is controlled by surface tension ( $350 \times$ ). Courtesy R. L. Coble.
    

    Fig. 10.15 (Continued). (b) Idiomorphic grains of $\alpha-6 \mathrm{H} \mathrm{SiC}$ in a $\beta-\mathrm{SiC}$ matrix (1000x).
    compact. Elimination of porosity is a related but separate subject and is considered in following sections. An application in which secondary recrystallization has been useful is in the development of preferred orientation on firing of the magnetically hard ferrite, $\mathrm{BaFe}_{12} \mathrm{O}_{19}$. * For this
    *A. L. Stuijts, Trans. Brit. Ceram. Soc., 55, 57 (1956).
    

    Fig. 10.15 (Continued
    magnetic material degree of preferr. powdered materia them to a high ma alignment after $\dagger$
    
    

    Fig. 10.16. A specimen of alumina (a) sintered 1 hr at $1800^{\circ} \mathrm{C}$ and (b) heated 1 hr at $1900^{\circ} \mathrm{C}$ to give secondary recrystallization. Note that the pore spacing has not changed. Courtesy J. E. Burke.
    preferred orientation increased to $93 \%$ alignment, corresponding to the structural change brought about by secondary recrystallization. It seems apparent that the few large grains in the starting material are more uniformly aligned than the fine surrounding material. These grains serve as nuclei for the secondary recrystallization process and give rise to a highly oriented final product.

    ### 10.2 Solid-State

    Changes that o in grain size and : size. In Section 1 the following sec that is, the chang porous compact compact, before separated by be particular mater: properties such : desirable to elimi applications it m : ing the gas perm transfer of mates of changes that $\mathbf{r}$ present can chan necessarily chan; shape of the pol becoming more s
    Driving Force 1 to densification i: free energy by takes place witl
    

    Fig. 10.17.
    

    1 hr at $1900^{\circ} \mathrm{C}$ こd. Courtesy J.

    ### 10.2 Solid-State Sintering

    Changes that occur during the firing process are related to (1) changes in grain size and shape, (2) changes in pore shape, and (3) changes in pore size. In Section 10.1 we concentrated on changes in grain size; in this and the following section we are mainly concerned with changes in porosity, that is, the changes taking place during the transformation of an originally porous compact to a strong, dense ceramic. As formed, a powder compact, before it has been fired, is composed of individual grains separated by between 25 and $60 \mathrm{vol} \%$ porosity, depending on the particular material used and the processing method. For maximizing properties such as strength, translucency, and thermal conductivity, it is desirable to eliminate as much of this porosity as possible. For some other applications it may be desirable to increase this strength without decreasing the gas permeability. These results are obtained during firing by the transfer of material from one part of the structure to the other. The kind of changes that may occur are illustrated in Fig. 10.17. The pores initially present can change shape, becoming channels or isolated spheres, without necessarily changing in size. More commonly, however, both the size and shape of the pores present change during the firing process, the pores becoming more spherical in shape and smaller in size as firing continues.

    Driving Force for Densification. The free-energy change that gives rise to densification is the decrease in surface area and lowering of the surface free energy by the elimination of solid-vapor interfaces. This usually takes place with the coincidental formation of new but lower-energy
    
    $\xrightarrow[\text { pore shape }]{\text { Changes in }}$
    $\underset{\text { and shrinkage }}{\text { Change in shape }}$
    

    Fig. 10.17. Changes in pore shape do not necessarily require shrinkage.
    solid-solid interfaces. The net decrease in free energy occurring on sintering a 1 -micron particle size material corresponds to an energy decrease of about $1 \mathrm{cal} / \mathrm{g}$. On a microscopic scale, material transfer is affected by the pressure difference and changes in free energy across a curved surface. These changes are due to the surface energy and have been discussed in Chapter 5 and referred to in Section 10.1. If the particle size, and consequently the radius of curvature, is small, these effects may be of a substantial magnitude. As indicated in Chapter 5, they become large when the radius of curvature is less than a few microns. This is one of the major reasons why much ceramic technology is based on and depends on the use of fine-particle materials.
    Most of the insight into the effect of different variables on the sintering process has come from considering simple systems and comparing experimental data with simple models. Since our major aim is to be sure we understand the importance of different variables in traditional or new systems, we use this method here. Since the driving force is the same (surface energy) in all systems, considerable differences in behavior in various types of systems must be related to different mechanisms of material transfer. Several can be imagined-evaporation and condensation, viscous flow, surface diffusion, grain-boundary or lattice diffusion, and plastic deformation are among those that occur to us. Of these, diffusion and viscous flow are important in the largest number of systems; evaporation-condensation is perhaps the easiest to visualize.
    Evaporation-Condensation. During the sintering process there is a tendency for material transfer because of the differences in surface curvature and consequently the differences in vapor pressure at various parts of the system. Material transfer brought about in this way is only important in a few systems; however, it is the simplest sintering process to treat quantitatively. We derive the sintering rate in some detail, since it provides a sound basis for understanding more complex processes. Let us consider the initial stages of the process when the powder compact is just beginning to sinter and concentrate on the interaction between two adjacent particles (Fig. 10.18). At the surface of the particle there is a positive radius of curvature so that the vapor pressure is somewhat larger than would be observed for a flat surface. However, just at the junction between particles there is a neck with a small negative radius of curvature and a vapor pressure an order of magnitude lower than that for the particle itself. The vapor-pressure difference between the neck area and the particle surface tends to transfer material into the neck area.

    We can calculate the rate at which the bonding area between particles increases by equating the rate of material transfer to the surface of the

    Fig. 10.18. I
    lens betwe pressure ov of the sur (Kelvin) eq
    where $p_{1}$ is molecular radius is mt pressure di tion, $\ln p_{1} /$
    where $\Delta p$ negative ra the nearly 1 to the diffe given by th
    where $\alpha$ is rate of con

    From the $g$ at the cont:
    ring on energy nsfer is icross a ad have particle cts may become :s is one on and
    intering nparing be sure or new :e same ivior in sms of idensafusion, these, /stems;
    re is a surface various is only icess to since it es. sowder raction , article sure is ${ }^{2}$ r, just :gative lower :en the e neck rticles of the
    

    Fig. 10.18. Initial stages of sintering by evaporization-condensation.
    lens between the spheres with the increase in its volume. The vapor pressure over the small negative radius of curvature is decreased because of the surface energy in accordance with the Thomson-Freundlich (Kelvin) equation discussed in Chapter 5:

    $$
    \begin{equation*}
    \ln \frac{p_{1}}{p_{0}}=\frac{\gamma M}{d R T}\left(\frac{1}{\rho}+\frac{1}{x}\right) \tag{10.14}
    \end{equation*}
    $$

    where $p_{1}$ is the vapor pressure over the small radius of curvature, $M$ is the molecular weight of the vapor, and $d$ is the density. In this case the neck radius is much larger than the radius of curvature at the surface, $\rho$, and the pressure difference $p_{0}-p_{1}$ is small. Consequently, to a good approximation, $\ln p_{1} / p_{0}$ equals $\Delta p / p_{0}$, and we can write

    $$
    \begin{equation*}
    \Delta p=\frac{\gamma M p_{0}}{d \rho R T} \tag{10.15}
    \end{equation*}
    $$

    where $\Delta p$ is the difference between the vapor pressure of the small negative radius of curvature and the saturated vapor in equilibrium with the nearly flat particle surfaces. The rate of condensation is proportional to the difference in equilibrium and atmospheric vapor pressure and is given by the Langmuir equation to a good approximation as

    $$
    \begin{equation*}
    m=\alpha \Delta p\left(\frac{M}{2 \pi R T}\right)^{1 / 2} \quad \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{sec} \tag{10.16}
    \end{equation*}
    $$

    where $\alpha$ is an accommodation coefficient which is nearly unity. Then the rate of condensation should be equal to the volume increase. That is,

    $$
    \begin{equation*}
    \frac{m A}{d}=\frac{d v}{d t} \quad \mathrm{~cm}^{3} / \mathrm{sec} \tag{10.17}
    \end{equation*}
    $$

    From the geometry of the two spheres in contact, the radius of curvature at the contact points is approximately equal to $x^{2} / 2 r$ for $x / r$ less than 0.3 ;

    ## INTRODUCTION TO CERAMICS

    the area of the surface of the lens between spheres is approximately equal to $\pi^{2} x^{3} / r$; the volume contained in the lenticular area is approximately $\pi x^{4} / 2 r$. That is,

    $$
    \begin{equation*}
    \rho=\frac{x^{2}}{2 r}: \quad A=\frac{\pi^{2} x^{3}}{r}: \quad v=\frac{\pi x^{4}}{2 r} \tag{10.18}
    \end{equation*}
    $$

    Substituting values for $m$ in Eq. 10.16, $A$ and $v$ in Eq. 10.18 into Eq. 10.17 and integrating, we obtain a relationship for the rate of growth of the bond area between particles:

    $$
    \begin{equation*}
    \frac{x}{r}=\left(\frac{3 \sqrt{\pi} \gamma M^{3 / 2} p_{0}}{\sqrt{2} R^{3 / 2} T^{3 / 2} d^{2}}\right)^{1 / 3} r^{-2 / 3} t^{1 / 3} \tag{10.19}
    \end{equation*}
    $$

    This equation gives the relationship between the diameter of the contact area between particles and the variables influencing its rate of growth.
    The important factor from the point of view of strength and other material properties is the bond area in relation to the individual particle size, which gives the fraction of the projected particle area which is bonded together-the main factor in fixing strength, conductivity, and related properties. As seen from Eq. 10.19, the rate at which the area between particles forms varies as the two-thirds power of time. Plotted on a linear scale, this decreasing rate curve has led to characterizations of end point conditions corresponding to a certain sintering time. This concept of an end point is useful, since periods of time for sintering art not widely changed; however, the same rate law is observed for the entirs process (Fig. 10.19b).
    

    Fig. 10.19. (a) Linear and (b) log-log plots of neck growth between spherical particles of sodium chloride at $725^{\circ} \mathrm{C}$.

    If we c such as particles particle shrinkag by vapo: changed. 'propertic

    The p pore-sha proportic Since th process From a control c and the 1 generally conditio

    The $n^{\prime}$ fer is $p$ changes particles

    Fig. 10.21
    cimately equal ipproximately
    into Eq. 10.17 th of the bond

    If the contact e of growth. th and other idual particle trea which is luctivity, and jich the area ie. Plotted on ierizations of g time. This sintering art for the entirs
    
    cal particles of

    If we consider the changes in structure that take place during a process such as this, it is clear that the distance between centers of spherical particles (Fig. 10.18) is not affected by the transfer of material from the particle surface to the interparticle neck. This means that the total shrinkage of a row of particles, or of a compact of particles, is unaffected by vapor-phase-material transfer and that only the shape of pores is changed. This changing shape of pores can have an appreciable effect on properties but does not affect density.

    The principal variables in addition to time that affect the rate of pore-shape change through this process are the initial particle radius (rate proportional to $1 / r^{2 / 3}$ ) and the vapor pressure (rate proportional to $p_{0}{ }^{13}$ ). Since the vapor pressure increases exponentially with temperature, the process of vapor-phase sintering is strongly temperature-dependent. From a processing point of view, the two main variables over which control can be exercised for any given material are the initial particle size and the temperature (which fixes the vapor pressure). Other variables are generally not easy to control, nor are they strongly dependent on conditions of use.
    The negligible shrinkage corresponding to vapor-phase-material transfer is perhaps best illustrated in Fig. 10.20, which shows the shape changes that occur on heating a row of initially spherical sodium chloride particles. After long heating the interface contact area has increased; the
    

    Fig. 10.20. Photomicrographs of sintering sodiuṃ chloride at $750^{\circ} \mathrm{C}$ : (a) 1 min ; (b) 90 min .
    particle diameter has been substantially decreased, but the distance between particle centers, that is, the shrinkage, has not been affected.
    Vapor-phase-material transfer requires that materials be heated to a temperature sufficiently high for the vapor pressure to be appreciable. For micron-range particle sizes this requires vapor pressures in the order of $10^{-4}$ to $10^{-5} \mathrm{~atm}$, a pressure higher than those usually encountered during sintering of oxide and similar phases. Vapor-phase transfer plays an important part in the changes occurring during treatment of halides such as sodium chloride and is important for the changes in configuration observed in snow and ice technology.
    Solid-State Processes. The difference in free energy or chemical potential between the neck area and the surface of the particle provides a driving force which causes the transfer of material by the fastest means available. If the vapor pressure is low, material transfer may occur more readily by solid-state processes, several of which can be imagined. As shown in Fig. 10.21 and Table 10.1, in addition to vapor transport (process 3), matter can move from the particle surface, from the particle bulk, or from the grain boundary between particles by surface, lattice, or grainboundary diffusion. Which one or more of these processes actually contributes significantly to the sintering process in a particular system depends on their relative rates, since each is a parallel method of lowering the free energy of the system (parallel reaction paths have been discussed in Chapter 9). There is a most significant difference between these paths for matter transport: the transfer of material from the surface to the neck by surface or lattice diffusion, like vapor transport, does not lead to any decrease in the distance between particle centers. That is, these processes do not result in shrinkage of the compact and a decrease in porosity. Only

    Table 10.1. Alternate Paths for Matter Transport During the Initial Stages of Sintering ${ }^{a}$

    | Sintering |  |  |  |
    | :---: | :---: | :---: | :---: |
    | Mechanism <br> Number | Transport Path | Source of Matter | Sink of Matter |
    | 1 | Surface diffusion | Surface | Neck |
    | 2 | Lattice diffusion | Surface | Neck |
    | 3 | Vapor transport | Surface | Neck |
    | 4 | Boundary diffusion | Grain boundary | Neck |
    | 5 | Lattice iffusion | Grain boundary | Neck |
    | 16 | Lattice diffusion | Dislocations | Neck |

    Fig. 10.21. Courtesy M.
    transfer o: between $\mathbf{F}$

    Let us c to the nec is exactly vapor-pha surface ar The geom
    ie distance
    1 affected. eated to a ciable. For te order of red during - plays an lides such ifiguration
    cal potenrovides a est means :cur more gined. As $t$ (process きbulk, or or grainactually r system lowering liscussed :se paths the neck d to any rocesses ity. Only

    Stages of
    iatter
    

    Fig. 10.21. Alternate paths for matter transport during the initial stages of sintering. Courtesy M. A. Ashby. (See Table 10.1.)
    transfer of matter from the particle volume or from the grain boundary between particles causes shrinkage and pore elimination.

    Let us consider mechanism 5, matter transport from the grain boundary to the neck by lattice diffusion. Calculation of the kinetics of this process is exactly analogous to determination of the rate of sintering by a vapor-phase process. The rate at which material is discharged at the surface area is equated to the increase in volume of material transferred. The geometry is slightly different:

    $$
    \begin{equation*}
    \rho=\frac{x^{2}}{4 r}: \quad A=\frac{\pi^{2} x^{3}}{2 r}: \quad V=\frac{\pi x^{4}}{4 r} \tag{10.20}
    \end{equation*}
    $$

    The process can be visualized most easily by considering the rate of
    migration of vacancies. In the same way that there are differences in vapor pressure between the surface of high negative curvature and the nearly flat surfaces, there is a difference in vacancy concentration. If $c$ is the concentration of vacancies and $\Delta c$ is the excess concentration over the concentration on a plane surface $c_{0}$, then, equivalent to Eq. 10.15,

    $$
    \begin{equation*}
    \Delta c=\frac{\gamma a^{3} c_{0}}{k T \rho} \tag{10.21}
    \end{equation*}
    $$

    where $a^{3}$ is the atomic volume of the diffusing vacancy and $k$ is the Boltzmann constant. The flux of vacancies diffusing away from the neck area per second per centimeter of circumferential length under this concentration gradient can be determined graphically and is given by

    $$
    \begin{equation*}
    J=4 D_{v} \Delta c \tag{10.22}
    \end{equation*}
    $$

    Where $D_{V}$ is the diffusion coefficient for vacancies, $D_{v}$ equals $D^{*} / a^{3} c_{0}$ if $D^{*}$ is the self-diffusion coefficient. Combining Eqs. 10.22 and 10.21 with the continuity equation similar to Eq. 10.17, we obtain the result

    $$
    \begin{equation*}
    \frac{x}{r}=\left(\frac{40 \gamma a^{3} D^{*}}{k T}\right)^{1 / 5} r^{-3 / 5} t^{1 / 5} \tag{10.23}
    \end{equation*}
    $$

    With diffusion, in addition to the increase in contact area between particles, there is an approach of particles centers. The rate of this approach is given by $d\left(x^{2} / 2 r\right) / d t$. Substituting from Eq. 10.23, we obtain

    $$
    \begin{equation*}
    \frac{\Delta V}{V_{0}}=\frac{3 \Delta L}{L_{0}}=3\left(\frac{20 \gamma a^{3} D^{*}}{\sqrt{2} k T}\right)^{2 / 5} r^{-6 / 5} t^{2 / 5} \tag{10.24}
    \end{equation*}
    $$

    These results indicate that the growth of bond formation between particles increases as a one-fifth power of time (a result which has been experimentally observed for a number of metal and ceramic systems) and that the shrinkage of a compact densified by this process should be proportional to the two-fifths power of time. The decrease in densification rate with time gives rise to an apparent end-point density if experiments are carried out for similar time periods. However, when plotted on a $\log -\log$ basis, the change in properties is seen to occur as expected from Eq. 10.24. Experimental data for sodium fluoride and aluminum oxide are shown in Fig. 10.22.
    The relationships derived in Eqs. 10.23 and 10.24 and similar relationships for the alternate matter transport processes, which we shall not derive, are important mainly for the insight that they provide on the variables which must be controlled in order to obtain reproducible processing and densification. It is seen that the sintering rate steadily decreases with time, so that merely sintering for longer periods to obtain

    Fig. 10.22. ( oxide compas
    improved 1 critical var Control roughly pr diameter a illustrated even these size is dec
    differences in ature and the tration. If $c$ is intration over to Eq. 10.15,
    (10.21)
    and $k$ is the :rom the neck :h under this is given by
    (10.22)
    als $D^{*} / a^{3} c_{0}$ if nd 10.21 with : result
    rea between rate of this , we obtain
    (10.24)
    tion between lich has been systems) and ss should be densification experiments plotted on a xpected from um oxide are
    vilar relationwe shall not svide on the reproducible rate steadily ods to obtain
    
    (a)
    
    (b)

    Fig. 10.22. (a) Linear and (b) $\log -\log$ plots of shrinkage of sodium fluoride and aluminum oxide compacts. From J. E. Burke and R. L. Coble.
    improved properties is impracticable. Therefore, time is not a major or critical variable for process control.
    Control of particle size is very important, since the sintering rate is roughly proportional to the inverse of the particle size. The interface diameter achieved after sintering for a period of 100 hr at $1600^{\circ} \mathrm{C}$ is illustrated in Fig. 10.23 as a function of particle size. For large particles even these long periods do not cause extensive sintering; as the particle size is decreased, the rate of sintering is raised.
    

    Fig. 10.23. Effect of particle size on the contact area growth in $\mathrm{Al}_{2} \mathrm{O}_{3}$ heated 100 hr at $1600^{\circ}$ C. From R. L. Coble.

    The other variable appearing in Eqs. 10.22 and 10.24 that is subject to analysis and some control is the diffusion coefficient; it is affected by composition and by temperature; the relative effectiveness of surfaces, boundaries, and volume as diffusion paths is affected by the microstructure. A number of relationships similar to Eqs. 10.23 and 10.24 have been derived, and it has been shown that surface diffusion is most important during early stages of sintering (these affect the neck diameter between particles but not the shrinkage or porosity); grain-boundary diffusion and volume diffusion subsequently become more important. In ionic ceramics, as discussed in Chapter 9, both the anion and the cation diffusion coefficients must be considered. In $\mathrm{Al}_{2} \mathrm{O}_{3}$, the best studied material, oxygen diffuses rapidly along the grain boundaries, and the more slowly moving aluminum ion at the boundary or in the bulk controls the overall sintering rate. As discussed in Chapter 5, the grain-boundary structure, composition, and electrostatic charge are influenced strongly by temperature and by impurity solutes; as discussed in Chapter 6, the exact mechanism of grain-boundary diffusion remains controversial. Estimates of the grain-boundary-diffusion width from sintering data range from 50 to $600 \AA$. These complications require us to be careful not to overanalyże data in terms of specific numerical results, since the time or temperature dependence of sintering may be in accordance with several plausible models. In general the presence of solutes which enhance either
    boundary os sintering. A: coefficients sintering ra ${ }^{1}$

    In order 1 solid-state $\mathbf{F}$ particle sizi temperaturs

    As an ex effect of tit; in a region processes a ally as $\mathrm{Ti}^{+3}$
    from which
    boundary or volume diffusion coefficients enhance the rate of solid-state sintering. As discussed in Chapter 6, both boundary and volume diffusion coefficients are strongly temperature-dependent, which means that the sintering rate is strongly dependent on the temperature level.

    In order to effectively control sintering processes which take place by solid-state processes, it is essential to maintain close control of the initial particle size and particle-size distribution of the material, the sintering temperature, the composition and frequently the sintering atmosphere.
    As an example of the influence of solutes, Fig. 10.24 illustrates the effect of titania additions on the sintering rate of a relatively pure alumina in a region of volume diffusion. (Both volume and boundary diffusion processes are enhanced.) It is believed that Ti enters $\mathrm{Al}_{2} \mathrm{O}_{3}$ substitutionally as $\mathrm{Ti}^{+3}$ and $\mathrm{Ti}^{+4}\left(\mathrm{Ti}_{A^{\prime}}\right.$ and $\left.\mathrm{Ti}_{\mathrm{AI}}\right)$. At equilibrium
    from which

    $$
    \begin{align*}
    3 \mathrm{Ti}_{\mathrm{Al}}+\frac{3}{4} \mathrm{O}_{2}(g) & =3 \mathrm{Ti}_{\mathrm{Al}^{\prime}}+V_{A 1}^{\prime \prime}+\frac{3}{2} \mathrm{O}_{0}  \tag{10.25}\\
    K_{1} & =\frac{\left[\mathrm{Ti}_{\mathrm{N}}\right]^{3}\left[V_{A 1}^{\prime \prime \prime}\right]}{\left[\mathrm{Ti}_{A}\right]^{3}\left[P_{\mathrm{O}_{2}}\right]^{3 / 4}} \tag{10.26}
    \end{align*}
    $$

    lbject to scted by ;urfaces, rostrucive been nportant between sion and n ionic $\geq$ cation studied he more trols the oundary strongly : 6 , the vversial. ta range 1 not to time or several e either
    
    $\log$ atom \% Ti

    Fig. 10.24. Data for the relative sintering process diffusion coefficient with Ti additions to $\mathrm{Al}_{2} \mathrm{O}_{3}$. Da[Ti] ${ }^{3}$. From R. D. Bagley, I. B. Cutler, and D. L. Johnson, J. Am. Ceram. Soc., 53, 136 (1970); R. J. Brook, J. Am. Ceram. Soc., 55, 114 (1972).

    In the powders used, divalent impurities such as magnesium exceed in concentrations the intrinsic defect levels, so that overall charge neutrality at moderate titania levels is achieved by

    $$
    \begin{equation*}
    \left[\mathrm{Ti}_{\mathrm{Al}}\right]=\left[\mathrm{Mg}_{\mathrm{Al}}^{\prime}\right] \tag{10.27}
    \end{equation*}
    $$

    and at constant impurity and oxygen pressure levels, combining Eqs. 10.26 and 10.27 gives

    $$
    \begin{equation*}
    \left[V_{A d}^{\prime \prime \prime}\right]=K_{2}\left[T i_{A I}\right]^{3} \tag{10.28}
    \end{equation*}
    $$

    Since the total Ti addition $\left(\mathrm{Ti}_{A_{1}}+\mathrm{Ti}_{\mathrm{A}_{1}}\right)$ is much greater than the impurity levels, $[\mathrm{Ti}]_{\text {Total }} \approx\left[\mathrm{Ti}_{\text {Al }}\right]$ and $\left[V_{A 1}^{\prime \prime \prime}\right] \approx K_{2}[\mathrm{Ti}]_{\text {Total. }}^{3}$. The dependence of lattice defect concentrations on titania concentration is shown in Fig. 10.25 for the proposed model. As discussed in Chapter 6, the diffusion coefficient is proportional to the vacancy concentration; as a result the effect of this model is to anticipate an increase in the sintering rate proportional to the third power of titania concentration as experimentally observed (Fig. 10.24). At higher concentrations the dependence on titania concentration should become less steep, which is suggested by the sintering data.

    Thus far our discussion of the variables influencing the sintering process has been based on the initial stages of the process, in which models are based on solid particles in contact. As the process continues, an intermediate microstructure forms in which the pores and solid are both continuous, followed by a later stage in which isolated pores are separated from one another. A number of analytical expressions have
    

    Fig. 10.25. Model for the dependence of defect concentrations on the Ti concentration in $\mathrm{Al}_{2} \mathrm{O}_{3}$. From R. J. Brook, J. Am. Ceram. Soc., 55, 114 (1972).
    been deriv processes 1 : mechanism boundary a spherical p
    where $D_{V}$ concentrati material-so sort of anal
    

    Fig. 10.26. more of the
    with a larg diffusion eliminatior porosity. 7 volume or solute con the geome variety of

    With fir increase i: treatment results frı sinter rap rapid grai the bound
    iium exceed in arge neutrality
    (10.27)
    mbining Eqs.
    (10.28)

    I the impurity nce of lattice Fig. 10.25 for 1 coefficient is effect of this rtional to the served (Fig. :oncentration ing data. :he sintering ss, in which is continues, nd solid are d pores are :ssions have
    been derived from specific microstructural models for the transport processes listed in Table 10.1. In the later stages of the process only two mechanisms are important: boundary diffusion from sources on the boundary and latitice diffusion from sources on the boundary. For a nearly spherical pore the flux of material to a pore can be approximated as

    $$
    \begin{equation*}
    J=4 \pi D_{v} \Delta c\left(\frac{r R}{R-r}\right) \tag{10.29}
    \end{equation*}
    $$

    where $D_{V}$ is the volume diffusion coefficient, $\Delta c$ is the excess vacancy concentration (Eq. 10.21), $r$ is the pore radius, and $R$ is the effective-material-source radius. The importance of microstructure in applying this sort of analysis to specific systems is illustrated in Fig. 10.26. For a sample
    

    Fig. 10.26. The mean diffusion distance for material transport is smaller when there are more of the same size of pores in a boundary.
    with a larger number of pores, all the same size, on a boundary the mean diffusion distance is smaller when there are more pores, and pore elimination is accomplished more quickly for the sample with the higher porosity. Thus, although the terms which influence the rate of sinteringvolume or boundary diffusion coefficient (and therefore temperature and solute concentration) surface energy and pore size-are well established, the geometrical relationship of grain boundaries to the pores may have a variety of forms and is critical in determining what actually occurs.
    With fine-grained materials such as oxides, it is usual to observe an increase in both grain size and pore size during the early stages of heat treatment, as illustrated for Lucalox alumina in Fig. 10.27. This partially results from the presence of agglomerates of the fine particles which sinter rapidly, leaving interagglomerate pores, and is partly due to the rapid grain growth during which pores are agglomerated by moving with the boundaries, as illustrated in Fig. 10.9. In cases in which agglomeration
    

    Fig. 10.27. Progressive development of microstructure in Lucalox alumina. Scanning
    electron micrograter ( $5000 \times$ ).

    Fig. 10.27 (1 and (d) aftel variations ir
    
    

    Fig. 10.27 (Continued) (e) The final microstructure is nearly porefree, with only a few pores located within grains ( $500 \times$ ). Courtesy C. Greskovich and K. W. Lay.
    of fine precipitated particles into clumps is severe, ball milling to break up the agglomerates leads to a remarkable increase in the sintering rate. Even minor variations in the original particle packing are exaggerated during the pore growth process; in addition, spaces between agglomerates and occasional larger voids resulting from the bridging of particles or agglomerates are present. As a result, during intermediate stages of the sintering process there is a range of pore sizes present, and the slower elimination of the larger pores leads to variations in pore concentration in the later stages of the sintering process, as illustrated in Fig. 10.28c.
    In addition to local agglomerates and packing differences, poreconcentration variations in the later stages of sintering can result from particle-size variations in the starting material, from green density varia-
    

    Fig. 10.28. Pc die friction, (c elimination ne:
    tions causec elimination during heati in pore con containing $f$ That is, the adjacent gr: orders of $n$ sintered oxi

    Not only residual po thermodyna
    

    Fig. 10.28. Pore-concentration variations resulting from (a) a variation in grain sizes, (b) die friction, (c) local packing and agglomeration differences, and (d) more rapid pore elimination near surfaces.
    tions caused by die-wall friction during pressing, and from the more rapid elimination of porosity near surfaces caused by temperature gradients during heating, as shown in Fig. 10.28. The importance of local variations in pore concentration results from the fact that the part of the sample containing pores tends to shrink but is restrained by other porefree parts. That is, the effective diffusion distance is no longer from the pore to an adjacent grain boundary but a pore-pore or pore-surface distance many orders of magnitude larger. An example of residual pore clusters in a sintered oxide is shown in Fig. 10.29.

    Not only the kinetics of pore elimination can lead to "stable" and residual porosity, but it is also possible in some cases to have a thermodynamically metastable equilibrium pore configuration. In Fig.
    value carbid nonsp. As c and 10 on the grains polyhs of the angle When usual model description, but we know from our discussion of interface energies in Chapter 5 that there is a dihedral angle $\phi$ at the pore-boundary intersection determined by the relative interface energies;

    $$
    \begin{equation*}
    \cos \frac{\phi}{2}=\frac{\gamma_{k b}}{2 \gamma_{s}} \tag{10.30}
    \end{equation*}
    $$

    In most cases the dihedral angle for pure oxides is about $150^{\circ}$, and the spherical pore approximation is quite good; but for $\mathrm{Al}_{2} \mathrm{O}_{3}+0.1 \% \mathrm{MgO}$ the
    value is $130^{\circ}$, for $\mathrm{UO}_{2}+30 \mathrm{ppm} \mathrm{C}$ the value is $88^{\circ}$, and for impure boron carbide the value is about $60^{\circ}$. For these materials the consequences of nonspherical pores have to be considered.
    As discussed ior discontinuous grain growth and illustrated in Figs. 10.4 and 10.11 , the boundary curvature between grains or phases depends both on the value of the dihedral angle and on the number of surrounding grains. If we take $r$ as the radius of a circumscribed sphere around a polyhedral pore surrounded by grains, the ratio of the radius of curvature of the pore surfaces $\rho$ to the spherical radius depends both on the dihedral angle and on the number of surrounding grains, as shown in Fig. 10.30a. When $r / \rho$ decreases to zero, the interfaces are flat and have no tendency
    
    (a)

    Fig. 10.30. (a) Change in the ratio ( $r / \rho$ ) with dihedral angle for pores surrounded by different numbers of grains as indicated on individual curves.
    
    (b)

    Fig. 10.30 (Continued). (b) Conditions for pore stability.
    for shrinkage; when $r / \rho$ is negative, the pore tends to grow. This is illustrated in Fig. 10.30 . For a uniform grain size the space-filling form is a tetrakaidecahedron with 14 surrounding grains. From an approximate relationship between the number of surrounding grains and the porediameter to grain-diameter ratio we can derive a relationship for pore stability as a function of dihedral angle and the ratio of pore size to grain size, as shown in Fig. 10.31. From this figure we can see why large pores present in poorly compacted powder such as shown in Fig. 10.32 not only remain stable but grow. It is also seen that an enormous disparity between
    

    Fig. 10.31. Conditions for pore stability.

    Fig. 10.32. L with scanning
    grain size a and size of affects the $r$ process.

    The inte two-way stı sintering, gı once the $p$ growth can temperatur from grain grain bounc illustrated $\mathbf{i}$ has occurre reduction i oxide show discontinuc grain boun

    Fig. 10.32. Large voids formed by bridging of agglomerates in fine $\mathrm{Al}_{2} \mathrm{O}_{3}$ powder viewed grain with scanning electron microscope at $2000 \times$. Courtesy C. Greskovich.
    jores
    only ween
    
    grain size and pore size is not necessary for pore stability. That is, the site and size of the porosity relative to the grain-boundary network not only affects the necessary distance for diffusion but also the driving force for the process.
    The interaction of grain boundaries and porosity is, of course, a two-way street. When many pores are present during the initial stages of sintering, grain growth is inhibited. However, as discussed in Section 10.1, once the porosity has decreased to a value such that secondary grain growth can occur, extensive grain growth may result at high sintering temperatures. When grain growth occurs, many pores become isolated from grain boundaries, and the diffusion distance between pores and a grain boundary becomes large, and the rate of sintering decreases. This is illustrated in Fig. 10.16b, in which extensive secondary recrystallization has occurred, with the isolation of pores in the interior of grains and a reduction in the densification rate. Similarly, the sample of aluminum oxide shown in Fig. 10.33 has been sintered at a high temperature at which discontinuous grain growth occurred. Porosity is only removed near the grain boundaries, which act as the vacancy sink. The importance of

    ## INTRODUCTION TO CERAMICS

    

    Fig. 10.33. Sintered $\mathrm{Al}_{2} \mathrm{O}_{3}$ illustrating elimination of porosity adjacent to grain boundaries with residual porosity remaining at grain centers. Courtesy J. E. Burke.
    controlling grain growth as an integral part of controlling sintering phenomena cannot be overestimated. Consequently, the grain-growth processes discussed in Section 10.1 must be actively prevented in order to obtain complete densification. Usually densification continues by a diffusion process until about $10 \%$ porosity is reached; at this point rapid grain growth occurs by secondary recrystallization, and the rate of densification is sharply reduced. In order to obtain densification much beyond this level, prevention of secondary recrystallization is essential. The most satisfactory way of doing this is with additives which prevent or slow down boundary migration to a point at which it is possible to obtain pore elimination. Additions of MgO to $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{ThO}_{2}$ to $\mathrm{Y}_{2} \mathrm{O}_{3}$, and CaO to $\mathrm{ThO}_{2}$, among others, have been found to slow boundary migration and allow complete pore elimination by solid-state sintering in these systems. The porefree microstructure of a polycrystalline ceramic having optical transparancy suitable for use as a laser material is shown in Fig. 10.34.

    ### 10.3 Vitrification

    To vitrify is to make glasslike and the vitrification processdensification with the aid of a viscous liquid phase-is the major firing process for the great majority of silicate systems. (In some current glossaries vitrification is defined as being identical to densification on firing, but the more specific usage is preferred.) A viscous liquid silicate is formed at the firing temperature and serves as a bond for the body. For

    Fig. 10.34. Pol Courtesy C. Gr:
    satisfactory such that $d \boldsymbol{d}$ slumping or rates of thes large extent firing.

    Process Ki 10.21), thert
    
    grain growth, Sintering and vitrification
    

    Fig. 10.34. Polished section of $\mathrm{Y}_{2} \mathrm{O}_{3}+10$ mole $\% \mathrm{ThO}_{2}$ sintered to porefree state. $100 \times$. Courtesy C. Greskovich and K. N. Woods.
    satisfactory firing the amount and viscosity of the liquid phase must be such that densification occurs in a reasonable time without the ware slumping or warping under the force of gravity. The relative and absolute rates of these two processes (shrinkage and deformation) determine to a large extent the temperature and compositions suitable for satisfactory firing.

    Process Kinetics. If we consider two particles initially in contact (Fig. 10.21), there is a negative pressure at the small negative radius of
    curvature $\rho$ compared with the surface of the particles. This causes a viscous flow of material into the pore region. By an analysis similar to that derived for the diffusion process, the rate of initial neck growth is given as*

    $$
    \begin{equation*}
    \frac{x}{r}=\left(\frac{3 \gamma}{2 \eta \rho}\right)^{1 / 2} t^{1 / 2} \tag{10.31}
    \end{equation*}
    $$

    The increase in contact diameter is proportional to $t^{1 / 2}$; the increase in area between particles is directly proportional to time. Factors of most importance in determining the rate of this process are the surface tension, viscosity, and particle size. The shrinkage which takes place is determined by the approach between particle centers and is

    $$
    \begin{equation*}
    \frac{\Delta V}{V_{0}}=\frac{3 \Delta L}{L_{0}}=\frac{9 \gamma}{4 \eta r} t \tag{10.32}
    \end{equation*}
    $$

    That is, the initial rate of shrinkage is directly proportional to the surface tension, inversely proportional to the viscosity, and inversely proportional to the particle size.

    The situation after long periods of time can best be represented as small spherical pores in a large body (Fig. 10.35). At the interior of each pore
    

    Fig. 10.35. Compact with isolated spherical pores near the end of the sintering process.
    there is a negative pressure equal to $2 \gamma / r$; this is equivalent to an equal positive pressure on the exterior of the compact tending to consolidate it. J. K. Mackenzie and R. Shuttleworth $\dagger$ have derived a relation for the rate of shrinkage resulting from the presence of isolated equal-size pores in a viscous body. The effect of surface tension is equivalent to a pressure of $-2 \gamma / r$ inside all pores or, for an incompressible material, to the applica-


    tion of a hys is to deduce viscosity of an equation
    where $\rho^{\prime}$ is density or $t$ the number pores depe:

    By combin
    where $r_{0}$ is
    The gens plot of rel 10.36 follo reach a rel of the sii

    Fig. 10.36. material. Fr (1949).
    

    GRAIN GROWTH, SINTERING AND VITRIFICATION

    This causes a similar to that owth is given
    $e$ increase in :tors of most face tension, ace is deter-
    $\checkmark$ the surface sely propor-
    nted as small of each pore
    ring process.
    to an equal asolidate it. for the rate : pores in a pressure of he applica-
    tion of a hydrostatic pressure of $+2 \gamma / r$ to the compact. The real problem is to deduce the properties of the porous material from the porosity and viscosity of the dense material. The method of approximation used gives an equation of the form

    $$
    \begin{equation*}
    \frac{d \rho^{\prime}}{d t}=\frac{2}{3}\left(\frac{4 \pi}{3}\right)^{1 / 3} n^{1 / 3} \frac{\gamma}{\eta}\left(1-\rho^{\prime}\right)^{2 / 3} \rho^{\prime 1 / 3} \tag{10.33}
    \end{equation*}
    $$

    where $\rho^{\prime}$ is the relative density (the bulk density divided by the true density or the fraction of true density which has been reached) and $n$ is the number of pores per unit volume of real material. The number of pores depends on the pore size and relative density and is given by

    $$
    \begin{align*}
    n \frac{4 \pi}{3} r^{3} & =\frac{\text { Pore volume }}{\text { Solid volume }}=\frac{1-\rho^{\prime}}{\rho^{\prime}}  \tag{10.34}\\
    n^{1 / 3} & =\left(\frac{1-\rho^{\prime}}{\rho^{\prime}}\right)^{1 / 3}\left(\frac{3}{4 \pi}\right)^{1 / 3} \frac{1}{r} \tag{10.35}
    \end{align*}
    $$

    By combining with Eq. 10.33,

    $$
    \begin{equation*}
    \frac{d \rho^{\prime}}{d t}=\frac{3 \gamma}{2 r_{0} \eta}\left(1-\rho^{\prime}\right) \tag{10.36}
    \end{equation*}
    $$

    where $r_{0}$ is the initial radius of the particles.
    The general course of the densification process is best represented by a plot of relative density versus nondimensional time, illustrated in Fig. 10.36 following Eq. 10.33. Spherical pores are formed very quickly to reach a relative density of about 0.6 . From this point until the completion of the sintering process about one unit of nondimensional time is
    

    Fig. 10.36. Increase in relative density of compact with reduced time for a viscous material. From J. K. Mackenzie and R. Shuttleworth, Proc. Phys. Soc. (London), B62, 833 (1949).

    ## INTRODUCTION TO CERAMICS

    required. For complete densification

    $$
    \begin{equation*}
    t_{\mathrm{sec}} \sim \frac{1.5 r_{0} \eta}{\gamma} \tag{10.37}
    \end{equation*}
    $$

    Some experimental data for the densification of a viscous body are shown in Fig. 10.37, in which the strong effect of temperature, that is, the viscosity of the material, is illustrated by the rapid change in sintering rates. The solid lines in Fig. 10.37 are calculated from Eq. 10.33. The
    

    Fig. 10.37. Densification of a soda-lime-silica glass.
    initial rates of sintering indicated by the dashed curves are calculated from Eq. 10.32. The good agreement of these relationships with the experimental results gives us confidence in applying them to vitrification processes in general.

    Important Variables. The particular importance of Eqs. 10.31 to 10.37 is the dependence of the rate of densification on three major variablesthe particle size, viscosity, and surface tension. For silicate materials the surface tension is not changed much by composition, although there are some systems for which surface energy is particularly low, as illustrated in Chapter 5. However, surface tension is not a variable that normally causes difficulty during the design of compositions or the control of processing. The particle size has a strong effect on the sintering rate and must be closely controlled if the densification process is going to be controlled. In changing from a 10 -micron to 1 -micron particle, the rate of sintering is increased by a factor of 10 . Even more important for control
    purposes
    typical sc
    over an i:
    factor ovi
    be closely
    discussed by changi The relati viscosity under the makes it stresses d due to gr supported obtaining fine-grain. ment is systems a naturally vitrificatic
    Silicate fact that r ture and t the pressu much liqu 7.26, whis system; tt ous porce $\mathrm{SiO}_{2}$ ), $25 \%$ are in the between $n$ $75 \mathrm{SiO}_{2}, 12$ eutectic li only a sm: and the cc as well as silica whi compositi high visco relative as very finethose of a
    purposes is the viscosity and its rapid change with temperature. For a typical soda-lime-silica glass the viscosity changes by a factor of 1000 over an interval of $100^{\circ} \mathrm{C}$; the rate of densification changes by an equal factor over the temperature range. This means that the temperature must
    idy are : is, the ntering
    3. The
    :ated the ition be closely controlled. Viscosity is also much changed by composition, as discussed in Chapter 3. The rate of densification, then, can be increased by changing the composition to lower the viscosity of the glassy material. The relative values of viscosity and particle size are also important; the viscosity must not be so low that appreciable deformation takes place under the forces of gravity during the time required for densification. This makes it necessary for the particle size to be in such a range that the stresses due to surface tension are substantially larger than the stresses due to gravitational forces. Materials sintered in a fluid state must be supported so that deformation does not occur. The best means of obtaining densification without excessive deformation is to use very fine-grained materials and uniform distribution of materials. This requirement is one of the reasons why successful compositions in silicate systems are composed of substantial parts of talc and clays that are naturally fine-grained and provide a sufficient driving force for the vitrification process.
    Silicate Systems. The importance of the vitrification process lies in the fact that most silicate systems form a viscous glass at the firing temperature and that a major part of densification results from viscous flow under the pressure caused by fine pores. Questions that naturally arise are how much liquid is present and what are its properties. Let us consider Fig. 7.26 , which shows an isothermal cut at $1200^{\circ} \mathrm{C}$ in the $\mathrm{K}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ system; this is the lower range of firing temperatures used for semivitreous porcelain bodies composed of about $50 \%$ kaolin $\left(45 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 55 \%\right.$ $\mathrm{SiO}_{2}$ ), $25 \%$ potash-feldspar, and $25 \%$ silica. This and similar compositions are in the primary field of mullite, and at $1200^{\circ} \mathrm{C}$ there is an equilibrium between mullite crystals and a liquid having a composition approximately $75 \mathrm{SiO}_{2}, 12.5 \mathrm{~K}_{2} \mathrm{O}, 12.5 \mathrm{Al}_{2} \mathrm{O}_{3}$, not much different in composition from the eutectic liquid in the feldspar-silica system (Fig. 7.14). In actual practice only a small part of the silica present as flint enters into the liquid phase, and the composition of the liquid depends on the fineness of the grinding as well as on the overall chemical composition. However, the amount of silica which dissolves does not have a large effect on the amount and composition of the liquid phase present. The liquid is siliceous and has a high viscosity; the major effect of compositional changes is to alter the relative amounts of mullite and liquid phases present. Since mullite is very fine-grained, the fluid flow properties of the body correspond to those of a liquid having a viscosity greater than the pure liquid phase. For
    
    lastic flow with a es the kinetics of :rm in Eqs. 10.33 rent variables. ' all the effects of ite composition it $1400^{\circ} \mathrm{C}$ with no , that even after amorphous and lithium oxide as is than additions mounts of other ng properties of ixing reduce the i. 10.31 to 10.37 . 0 hr reduced the 7.1 to $0.3 \%$ with rt by increased . of constituents . In contrast to ! do not reach positions which and form a less g process.
    lence of vitrifi$t$ in the experithere, the time ity changes by nge. There are :e during firing, snergy for the viscous flow. ion rate of a lint) is greater This is to be iring tempera-
    e are the pore on amount of in. Equivalent
    
    

    Fig. 10.38. Effect of time and temperature on the vitrification of a porcelain body. Data from F. H. Norton and F. B. Hodgdon, J. Am. Ceram. Soc., 14, 177 (1931).
    densification results from longer periods of time at the same temperature. In controlling the process, the temperature dependence is great because of the increase in liquid content and lowered viscosity at higher temperatures. Changes in processing and changes in composition affect the vitrification process as they affect these parameters.
     which a substantial capillary pressure is developed. For submicron particle sizes, capillaries with diameters in the range of 0.1 to 1 micron
    

    ## INTRODUCTION TO CERAMICS

    develop pressures in the range of 175 to 1750 psi for silicate liquids and in the range of 975 to 9750 psi for a metal such as liquid cobalt (see discussion in Chapter 5 and Table 5.2)
    The capillary pressure results in densification by different processes which occur coincidentally. First, on formation of a liquid phase there is a rearrangement of particles to give a more effective packing. This process can lead to complete densification if the volume of liquid present is where there are bridges betes completely. Second, at contact points plastic deformation and creep particles high local stresses lead to Third, there is during the sintering phich allow a further rearrangement. and growth of larger particles by matess a solution of smaller particles phase. The kinetics of this solution-preial transfer through the liquid been discussed in Chapter 9. Because ipitation process have already capillary pressure, additional particle there is a constantly imposed grain-growth and grain-shape changes and rangement can occur during discussed for vapor transport and surface give further densification. (As ing, mere solution-precipitation surface diffusion in solid-state sintercapillary pressure would not give material transfer without the imposed which liquid penetrates between par to densification). Fourth, in cases in contact points leads to an increased sarticles the increased pressure at the transfer away from the contact areas solubility such that there is material one another and shrinkage results; the that the particle centers approach the contact pressure has been discusse increase in solubility resulting from is complete wetting, recrystallization in Chapter 5. Finally, unless there solid skeleton occur, and the densification grain growth sufficient to form a Perhaps even more than for the solion process is slowed and stopped. presence of a liquid phase is a complid-state process, sintering in the phenomena occur simultaneously. Elex process in which a number of experimental systems in which a singh has been shown to occur, but analysed during sintering have not process had been isolated and Clearly, the process requires a fine been convincingly demonstrated. necessary capillary pressures which capillary diameter. Clearly, the liquich are proportional to the inverse particle packing must be in a raid concentration relative to the solid necessary capillary. pressure. Cleare appropriate for developing the develops by particle coalescence, the if and when a solid skeleton A critical and still controve process stops. required for the process troversial question is the degree of wetting tungsten carbide-cobalt to proceed. In some important systems such as dihedral angle is zero. In other systium carbide-nickel-molybdenum the silicate liquids this is not the case atems such as iron-copper and magnesia-
    quids and in cobalt (see
    t processes se there is a his process present is tact points ses lead to rangement. er particles the liquid ve already $y$ imposed cur during sation. (As ate sinter$\geq$ imposed in cases in ure at the $s$ material approach lting from lless there to form a stopped. ng in the umber of ccur, but lated and instrated. relop the : inverse the solid ping the skeleton
    wetting such as lum the agnesiaangle is
    low, and the solid is wetted by the liquid phase, as required to develop the necessary capillary pressure. For grain growth of periclase particles in a silicate liquid, the dihedral angle has a large effect on the grain-growth process, as illustrated in Fig. 10.41. Although zero dihedral angle is not essential for liquid-phase sintering to occur, the process becomes more effective as this ideal is approached.
    

    Fig. 10.41. Grain growth of periclase particles in liquid-phase-sintered periclase-silicate compositions as a function of dihedral angle. From B. Jackson, W. F. Ford, and J. White, Trans. Brit. Ceram. Soc., 62, 577 (1963).

    ### 10.5 Pressure Sintering and Hot Pressing

    The sintering processes thus far discussed depend on the capillary pressures resulting from surface energy to provide the driving force for densification. Another method is to apply an external pressure, usually at elevated temperature, rather than relying entirely on capillarity.* This is desirable in that it eliminates the need for very fine-particle materials and also removes large pores caused by nonuniform mixing. An additional advantage is that in some cases densification can be obtained at a temperature at which extensive grain growth or secondary recrystalliza-


    tion does not occur. Since the mechanical properties of many ceramic systems are maximized with high density and small grain size, optimum properties can be obtained by hot-pressing techniques. The effect of added pressure on the densification of a beryllium oxide body is illustrated in Fig. 10.42. The main disadvantages of hot pressing for oxide
    

    Fig. 10.42. Densification of beryllia by sintering and by hot pressing at 2000 psi.
    bodies are the unavailability of inexpensive and long-life dies for high temperatures and the difficulty in making the process into an automatic one to achieve high-speed production. Both factors make the hot-pressing process an expensive one. For oxide materials which have to be pressed at temperature above 1200 or $1300^{\circ} \mathrm{C}$ (often at 1800 to $2000^{\circ} \mathrm{C}$ ) graphite is the most satisfactory die material available; the maximum stress is limited to a few thousand pounds per square inch, and the life of dies is usually limited to seven or eight pieces. The entire die must be heated and cooled with the formation of each piece. Techniques for using high temperatures in a process in which the die is maintained cool with the material heated have shown some promise in laboratory tests but have not been developed for production.
    For lower-temperature materials, such as glasses or glass-bonded compositions which can be pressed in metal dies at temperatures below 800 to $900^{\circ} \mathrm{C}$, the hot-pressing process can be developed as an automatic and inexpensive forming method. This is similar to the normal pressing of
    glass a: shape 1
    Dens which liquid-I when $h$ materis densifis pressus erature optimu nearly carbidt It is of 1 MgO , induce
    10.6

    The conner growt these occur chemis closed pressu genera major them possib

    Oxis which as bin oxidiz organi tempe tempe this pı carbol befort tempe
    
    ceramic optimum effect of $\gamma$ is illusfor oxide

    0 psi.
    s for high automatic t-pressing be pressed graphite is $s$ is limited ; is usually and cooled nperatures rial heated $t$ been de-
    ass-bonded ures below 1 , automatic pressing of
    glass as a glass-forming method in which it is used to obtain the desired shape rather than as a means of eliminating porosity.
    Densification during pressure sintering can occur by all the mechanisms which have been discussed for solid-state sintering, vitrification, and liquid-phase sintering. In addition, particularly during the early stages, when high stresses are present at the particle contact points, and for soft materials, such as the alkali halides, plastic deformation is an important densification mode. Since the grain-growth process is insensitive to pressure, pressure-sintering oxides at high pressures and moderate temperatures allows the fabrication of high-density-small-grain samples with optimum mechanical properties and with sufficiently low porosity to be nearly transparent. Covalent materials such as boron carbide, silicon carbide, and silicon nitride can be hot-pressed to nearly complete density. It is often advantageous to add a small fraction of liquid phase (i.e., LiF to MgO , B to silicon carbide, MgO to silicon nitride) to allow pressureinduced liquid phase, or liquid-film, sintering to occur.

    ### 10.6 Secondary Phenomena

    The primary processes which occur on heating and are important in connection with the firing behavior of all ceramic compositions are grain growth and densification, as discussed in previous sections. In addition to these changes, there are a large number of other possible effects which occur during the firing of some particular compositions. These include chemical reactions, oxidation, phase transitions, effects of gas trapped in closed pores, effects of nonuniform mixing, and the application of pressure during heating. Although they are not processes of the most general importance, they frequently cause the main problems and the major phenomena observed during firing. Although we cannot discuss them in great detail, we should at least be familiar with some of the possibilities.
    Oxidation. Many natural clays contain a few percent organic matter which must be oxidized during firing. In addition, varnishes or resins used as binders, as well as starches and other organic plasticizers, must be oxidized during firing, or difficulties result. Under normal conditions organic materials char at temperatures above $150^{\circ} \mathrm{C}$ and burn out at temperatures ranging from 300 to $400^{\circ} \mathrm{C}$. Particularly with low-firingtemperature compositions, it is necessary to heat at a slow enough rate for this process to be completed before shrinkage becomes substantial. If the carbonaceous material is sealed off from the air by vitrification occurring before oxidation is completed, it acts as a reducing agent at higher temperatures. Sometimes this may merely affect the color, giving rise to

    ## INTRODUCTION TO CERAMICS

    black coring of brick and heavy clay products whose interiors are in a reduced state, black in color. A typical example of a stoneware heated too rapidly for oxidation to be completed is illustrated in Fig. 10.43, which shows the central black core. Very often impurities present, particularly sulfides, may cause difficulties unless oxidized before vitrification. Sulfides in general react with oxygen in the temperature range of 350 to $800^{\circ} \mathrm{C}$, forming $\mathrm{SO}_{2}$ gas which escapes through open pores.
    

    Fig. 10.43. Example of black core produced when time allowed for oxidation reactions was
    insufficient for completion of the reaction.

    In ferrite and titania compositions control of oxidation reactions during firing is particularly important. As illustrated for the $\mathrm{Ti}-\mathrm{TiO}_{2}$ and $\mathrm{Fe}-\mathrm{O}_{2}$ systems (Chapter 7), the phases present depend on the oxygen pressure. In addition, as discussed in Chapter 4, the composition of these phases covers a substantial range of stoichiometry and depends on the oxygen pressure. It is common practice in the manufacture of ferrites to control the oxygen pressure during firing so that the composition of each phase present, and the overall phase composition of the body, is maintained to give the best magnetic properties.
    Decomposition Reactions. Many of the constituents used in ceramic bodies are in the form of carbonates or hydrated compounds; these decompose during firing to form the oxide plus a gaseous product ( $\mathrm{CO}_{2}$, $\mathrm{H}_{2} \mathrm{O}$ ). Many impurities are also incorporated as carbonates, hydrates, and sulfates and decompose during firing (see Section 9.4).
    Hydrates decompose over a wide temperature range between 100 and $1000^{\circ} \mathrm{C}$, depending on the particular composition. Carbonates decompose over a temperature range from 400 to $1000^{\circ} \mathrm{C}$, also depending on the particular composition. For each temperature there is, of course, an
    equilibrium further dect encounteres temperaturs large pores, to form cell off before c phase that is particular a temperatu the surface gradient ans are the two firing.

    Sulfates
    decompose they remair bodies. In p a high sulfa burned bric salts to the barium carl calcium sul

    Decompc A particula: of kyanite, to $1450^{\circ} \mathrm{C}$. mullite and than kyanit compositios other const $\mathrm{Al}_{2} \mathrm{O}_{3}$ to fol magnesia a high-tempe: heating car

    Phase Tr ble or und anticipated transforma tories cann since the $t$ such a largi
    in a
    itoo
    hich
    arly
    Sul-
    0 to

    ## 

    ring

    ## $-\mathrm{O}_{2}$

    ure.
    
    equilibrium pressure of the gaseous product; if this pressure is exceeded, further decomposition does not take place, leading to the major problem encountered, the sealing of pores before complete dissociation. As the temperature is raised, the decomposition pressure increases and forms large pores, blistering, and bloating. (This is, of course, the method used to form cellular glass products in which the surface is intentionally sealed off before chemical reaction or decomposition takes place to form a gas phase that expands and produces a foamed product.) This kind of defect is particularly common when high heating rates are used, for then there is a temperature gradient between the surface and interior of the ware, and the surface layer vitrifies, sealing off the interior. This temperature gradient and the time required for oxidation of constituents or impurities are the two most important reasons for limiting the rate of heating during firing.

    Sulfates create a particular problem in firing because they do not decompose until a temperature of 1200 to $1300^{\circ} \mathrm{C}$ is reached. Therefore they remain stable during the firing process used for burning many clay bodies. In particular, $\mathrm{CaSO}_{4}$ is stable but slightly soluble in water, so that a high sulfate content leads to a high concentration of soluble salts in the burned brick. This causes efflorescence-the transport of slightly soluble salts to the surface, forming an undesirable white deposit. Addition of barium carbonate prevents the deposit from forming by reacting with calcium sulfate to precipitate insoluble barium sulfate.

    Decomposition also occurs in some materials to form new solid phases. A particular example used in refractory technology is the decomposition of kyanite, $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$, to form mullite and silica at a temperature of 1300 to $1450^{\circ} \mathrm{C}$. This reaction proceeds with an increase in volume, since both mullite and the silica glass or cristobalite formed have lower densities than kyanite. The reaction is useful, since the addition of kyanite to a composition can counteract a substantial part of the firing shrinkage if the other constituents are carefully selected. Similarly, reaction of MgO with $\mathrm{Al}_{2} \mathrm{O}_{3}$ to form spinel occurs with a decrease in volume. By incorporating magnesia and alumina in a refractory mix, or more commonly in a high-temperature ramming mix or cement, the shrinkage taking place on heating can be decreased.

    Phase Transformations. Polymorphic transformations may be desirable or undesirable, depending on the particular composition and the anticipated use. If a large volume change accompanies the polymorphic transformation, difficulties result, owing to the induced stresses. Refractories cannot be made containing pure zirconium oxide, for example, since the tetragonal monoclinic transformation at about $1000^{\circ}$ involves such a large volume change that the ware is disrupted. The source of these
    stresses has been discussed in Chapter 5 in connection with boundary stresses caused by differential thermal expansion or contraction of different grains. The expansion or contraction of a crystal in a matrix leads to the same sort of stresses that may give rise to actual cracking, illustrated for quartz grains in a porcelain body in Fig. 10.44. The stresses in individual grains can be reduced if the grain size is reduced; properties of porcelains are improved if fine-grained fint is used rather than coarse material.
    

    Fig. 10.44. Cracked quartz grain and surrounding matrix in a porcelain body. Differential expansion due mainly to the $\alpha-\beta$ quartz transition leads to cracking of larger grains but leaves small grains intact ( $500 \times$ ).

    Sometimes desirable phase transformations only occur sluggishly. This is what happens, for example, with the firing of refractory silica brick. The transition from quartz, the starting material, to tridymite and cristobalite, the desired end constituents, occurs only slowly. In order to increase the rate of transformation, calcium oxide is added as a mineralizer. The calcium oxide forms a liquid in which silica is soluble. Consequently the quartz dissolves and precipitates as tridymite, which is the more stable phase (Chapter 7). Some of the quartz transforms directly to cristobalite during the process as well. In general, mineralizers help in achieving equilibrium conditions by providing a mechanism of material transfer-solution or vaporization-that circumvents energy barriers to direct transformations. In silicate systems the addition of fluorides or hydroxyl ions is particularly helpful in this regard, since they greatly increase the fluidity of the liquid phase present.
    Trapped Gases. In addition to the bloating occasioned by decomposition reactions, trapping of gases within closed pores imposes a limitation
    on the ul water val from clo: carbon m solubility spherical of 0.8 atr when the limited. $F$ negative negative to $1 / r$; th this fact required, transluce
    Nonuni sintering: short of imperfec present. common. (that is, introduce tions ind these po forming
    Overfil variety o a reduct titanates higher ts there is optimum mon cau of gases

    As for amount forming removed

    Jary
    1 of
    trix
    ing,
    ises
    ties
    irse
    tial
    but
    his
    :k.
    is-
    to
    al-
    le.
    is
    ly
    in
    al
    on the ultimate density that can be reached during firing. Gases such as water vapor, hydrogen, and oxygen (to a lesser extent) are able to escape from closed pores by solution and diffusion. In contrast, gases such as carbon monoxide, carbon dioxide, and particularly nitrogen have a lower solubility and do not normally escape from closed pores. If, for example, spherical pores are closed at a total porosity of $10 \%$ and a partial pressure of 0.8 atm nitrogen, the pressure has increased to 8 atm (about 110 psi ) when they have shrunk to a total porosity of $1 \%$, and further shrinkage is limited. At the same time that the gas pressure is increasing, however, the negative radius of curvature of the pore becomes small so that the negative pressure produced by surface tension is increased proportional to $1 / r$; the gas pressure builds up proportional to $1 / r^{3}$. For sintering in air this factor usually limits densification; where very high densities are required, as for optical materials or dental porcelains requiring high translucency, vacuum or hydrogen atmosphere is preferred.
    Nonuniform Mixing. Although not mentioned in most discussions of sintering, the most important reason why densification and shrinkage stop short of complete elimination of pores is that gross defects caused by imperfect mixing and compact consolidation prior to firing are usually present. Examination of typical production ceramics shows that they commonly contain upward of $10 \%$ porosity in the millimeter size range (that is, pores much larger than the particle size of the raw materials introduced in the composition). These pores are caused by local variations induced during forming, and there is no tendency for elimination of these pores during firing. Corrective treatment must be taken in the forming method.

    Overfiring. Ware is commonly referred to as overfired if for any of a variety of reasons a higher firing temperature leads to poorer properties or a reduced shrinkage. For solid-state sintering, such as ferrites and titanates, a common cause is secondary recrystallization occurring at the higher temperature before the elimination of porosity. Consequently, there is some maximum temperature at which the greatest density or optimum properties are obtained. For vitreous ceramics the most common cause of overfiring is the trapping of gases in pores or the evolution of gases which cause bloating or blistering.

    ### 10.7 Firing Shrinkage

    As formed, green ware contains between 25 and $50 \mathrm{vol} \%$ porosity. The amount depends on the particle size, particle-size distribution, and forming method (Chapter 1). During the firing process this porosity is removed; the volume firing shrinkage is equal to the pore volume
    eliminated. This firing shrinkage can be substantially decreased by addition of nonshrinking material to the mix; fire-clay brick is commonly manufactured with grog (prefired clay) additions which serve to decrease firing shrinkage. Similarly, this is one of the functions of the fint in the porcelain body; it provides a nonshrinking structure which reduces the shrinkage during firing. Terra-cotta compositions, composed of mixtures of fired grog and clay, can be made in large shapes because a large part of the raw material has been prefired and the firing shrinkage is low.
    If firing is carried to complete densification, the fractional porosity originally present is equal to the shrinkage taking place during firing. This commonly amounts to as much as $35 \%$ volume shrinkage or 12 to $15 \%$ linear shrinkage and causes difficulty in maintaining close tolerances. However, the main difficulties are warping or distortion caused by different amounts of firing shrinkage at different parts of the ware. Nonuniform shrinking can sometimes even cause cracks to open ware. Warping. A major cause of warping cause cracks to open. in the green ware. There are many reasons for fifferens density variations the green ware. The density after firing is for differences in porosity in higher shrinkage for the parts that haing is nearly uniform, and there is had a high density in the green ware. In low density than for the parts that in the die (Chapter 1) cause different in pressed ware, pressure variations parts of a pressed piece; usually the amounts of compaction at different the shrinkage at the ends, and an hourglass se at the center is larger than cylindrical sample (Fig. 10.45a).
    Another source of warping dur gradients. If ware is laid on a flat piring is the presence of temperature temperature difference between plate and heated from above, there is a cause greater shrinkage at the top thep and bottom of the ware that may warping. In some cases the gravitational strettom and a corresponding make the ware lie flat, even thational stresses may be sufficient to relationship between temperature under the stresses developed is distribution, warpage, and deformation quantitatively. Another source of complicated and difficult to analyze tion of the platey clay particles during the in firing is preferred orientathe drying and firing shrinkage to have the forming process. This causes Vitreous ware is also warped by flow directional properties. especially true for large heavy pieces in under forces of gravity. This is developed. In the forming of vitreous sin which substantial stresses are a closet bowl (Fig. 10.45c) or a lavatory (Fary ware, the upper surface of with a greater curvature than is devatory (Fig. 10.45d) must be designed settling which occurs on firing produces a final end product so that the A final contributor to warpage during firing is the frictiot is satisfactory.
    ully decreased by rrick is commonly serve to decrease of the flint in the which reduces the posed of mixtures use a large part of ukage is low. ractional porosity during firing. This age or 12 to $15 \%$ close tolerances. srtion caused by irts of the ware. ks to open. density variations ces in porosity in orm, and there is I for the parts that essure variations iction at different tter is larger than ; from an initially
    :e of temperature above, there is a he ware that may la corresponding , be sufficient to ionuniform. The and deformation icult to analyze referred orientaess. This causes erties.
    " gravity. This is itial stresses are upper surface of lust be designed duct so that the $t$ is satisfactory. ial force or drag
    

    Fig. 10.45. Firing shrinkage of (a) pressed crucible with differential shrinkage due to green density variations, (b) tile with differential shrinkage due to temperature gradients, (c) ware with differential shrinkage due to gravity settling, and (d) differential shrinkage due to frictional force of setting.
    of the ware against the setter. This means that the bottom surface tends to shrink less than the upper surface (Fig. 10.45d). Ware must be designed so that the final shape, including shrinkage, comes out to be rectangular.

    Difficulties caused by differential firing shrinkage, resulting distortion, and warping can be eliminated in three ways: first, altering the forming method to minimize the causes of warping; second, designing shapes in a way that compensates for warping; and third, using setting methods in firing that minimize the effects of warping. One obvious improvement in forming methods is to obtain uniformity of the structure during initial forming. This requires elimination of pressure gradients, segregation, and other sources of porosity variation. Pressing samples that have long ratios of length to die diameter cause density variations. Extruded and pressed mixes that have low plasticity are particularly prone to large pressure variations and green density differences. Slip casting and extrusion both settling may occur during the casting process, causing structural varia-
    tions. During exter tions. During extrusion pressure differences at various parts of the die or
    an unsymmetrical settions.
    Sometimes variations in firing shrinkage and difficulties from warping can be overcome by compensating the shapes. This is true, for example, in Fig. 10.45, in which the closet bowl and lavatory are designed in such a
    

    ## INTRODUCTION TO CERAMICS

    way that the final shape is satisfactory. In the same way, when plates are fired in the horizontal position there is a tendency for the rims to settle; this can be compensated for by adjusting the shape of the initial piece.
    Correct setting methods are important in eliminating difficulties caused by firing-shrinkage variations. These have been most extensively developed for porcelain compositions in which complete vitrification is desired and high shrinkages result. Some of the standard setting methods are illustrated in Fig. 10.46. Cups and bowls are commonly boxed as indicated in Fig. 10.46a. This keeps the rim circular, since warpage of one restricts warpage of the other; in addition, it prevents the thin rims from being too rapidly heated. For larger pieces, unfired setters are necessary as a means of controlling shrinkage and maintaining circular rims. A variety of methods is used for setting different kinds of plate compositions, depending on the amount of shrinkage expected. For ware fired to complete vitrification individual setting and support are essential. For ware fired to partial densification, plates can be stacked with no ill effects. In general, large tiles and brick do not cause much difficulty.
    

    Fig. 10.47. Setting methods for special shapes. (a) Large tiles set an angle of repose;
    (b) slender rod supported by collar; (c) special (b) slender rod supported by collar; (c) special shape; (d) sculptured piece. From F. H.
    Norton.

    Special st verse effect angle of reI shrink withc an inclined $10.47 b$ ). Gr: several feet designed fo handle uniqı are particul from unfirer

    1. G.C.Kur Phenomei
    2. G.C.Kus Research:
    3. R. L. Co Burke, E
    4. W. D. Kil Cambridg
    5. W. D. Kil ogy Pres:
    6. J. E. Burl Prog. Me
    7. E. Schra Bodies,"
    8. For addit (1970); D.
    10.1. Distin! tallizat import
    10.2. Explai approx gradieı
    10.3. Can gi grain
    tes are settle; :e.
    zaused ly detion is ethods red as of one s from essary ms. A mposiired to 1. For :ffects.

    Special shapes may require special setting methods to eliminate adverse effects of firing shrinkage. Large refractory tile can be set at an angle of repose on a flat surface (Fig. 10.47a). This allows the tile to shrink without much stress. In the same way rods or tubes may be set in an inclined $V$ groove or supported by a collar from the upper end (Fig. $10.47 b$ ). Gravitational forces keep the tubes straight up to lengths of several feet. Unique shapes can always be supported on special setters designed for the particular sample. Some experience is necessary to handle unique shapes efficiently. Small pieces of sculptured vitrified ware are particularly difficult. The safest setting provides complete support from unfired struts (Fig. 10.47d).

    ## Suggested Reading

    1. G. C. Kuczyuski, N. A. Hooton, and C. F. Gibson, Eds., Sintering and Related Phenomena, Gordon and Breach, New York, 1967.
    2. G. C. Kuczyuski, Ed., "Sintering and Related Phenomena", Materials Science Research, Vol. 6, Plenum Press, New York, 1973.
    3. R. L. Coble and J. E. Burke, Progress in Ceramic Science, Vol. III, J. E. Burke, Ed., Pergamon Press, 1963.
    4. W. D. Kingery, Ed., Ceramic Fabrication Process, Part IV, Technology Press, Cambridge, Mass., and John Wiley \& Sons, New York, 1958.
    5. W. D. Kingery, Ed., Kinetics of High-Temperature Process, Part IV, Technology Press, Cambridge, Mass., and John Wiley \& Sons, New York, 1959.
    6. J. E. Burke and D. Turnbull, "Recrystallization and Grain Growth in Metals," Prog. Met. Phys., 3, 220 (1952).
    7. E. Schramm and F. P. Hall, "The Fluxing Effect of Feldspar in Whiteware Bodies," J. Am. Ceram. Soc., 15, 159 (1936).
    8. For additional papers on sintering see: R. L. Coble, J. Appl. Phys., 41, 4798 (1970); D. L. Johnson and I. B. Cutler, J. Am., Ceram. Soc. 46, 541 (1963).

    ## Problems

    10.1. Distinguish between primary recrystallization, grain growth, and secondary recrystallization as to (a) source of driving force, (b) magnitude of driving force, and (c) importance in ceramic systems.
    10.2. Explain why the activation energy for grain-boundary migration corresponds approximately with that for boundary diffusion, even though no concentration gradient exists in the former case.
    10.3. Can grain growth during sintering cause compaction of ceramics? Explain. Can grain growth affect the sintering rate? Explain.

    ## BRIEF ATTACHMENT C

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec
    For. NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT C

    ## POLAR DIELECTRICS AND <br> THEIR APPLICATIONS

    JACK C. BURFOOT and GEORGE W. TAYLOR

    

    ## 2

    ## Preparation of Polar Materials

    This chapter summarises the techniques used for fabricating polar materials in single crystal, ceramic, thin film and glass forms. It then goes on to discuss the various post-fabrication procedures such as annealing, poling, cutting, thinning, polishing and electroding which are usually needed before the polar materials can be used for either experiments or applications.
    For basic studies, where the polar material should be as near perfect as possible, it is desirable to use single crystals. For applications, where dimensions, reproducibility and cost are crucial factors then the polar material is usually fabricated in ceramic, thin film or glass form. This division is not precise. For example, some materials have not yet been grown as single crystals and hence basic studies must be made in the ceramic form. In other cases, the larger dielectric, piezoelectric, pyroelectric, electro-optic, etc., coefficients obtainable with particular single crystal materials can make this fabrication form mandatory for certain applications. And yet again thin films offer an important advantage for studying surface layer physics.

    The two major problems in fabricating large samples of high quality polar materials are the maintenance of the correct stoichiometry and the avoidance of strains. Chemical, thermal and optical methods, as well as sophisticated
    techniques such as X-ray, electron, neutron and proton diffraction scatterin are used to determine the quality of the fabricated material. By comparison, thi fabrication techniques themselves are still much of an art, as evidenced by the variety of 'recipes' reported for particular materials. This however may be changing. For example, it is now customary to make a careful determination of conditions. These diagrams material so as to choose the optimum fabrication 2.1 and 2.2, the phase diagrams for $\mathrm{BaTiO}_{3}$ and $\mathrm{Pb}(\mathrm{ZrSnTiNb}) \mathrm{O}_{3}$. Note that in figure 2.2 because of the ternary nature of the material, (a) the material is different phase diagram is $\mathrm{PbZrO}_{3}-\mathrm{PbSnO}_{3}-\mathrm{PbTiO}_{3}$ solid solution, (b) a the scientific approach is the for each temperature. Another example of understand circulation currents in the melt during growth ${ }^{3}$.
    

    Figure 2.1 Barium titanate. Phase diagram (Rase and Roy')
    Many measurements can be made to determine the degree to which a ceramic, thin film or glass material approaches the properties of its single crystal counterpart. The hysteresis loop is a simple yet powerful criterion for making this determination. The squarer the loop and the larger its polarisation, then the better the orientation of the crystallites and the smaller the
    

    Figure 2.2 Part of the phase diagram of $\mathrm{Pb}_{0.99}(\mathrm{ZrSnTi})_{0.98} \mathrm{Nb}_{0.02} \mathrm{O}_{3}$ at $25^{\circ} \mathrm{C}$ (poled at $25^{\circ}$ ) $F=$ Ferroelectric, $A=$ antiferroelectric, $T=$ tetragonal, $\mathrm{R}=$ rhombohedral, $\mathrm{LT}=$ low temperature phase, $\mathrm{HT}=$ high temperature phase (Raider and Cook ${ }^{2}$ )
    percentage of non-polar material and voids present. In general, doctor-bladed ceramics and epitaxial thin films are the fabrication techniques producing materials closest to the single crystal form, whilst the glasses and conventionally sintered ceramics are the furthest away.

    ### 2.1 Growth of Single Crystals

    The two major methods that have been used to date for fabricating single crystals have been the solution (or flux) growth technique and the melt growth technique.

    ## 2.1a Solution Grown Crystals

    This method has been successfully used for both water soluble materials and those that are soluble in other liquids or fluxes.
    The first stage in growing a water soluble crystal is to prepare an aqueous saturated solution of the polar material. Crystals can be grown by either keeping the solution at a constant temperature and allowing a gradual evaporation of the solvent or by slowly lowering the temperature while keeping the solution saturated. Slow growth, taking a thousand hours or more, usually produces the best and largest crystals. Other factors which affect the crystal
    
    growth are the purity of the materials, the solubility-temperature characteristics of the solution, the fineness of the temperature control, the use of stirring to prevent temperature and concentration gradients from developing in the solution, and the use of seed crystals suspended in the solution to enhance growth.

    Table 2.1 contains a fairly comprehensive listing of the polar materials which have been successfully grown from aqueous solution. Figure 2.3 shows a large solution-grown crystal of triglycine sulphate, TGS. The original seed crystal is visible in the centre of the photograph. The organic polar material thiourea can be grown from an aqueous solution; however, better results are obtained from an alcoholic solution.
    

    Figure 2.3 Photograph of a TGS crystal (Linz ${ }^{4}$ )

    Polar materials that are not soluble in water or alcohol can often be dissolved at high temperature in other materials, usually referred to as fluxes. For example, 26 different fluxes have been reported ${ }^{5}$ for barium titanate, $\mathrm{BaTiO}_{3}$. In some cases, an excess of one of the constituents can act as a flux. For example, additional $\mathrm{Bi}_{2} \mathrm{O}_{3}$ will serve as a flux in growing crystals of bismuth titanate, $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}{ }^{6}$
    Besides the particular flux used there are many other variables in flux growth. They include the purity and particle size of the component materials, the time-temperature cycle used for forming the molten flux solution, the crucible material and its shape and size, the method of heating (both resistive and r.f. induction heating are used), the time-temperature cycle used for cooling, the thermal gradients established in the furnace (both vertical and
    horizontal gradients have been used), and the atmosphere maintained in the furnace.

    Some of the crystals that have been grown by flux techniques are shown in table 2.1. Space does not permit detailing the growth conditions used for each material. To give some idea, however, it is worth summarising the successful technique developed by Remeika ${ }^{7}$ for the flux growth of $\mathrm{BaTiO}_{3}$ crystals. A platinum crucible containing $30 \% \mathrm{BaTiO}_{3}$ powder, $70 \% \mathrm{KF}$ (the flux) and a small trace of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is heated for 8 h at $1175^{\circ} \mathrm{C}$. The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ compensates for the loss of oxygen at high temperature. The crucible is then cooled slowly to $875^{\circ} \mathrm{C}$, at which stage the excess liquid flux is poured off. The crystals thus formed are then cooled slowly to room temperature. Any residual flux is removed by acid etching. The crystals have a plate-like morphology and some typical examples are shown in figure 2.4a.
    

    Figure 2.4 Photograph of barium titanate crystals,
    (a) Crystals grown by flux method (Epstein ${ }^{8}$ ).
    (b) Crystals grown by Czochralski method (Belruss et al. ${ }^{1}$ )

    ## 2.1b Melt Growth

    If a polar material melts congruently, that is, if stoichiometry is maintained, then the crystal can be grown directly from the melt. As the crystal grows, either by spontaneous nucleation on to a chemically inert platinum or iridium wire or onto a seed crystal, it is gradually withdrawn from the molten liquid. In the Stockbarger method, this is done by withdrawal of the crucible containing the melt. In the Czochralski method (figure 2.5 ), the crystal is gradually 'pulled' out of the melt, and it is usual to rotate the crystal while pulling, to minimise thermal and stress gradients. Also suitable optics are provided for
    

    Figure 2.5 Czochralski crystal grower for lithium niobate (Nassau ${ }^{9}$ )
    viewing the crystal during growth. Figure 2.5 shows a Czochralski crystal grower used for growing lithium niobate, $\mathrm{LiNbO}_{3}$. The apparatus is also designed to pole the crystal during the growth process. The Czochralski method is usually the best for polar materials, in that it produces less strains and less twinning in the crystal. A large number of variations in the technique are possible including variation of the pulling and rotation rates, the method and amount of after-heating used as the crystal emerges, and the atmosphere used. Figure 2.6 is a photograph of a $\mathrm{Gd}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ crystal pulled by Kumada at $70 \mathrm{~mm} / \mathrm{h}$ using a rotational speed of $100 \mathrm{rev} / \mathrm{min}$ in an oxygen rich
    d,
    's,
    m
    (n
    18
    ly
    to
    or atmosphere ${ }^{10}$. Most Czochralski grown crystals have the form of figure 2.6.

    Belruss et al. ${ }^{11}$ have developed a modified Czochralski technique, sometimes referred to as 'top seeding', in which the temperature of the melt is gradually dropped $\left(0.2^{\circ} \mathrm{C} / \mathrm{h}\right)$ as pulling proceeds. The crystal of figure 2.4 b was grown by this technique, using a pulling rate of $0.7 \mathrm{~mm} / \mathrm{h}$. Pulled $\mathrm{BaTiO}_{3}$ crystals have a polyhedral morphology and a transition temperature, $T_{c}$, of $132^{\circ} \mathrm{C}$. By comparison, the Remeika ${ }^{7}$ flux grown $\mathrm{BaTiO}_{3}$ crystals, shown in figure 2.4a have a plate-like structure and a $T_{c}$ of $120^{\circ} \mathrm{C}$. The lower $T_{\mathrm{c}}$ is due to
    

    Figure 2.6 Single crystal of gadolinium molybdate (Kumada ${ }^{10}$ )
    the substitution of $K$ atoms at some Ba sites and Fe at some Ti sites in the $\mathrm{BaTiO}_{3}$ crystal lattice; the K and Fe impurities originate from the flux used. The polar material single crystals that have been successfully grown from the melt by Czochralski type techniques are listed in table 2.1.

    ## 2.1c Other Techniques

    Single crystals of both $\mathrm{BaTiO}_{3}$ and antimony sulpho-iodide, SbSI , have been grown by vapour transport ${ }^{12}$. Hydrothermal methods, which involve a combination of high pressure and temperature have been used to grow single crystals of several types of polar materials ${ }^{13-15}$-see also table 2.1.

    ### 2.2 Ceramic Fabrication

    The classical technique for forming ceramics is sintering at atmospheric pressure. Recent variations on this process are doctor-blading and hot pressing.

    ## 2.2a Sintering

    The constituents (or their oxides) of the polar material are mixed in the correct proportions with an organic binder and then pressed at room temperature into a structure having the desired shape and dimensions. In most cases this is a cylinder, although for some applications, for example sonar, more complex shapes are used. The pressed structure is sintered or fired at an appropriate temperature in an appropriate atmosphere. This causes the organic binder to be burnt out and the pressed materials to react chemically and form the desired polar material. Table 2.2 contains a list of some of the polar materials which have been fabricated as sintered ceramics.

    Table 2.2 Ceramic polar materials that have been fabricated by various techniques
    

    ## 2.2b Doctor-Blading

    Doctor-Blading ${ }^{16}$ is particularly suited for forming large area, thin sheets of ceramic. The constituents of the polar materials are mixed in a liquid together with a suitable plasticiser and the resultant slurry is poured onto flat glass. A stainless steel blade, accurately positioned a small distance, $S$, above the substrate is then drawn through the slurry. The resulting sheet is allowed to dry after which it can be peeled off the glass. At this stage the material is termed 'green' because it can be easily cut or punched into any two dimensional shape. The sintering is done in a two step process, viz. a lower temperature firing to burn out the plasticiser and then a higher temperature firing in a controlled atmosphere to form the polar material.

    Whenever a ceramic is sintered there is a large amount of shrinkage. For a doctor-bladed material, the shrinkage is particularly evident as a decrease in thickness. Figure 2.7 shows the relationship between the thickness of 'green' and fired materials for $\mathrm{PbNb}(\mathrm{Zr}, \mathrm{Sn}, \mathrm{Ti}) \mathrm{O}_{3}$ ceramic. A fired and electroded doctor-bladed ceramic strip is shown in figure 2.14.

    ## 2.2c Hot Pressing

    In the hot-pressing process the ceramic is sintered under pressure, typically developed in a hydraulic press. Hot pressing can result in ceramic densities
    

    Figure 2.7 Tickness of 'green' and fired materials as a function of blade setting, $S$, for a doctor-bladed $\mathrm{Pb}(\mathrm{ZrSnTiNb}) \mathrm{O}_{3}$ ceramic (Wentworth and Taylor ${ }^{16}$ )
    even higher than $99.9 \%$ of the theoretical maximum. As a resut, such materials have properties approaching those of a single crystal. For example, the hot-pressed ceramic can have a high value of remanent polarisation, a low value of coercive field and, as shown in figure 2.8 , can be transparent.
    

    Figure 2.8 Photograph of polished transparent $\mathrm{Pb}\left(\mathrm{ZrTiLa}_{3} \mathrm{O}_{3}\right.$ hot-pressed ceramic samples. (Haertling and Land ${ }^{18}$ )

    Haertling ${ }^{17.18}$ has extensively studied how the parameters of time, pressure, temperature, chemical purity and firing atmosphere affect the properties of hot-pressed $\mathrm{Nb}, \mathrm{Sn}, \mathrm{Bi}$ and La doped and $\mathrm{Sn}, \mathrm{Ba}$, and La modified ${ }^{+}$ $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}_{3}$ ceramics. Figure 2.9 is typical of such results. In this case the effects of time, pressure, and temperature, on grain size of a $\mathrm{PbNb}(\mathrm{Zr}, \mathrm{Sn}, \mathrm{Ti}) \mathrm{O}_{3}$ ceramic are shown. As discussed in section 15.2a the grain size is important in determining the electro-optic properties of certain ceramic compositions. It also affects many other properties of the ceramic including the permittivity. Other ceramics that have been hot pressed are listed in table 2.2.
    

    Figure 2.9 Effect of hot pressing time, temperature and pressure on average grain diameter of a hot pressed $\mathrm{PbNb}(\mathrm{ZrSnTi}) \mathrm{O}_{3}$ ceramic (Haerting ${ }^{17}$ )

    ### 2.3 Thin Film Fabrication

    There has recently been much general interest in thin films of polar materials (i.e. less than about $10 \mu \mathrm{~m}$ thick). In particular, for device applications, thin films have important advantages which include (a) formation of large capacitances, (b) low switching voltages, (c) the possibility of forming the film directly on the integrated semiconductor 'driving' circuits.
    The various techniques used for making thin films are described below. The materials that have been made by these techniques are summarised in table 2.3 . With the exception of r.f. sputtering, the fabrication techniques generally


    have been formed by various techniques
    THIN FILMS .
    produce polycrystalline films, which have properties more similar to ceramics than to single crystals.

    ## 2.3a Solution Deposition

    Three types of solution deposition have been used for forming thin films. They are casting, hydrolysis and electrophoresis.

    ## Casting

    Beerman ${ }^{19}$ has made thin films of TGS (a water soluble polar material) by spraying an aqueous solution of TGS onto a suitable substrate. Chapman ${ }^{20}$ has formed thin films of the complex ferroelectric $\mathrm{Pb}(\mathrm{BiLaFeNbZr}) \mathrm{O}_{3}$ by first making a colloidal suspension, or slurry, of the basic oxides of the composition. The suspension was then centrifuged onto a metallic substrate and sintered at $900^{\circ} \mathrm{C}$ to form the ferroelectric thin film.

    ## Hydrolysis

    Lure et al. ${ }^{21}$ have deposited a mixture of $\mathrm{Pb}, \mathrm{Zr}, \mathrm{Sn}$ and Ti oxides on a metallic substrate by hydrolysing a solution of $\mathrm{Pb}, \mathrm{Zr}, \mathrm{Sn}$ and Ti tetrachlorides. The oxides were then sintered to form a ferroelectric film of $\mathrm{Pb}(\mathrm{ZrSnTi}) \mathrm{O}_{3}$.

    ## Electrophoresis

    Lamb et al. ${ }^{22}$ placed two noble metal electrodes into a suspension of $\mathrm{BaTiO}_{3}$ particles in ether. The application of about $200 \mathrm{~V} \mathrm{~cm}^{-1}$ between the electrodes caused a film to be formed on the anode. Subsequent sintering in an atmosphere of $98 \%$ helium and $2 \%$ oxygen at $1350^{\circ} \mathrm{C}$ created a stable $\mathrm{BaTiO}_{3}$ film.

    ## 2.3b Melting

    Nolta et al. ${ }^{23}$ have shown that a thin layer of potassium nitrate, $\mathrm{KNO}_{3}$, can be easily formed by melting $\mathrm{KNO}_{3}$ powder onto a metal substrate. However, $\mathrm{KNO}_{3}$ has the disadvantage that it is only ferroelectric at room temperature and atmospheric pressure for a short time, before reverting to a nonferroelectric phase ${ }^{24}$. Sodium nitrite, $\mathrm{NaNO}_{2}$, and barium titanate, $\mathrm{BaTiO}_{3}$ films have also been prepared by melting.

    ## 2.3c Vacuum Deposition

    Evaporation and sputtering techniques have been used for the vacuum deposition of thin films.

    ## Evaporation

    In his early work Feldman ${ }^{25}$ evaporated $\mathrm{BaTiO}_{3}$ from a coated tungsten
    filament onto a metallic substrate in a vacuum of less than $5 \times 10^{-5} \mathrm{~mm} \mathrm{Hg}$. Due to the difference in volatility of the constituent oxides, the resultant film consisted of separated layers of BaO and $\mathrm{TiO}_{2}$. To combine the oxides the film had to be subsequently heated in air at $1100^{\circ} \mathrm{C}$.

    Flash evaporation onto a heated substrate is a technique developed by Miuller et al. ${ }^{26}$ and Burfoot et al. ${ }^{27}$ which overcomes the dissociation problem. The polar material is evaporated in small-thickness increments, typically corresponding to a few crystal lattice spacings, by dropping the source material, a grain at a time, onto a filament heated to a temperature of about $2000^{\circ} \mathrm{C}$. One variation which has proved successful in improving the quality of the evaporated films has been to leak a small amount of oxygen into the vacuum chamber. This improved stoichiometry by overcoming oxygen deficiencies. Another successful technique has been the use of multiple evaporation sources. For example, in forming $\mathrm{BaTiO}_{3}$, a source of BaO and a source of $\mathrm{TiO}_{2}$ are used. The multiple sources can reduce the amount of filament material in the film.

    In addition to $\mathrm{BaTiO}_{3}$, thin films of lead titanate, $\mathrm{PbTiO}_{3}$, and bismuth titanate, $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$, have been evaporated. Films evaporated onto metal substrates such as platinum are polycrystalline in nature. An epitaxial film of $\mathrm{BaTiO}_{3}$ with its $c$-axis uniformly aligned perpendicular to the substrate can be evaporated if the substrate is a freshly cleaved alkali halide crystal such as LiF or NaF . Burfoot ${ }^{27}$ has developed a technique for removing the film from the insulating substrate, so that an electrode can be placed on the thin film for electrical measurements.

    ## Sputtering

    Francombe ${ }^{28}$ has suggested that sputtering offers several advantages over evaporation, namely (a) better control of stoichiometry, especially for the more complex oxide materials, (b) better thickness control and (c) freedom from material contamination. Most sputtering has been r.f. sputtering from ceramic targets. However, diode, triode and tetrode sputtering has also been used. The polar materials which have been sputtered are listed in table 2.3. Two of these materials, $\mathrm{BaTiO}_{3}$ and $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$, have also been sputtered epitaxially.

    It is instructive to summarise the sputtering technique developed for monoclinic $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$, since the problems which occur are rather typical, and the results obtained have been the most impressive. Takei et al. ${ }^{29}$ used a $10 \mathrm{~cm}^{2}$ ceramic target of bismuth titanate mounted on a water-cooled metallic base and positioned 4 cm from a heated substrate. Using a 4 mm at mosphere of $\mathrm{O}_{2}$ and Ar they were able to sputter $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ films at a rate of about $1 \AA \mathrm{~s}^{-1}$ using a power level of $1 \mathrm{~W} \mathrm{~cm}^{-2}$ and a self bias of 700 V .

    The problem in vacuum deposition, as with single crystal and ceramic fabrication, is to develop the correct stoichiometry so that only the required phase is formed. In the case of sputtering $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$, this is done by using a
    

    Figure 2.10 Dependence of composition on substrate temperature for films r.f. sputtered from a target of composition $80 \% \mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}, 20 \% \mathrm{Bi}_{12} \mathrm{TiO}_{20}$. (Francombe ${ }^{28}$ )
    ceramic target of $0.8 \mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}, 0.2 \mathrm{Bi}_{12} \mathrm{TiO}_{20}$ and a substrate temperature of $650^{\circ} \mathrm{C}$. The bismuth enriched target compensates for the high volatility of that oxide, while as can be seen from figure 2.10 , the chosen substrate temperature favours $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ over the other phases.

    The $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ film can be sputtered epitaxially and aligned along any preferred direction by choosing a substrate having a suitable crystal lattice. Substrates which have been used are Pt , single crystal $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ and MgO and $\mathrm{MgAl}_{2} \mathrm{O}_{4}$. Except for a higher coercive field, the electrical and optical properties of the epitaxial films closely match those of the bulk (single crystal) material; see, for example, figure 2.11. The most dramatic evidence of the quality of the sputtered films of $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ is their ability, as shown in figure 2.12, to duplicate the complex electro-optic light valve switching properties of the single crystal material described in section 15.2a.

    ### 2.4 Fabrication of Polar Glasses

    Borrelli, Herczog and colleagues ${ }^{31,32}$ at Corning have succeeded in crystallising $\mathrm{NaNbO}_{3}$ and $(\mathrm{NaK}) \mathrm{NbO}_{3}$ in glass matrices of $\mathrm{SiO}_{2}$, and $\mathrm{BaTiO}_{3}$ and $\mathrm{SrTiO}_{3}$ in a matrix of $\mathrm{BaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$. Also, Isard and his colleagues ${ }^{33.34}$ at Sheffield have made glasses of $\mathrm{PbTiO}_{3}$ and $(\mathrm{PbBa}) \mathrm{TiO}_{3}$ in $\mathrm{B}_{2} \mathrm{O}_{3}$ matrices and $(\mathrm{K} \mathrm{Ta}) \mathrm{NbO}_{3}$ in a $\mathrm{SiO}_{2}$ matrix. These polar glasses are made by the rapid quench cooling of the appropriate molten oxides, followed by suitable annealing treatment to crystallise the polar material in the low permittivity,
    

    Figure 2.11 Birefringence values and extinction angle of bismuth titanate as a function of temperature measured at wavelength 5890 A . The solid lines are from single crystal, and the dashed lines from film. The subscripts $a, b$, and $c$ indicate the monoclinic axis along which light was directed for each measurement. (Wu et
    al. ${ }^{30}$ )
    

    Figure 2.12 A sputtered bismuth titanate film viewed between crossed polarisers in (a) 'off' condition (b) 'on' condition (Wu et al. ${ }^{30}$ ). Microphotographs of an interdigital electrode array.
    high resistivity glass matrix. The volume per cent of glass matrix present should be kept as small as possible: $20 \%$ is an achievable amount. The electrical properties of the glasses are enhanced by a large crystallite grain size for the polar material portion, while the optical properties are favoured by a small grain size. For electro-optic applications, $0.5 \mu \mathrm{~m}$ is a typical compromise
    grain size.

    The polar glass materials have the characteristic advantages associated with glass, namely an absence of pores and hence a high dielectric breakdown and mechanical strength. Also, they can be conveniently fabricated in thin uniform sheets. On the other hand, the presence of the glass matrix with its relatively low dielectric permittivity as compared to the polar materials means that the electrical and optical coefficients are smaller than those of the corresponding ceramic or single crystal material. The properties are, however, still sufficiently significant for some electro-optic applications and for some cryogenic temperature, capacitor applications. ${ }^{32}$

    ### 2.5 Post-Fabrication Procedures

    ## 2.5a Annealing

    Crystals grown from the melt often develop strains which lead to undesirable domain structures (twinning) and mechanical cracking. The strains are mainly caused by the mechanical constraints imposed during the growth process. The easiest way to remove these strains is by thermal annealing. This can be done by cooling the crystal through its transition temperature at a prescribed rate in a suitable temperature gradient. For example, Hopkins and Miller ${ }^{35}$ have found that the strains due to domain structures in $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ can be successfully annealed out by placing the crystals on an alumina surface in a tube furnace with a temperature gradient of $5^{\circ} \mathrm{C} \mathrm{cm}^{-1}$ and cooling at the rate of $2^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Annealing is also used to remove strains which can develop in thin film materials and ceramics while they are being fabricated.

    ## 2.5b Poling

    In a newly fabricated ceramic, the crystallites, and hence the polar axis, can lie in a large number of directions. This will cause the material to have only a quasi-isotropic response in its electrical, optical, piezoelectric and other characteristics. A lack of orientation can also exist in certain freshly prepared single crystal and thin film materials due to there being more than one possible orientation for the polar axis. For example in $\mathrm{BaTiO}_{3}$ there are three possible orientations for the polar axis and each orientation has two possible directions.
    Before such unaligned materials can be used for measurements and applications, it is necessary to orient the polar axis in a common direction usually normal to the major surfaces. (However, in the case of the electro-optic PLZT ceramics it is necessary, for some modes of operation (see section 15.2), to pole parallel to the surface.)

    Polar axis orientation is done by a poling technique which consists of applying a D.C. voltage for a sufficient time to suitable electrodes on the material. The amplitude and duration of the voltage required for poling vary substantially between materials. Some materials will pole easily and if used in
    

    Figure 2.13 Single crystal bismuth titanate poled in central region, as viewed between crossed polarisers (Hopkins and Miller ${ }^{35}$ ): scale has 1 mm divisions.
    large-signal switching applications may not even require a preliminary poling cycle. Others can only be poled near their Curie point where the coercive field of the material is small. Sometimes the poling is done during the crystal growth-see figure 2.5. The maximum poling voltage that can be applied is limited by breakdown and arcing in the material. Hence poling is often done in an oil bath. Figure 2.13 shows a $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ crystal which has been poled in its central section. The crystal is viewed between crossed polars and hence only the poled region is uniformly extinguished.

    ## 2.5c Cutting. Thinning and Polishing

    Depending on the intended usage, it is often necessary to cut and thin the 'as grown' single crystal or the 'as sintered' ceramic slug or disc to smaller dimensions. If the material is water soluble then the cutting can be done with a water soaked string. Other materials may require cutting with a high speed diamond coated wire. The thinning can be done by slicing, mechanical grinding or etching. In the latter process, depending on the material, the etch solution can vary from water to aqua regia. Some materials will, with a suitably applied high impulse pressure, naturally cleave into thin platelets. Desputtering, where-in the polar material is made the sputtering source, is a technique that permits very carefully controlled thinning of a material. ${ }^{38}$

    For optical use it is almost mandatory to have a finely polished surface to minimise light scattering. Several methods are used for polishing. One of the most common is a series of polishes with alumina powder of progressively smaller particle size.

    ## 2.5d Electroding

    Many measurements and most devices require the application of electric fields to the material. This is done by applying a voltage between electrodes placed on the surfaces of the polar material. Because of the high $\varepsilon$ of polar materials, the electrodes must be in intimate contact with the surfaces. Virtually any airgap will cause an intolerable reduction in the voltage developed in the polar material.
    

    Figure 2.14 An evaporated gold electrode pattern on a doctor bladed ceramic strip (Taylor ${ }^{36}$ ).

    For quick measurements, air drying silver paste is often used as an electrode. For applications which require accurately defined electrodes, it is usual to evaporate metal through photomechanically formed masks. Figure 2.14 shows such an electrode pattern formed with evaporated gold on a doctor-bladed PZT-type ceramic. Silk screening and sputtering are two other techniques which have been used for forming electrodes. For electro-optic applications, it is often necessary to have transparent electrodes. Very thin (less than $500 \AA$ thick) evaporated metal electrodes can sometimes be used. However, r.f. sputtered indium and/or tin oxide has proved to be a more satisfactory transparent electrode. Such electrodes can have a resistance of less than $10 \Omega$ per square and an optical transmission of greater than $90 \%$ in the visible spectrum.
    At first sight, electroding would seem to be no more than a technical process. However, as discussed in detail in section 3.2c, electrodes can have a significant effect on the ageing phenomena in polar materials. For example, if metal electrodes are used, single crystal $\mathrm{BaTiO}_{3}$ ages after repeated polarisation reversals. With conducting liquid electrodes (e.g. an aqueous lithium chloride
    solution) no ageing occurs ${ }^{37}$. These and other results indicate that the surface physics involved is complicated and not well understood. The large electric field gradients which exist near the surfaces of polar materials undoubtedly properties of polar effects that the electrodes can have on the switching

    ## References

    1. D. E. Rase and R. Roy, J. Am. ceram. Soc., 38, 110 (1965)
    2. M. E. Raider and W. R. Cook, J. appl. Phys., 38, 1977 (1967)
    3. J. R. Carruthers and K. Nassau, J. appl. Phys., 39, 5205 (1968)
    4. A. Linz, private communication
    5. M. L. Sholokhovich and I. N. Belyaev, Zhur. Obschehei. Khim., 24, 218 (1954); ibid., 1118 (1954)
    6. A. D. Morrison, F. A. Lewis and A. Miller, Ferroelectrics, 1, 75 (1970)
    7. J. P. Remeika, J. Am. chem. Soc., 76, 940 (1954)
    8. D. J. Epstein, U. S. Air Force Contract Report AFAL-TR-70-172
    9. K. Nassau, Ferroelectricity (ed. E. F. Weller), Elsevier, Amsterdam, p. 266 (1967)
    10. A. Kumada, Ferroelectrics, 3, 115 (1972)
    11. V. Belruss, J. Kalnajs, A. Linz and R. Folweiler, Materials Research Bulletin, 6, 899 (1971)
    12. T. Mori, H. Tamura and E. Sawaguchi, J.phys. Soc. Japan, 20, 1294 (1965)
    13. V. I. Popolitov and B. N. Litvin, Sov. Phys. Crystall., 13, 483 (1968)
    14. V. G. Hill and K. G. Zimmerman, J. electrochem. Soc., 115, 978 (1968)
    15. A. A. Shternberg and V. A. Kuznetsov, Sov. Phys. Crystall., 13, 647 (1968)
    16. C. Wentworth and G. W. Taylor, Am. ceram. Soc. Bull., 46, 1186 (1967)
    17. G. H. Haertling, J. Am. ceramic Soc., 42, 679 (1963); ibid., 49, 113 (1966)
    G. H. Haertling and C. E. Land, J. Am. ceram. Soc., 54, 1 (1971)
    18. H. P. Beerman, Ferroelectrics 2 , 23 (1971) 269 (1972)
    19. D. W. Chapman, J. appl. Phys., 40, 231 (1971)
    20. M. S. Luré, E I. Vasil'eva and I V. Ignat (1969) 1372 (1960)
    21. J. P. Nolta and N. W Scmon, Bull. Am. ceramic Soc., 41, 781 (1962) R. A. Dork, N. W. Schubring a, Phys. Rev. Letters, 9, 285 (1962) (1964)
    N. W. Schubring, R. A. Dork and J. P. Nolta, J. appl. Phys., 38, 1671 (1967)
    22. G. W. Taylor and B. J. Lechner, J. appl. Phys., 39, 2372 (1968)
    23. C. Feldman, Phys. Rev., 96, 819 (1954)
    C. Feldman, Rev. scient. Instrum., 26, 463 (1955)
    24. E. K. Müller, B. J. Nicholson and M. H. Francombe, Electrochem. Technology, 1, 158 (1963)
    25. J. C. Burfoot and J. R. Slack, Proc. European Meeting, Saarbrüchen (1969) J. C. Burfoot and J. R. Slack, J. phys. Soc. Japan, 28, Supplement, 417 (1970)
    26. M. H. Francombe, Ferroelectrics, 3, 199 (1972)
    27. W. J. Takei, N. P. Formigoni and M. H. Francombe, Appl. Phys. Letters, 15, 256 (1969)
    W. J. Takei, N. P. Formigoni and M. H. Francombe, J.Vacuum Sci. Tech., 7, 442 (1970)
    28. S. Y. Wu, W. J. Takei and M. H. Francombe, Ferroelectrics, 10, 209 (1976)
    29. N. F. Borrelli, A. Herczog and R. D. Mauer, Appl. Phys. Letters, 7, 117 (1965)
    N. F. Borrelli, J. appl. Phys., 38, 4243 (1967)
    N. F. Borrelli and M. M. Layton, IEEE Trans. Electron Devices, ED-16, 511 (1969)
    30. W. N. Lawless, Ferroelectrics, 3, 287 (1972); ibid., 7, 379 (1974)
    31. D. G. Grossman and J. O. Isard; J. Phys. D. appl. Phys., 3, 1058 (1970)
    32. D. V. Keight and J. O. Isard, paper given at British Ceramic Society Meeting (Dec. 1972)
    33. M. M. Hopkins and A. Miller, Ferroelectrics, 1, 37 (1970)
    34. G. W. Taylor, IEEE Trans. Electron Devices, ED16, 565 (1969)
    35. G. W. Taylor, Ph.D. Thesis, University of London (1961)
    36. J. Vossen, private communication

    ## BRIEF ATTACHMENT D

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT D

    

    A Wiley-Interscience Publication
    JOHN WILEY \& SONS, New York • Chichester • Brisbane • Toronto
    To Karl Schwartz walder and Frederick H..Norton for their pioneering contributions to the science and technology of modern ceramic processing
    Copyright © 1978 by John Wiley \& Sons, Inc.
    Library of Congress Cataloging in Publication Data: Main entry under title:
    Ceramic processing before firing.
    "A Wiley-Interscience publication."
    "Edited from the proceedings of the conference ...
    held at the University of Florida from January 27 to "SL6I 0

    1. Ceramics. I. Onoda, George Y.. 1938II. Hench, L. L., 1938- III. Florida.
    University, Gainesville.
    TP807.C4S $666 \quad 77-10553$
    ISBN 0-471-65410-8
    Printed in the United States of America
    TP807.C45 666 $\quad 77-10553$
    ISBN 0-471-65410-8
    Printed in the United States of America
    10987654321
    Contributors
     J. A. Pask, University of California, Berkeley, California G. W. Phelps, Rutgers University, New Brunswick, New Jersey A. G. Pincus, Rutgers University, New Brunswick, New Jersey F. N. Rhines, University of Florida, Gainesville, Florida
    G. C. Robinson, Clemson University, Clemson, South Carolina
    H. Rumpi, Universitat of Karlsruhe, Karlsruhe, Germany
    R. B. Runk, Western Electric Company, Princeton, New Jersey
    R. Russell, Jr., Ohio State University, Columbus, Ohio
    D. J. Shanefield, Western Electric Company, Princeton, New Jersey H. Schubert, Universitat of Karlsruhe, Karlsruhe, Germany K. Sommer, Universitat of Karlsruhe, Karlsruhe, Germany R. T. Tremper, General Electric Company, Cleveland, Ohio
    K. K. Verma, Sel-Rex Company, Santa Ana, California
    W. O. Willemore, Jr., University of Washington, Seattle, Washington Pennsylvania

    ## Preface

    This book has been edited from the proceedings of the conference on "The Flom January 27 to 30,1975 . The conference, the tenth in a series approximately 200 personsf on ceramic science, was attended by It was the first conference in several decades that, and universities. jects relevant to raw materials, batch processing, and forming of ceramics. Scientists and engineers were invited from throughout the United States to cover topics that were judged to be of particular importance to the
     ing Dr. H. Rumpf and Dr. K. Sommer of Karlsruhe, Germany, with us. A number of the contributors were not ceramists but were experts in areas hat are directly related to problems in ceramic processing. Outside areas metallurgy. metallurgy.
    At first we planned to have the proceedings published rapidly as a
    compiled book with a minimum of editing. However, contributors and conference participants encouraged us to prepare a book as close as possible to a textbook, since none exists that covers the topics of the conference. Therefore, many of the chapters were revised, shortened, and sometimes rearranged in an attempt to provide a style more closely approaching a single-author contribution. There were distinct limits in the editing, because in many cases we did not wish to lose the logic and intent of a paper that depended on the style of presentation.
    Other books aret a descriptive discourse on how ceramics are processed. ciples of processing in rather detailed fashion, We concentrate on the prinabout a better understanding of the science of processing. Students in ceramics should find this book useful as a textbook in ceramic processing, particularly if their course stresses principles. From the response at the conference, where more than three-fourths of the registrants were from

    Preface
    industry, we believe that this book will also be useful for ceramic engineers throughout industry.

    We are grateful to the U.S. Bureau of Mines (Tuscaloosa, Alabama and the Department of Materials Science and Engineering Florida, for their partial sponsorship of the conference that made this book possible. Finally, the editors would like to thank Arleen Weintraub for her diligent, competent, and cheerful preparation of the entire written manuscript and Becky McEldowney for her valuable assistance in the administration of the conference.
    

    While Karl's fine intellect and creative genius enabled him to realize great professional success and recognition, he has remained completely unchanged in demeanor or true character from our first professional association some 40 years ago.

    Karl Schwartzwalder was born on May 5, 1907 in Pomeroy,
    Ohio. As a youth he learned to work and play vigorously and with purpose. He was employed in the backroom of the Pomeroy Daily News, delivered newspapers covering a long route on foot, and did odd jobs to provide supplementary family income. His family included his fine parents, Frances and Frank, and three sisters, with whose families he has remained very close through the years. While not large physically, he was always naturally competitive and courageous, whether in swimming the Ohio River,
    participating in contact sports, or even as we attempted to pick winners at the racetrack in later years. He has never been one to back away from a cause in which he believes or to waiver in an encounter in support of right.

    Yet he has always been considerate of others and concerned with their
    personal welfare. He genuinely enjoys people and helping others is his greatest pleasure.

    Dr. Karl Schwartzwalder
    (May 5, 1907-May 2, 1975)
    

    ## Honoring KARL SCHWARTZWALDER

    - He was employed in the backroom of the Po
    newspapers covering a long route on foot, and ๔号
    

    Following graduation from Pomeroy High School in 1925, he worked for a year before enrolling at Ohio State University in the fall of 1926. In the depths of the Great Depression he received the Bachelor of Ceramic Engineering degree in 1930 and the Master of Science degree in 1931. He was active in Tau Beta Pi, Texnikoi, Sigma Xi, Sigma Gamma Epsilon, . Keramos, and the-Student Branch of the American Ceramic Society while on campus.

    Those years at Ohio State were the beginning of a long and close friendship with the late Dr . Authur S . Watts, who for over 60 years
    contributed so much to the advancement of our American ceramic industry It was Dr. Watts who encouraged Karl in 1931 to become associated with AC Spark Plug, now a division of the General Motors Corporation, an association that lasted until his retirement in 1972. Karl rose through various positions of responsibility in the Research and Development Laboratory to become Chief Ceramic Engineer in 1945 and then Dis evidenced by an imposing list of over 50 patents in the field of ceramics and metals. He has been a pioneer and vital force in the continuing development of technical ceramics in the United States, especially the refractory oxide ypes such as alumina ceramics, where his contributions to compositional and processing technology are well documented. Less well known is his role in the ultrasecret Manhattan Project of World War II, where his council and ceramic expertise were widely employed.

    While Karl's technical contributions are generally well recognized, perhaps less known is his influence in advancing the careers of the many people who worked under him through the years. His guidance and selfless concern for them have resulted in an imposing alumni body, whose influence will remain far-reaching.

    Karl has always enjoyed travel, having visited many foreign countries, inspected countless research and manufacturing operations, and become acquainted with scientific and technical personnel worldwide. He has a peculiar ability to combine business and pleasure in the best sense. His insatiable curiosity has pervaded whatever he encountered in these extensive travels, benefiting both his company and those he contacted along the way.

    Karl has been an active member of many technical and professional organizations, including, of course, the American Ceramic Society, for which he served as President from 1956 to 1957 and which has designated him both a Fellow and an Honorary Member. He has also been an active contributor in many other organizations, such as the National Institute of Ceramic Engineers, the American'Society for Metals, the Society for Automotive Engineers, and the National Academy of Engineering. His technical affiliations and many committee services through the years are
    patently too extensive to allow further review here but are indeed imposing. Karl somehow has also found time to be active in civic affairs in such organizations as the Flint, Michigan Chamber of Commerce, the Flint Science Fair, the Five Talents Program for talented high school. students, which he founded and sponsored, the Industrial Executives Club, and Saint
    Rita's Catholic Church, which he long served as a member of the Board of Trustees, and in which Ruth and Karl Schwartzwalder were both uniquely
    
    Perhaps among the least widely known facets of Karl's life and also that of his late, wonderful wife, Ruth, are their abiding faith in young people and their concerned interest in nature and wildlife. One must have been exposed to their country home, "their" animals, and the constant influx of young friends to realize the basic goodness of Ruth and Karl. They truly represent the best of human instincts.
    is only natural that many honors, awards, and accompanying有位ing recognition as a Distinguished Alumnus and the Award of an Honorary Doctorate by his Alma Mater, Ohio State University, which he has tangibly supported in many ways throughout his career; the Arthur F. Greaves-Walker Award of the
    National Institute of Ceramic Engineers; the Bleininger Memorial Awar National Institute of Ceramic Engineers; the Bleininger Memorial Award
    and John Jeppson Medal of the American Ceramic Society; the Man of the Year Award from Ceramic Age; the Liberty Bell Award of the Michigan State Bar; the Outstanding Michigan Inventor Award of the Michigan
    
     Association of Manufacturers and various governmental agencies that have sought and received his counsel

    Karl Schwartzwalder is truly a giant among men. I will ever be most grateful for a warm and enduring friendship with Karl accompanied by
     Thank you, Karl.

    ## Ralston Russell, Jr

     This tribute by Ralston Russell Jr., was delivered at the conference three months before the untimely passing of Dr. Schwartzwalder.
    Honoring FREDERICK HAREWOOD NORTON


    chemistry in the chemistry department, take X-ray crystallography from Warren, and geology and petrography from Martin Buerger. Considering he research interest both of these professors have had in the ceramics area, I suspect their interaction with Professor Norton was much more than just as teachers of his students.
    Norton's success as a tea

    Norton's success as a teacher is well known. At least two of his students
    are now deans in major universities and I shall not and the leading ceramists in the country who have been directly or indirectly strongly influenced by him.

    As a ceramist he has had the widest interests. His book on refractories was perhaps the first scientifically based book on ceramics to be published: It first appeared in the 1930s and has gone through four editions. It reflects his continuing close association with Babcock and Wilcox, but also his in the origin of the properties in the pniques of ceramic processing, as well
    as the origin of the properties in the precurser and product materials. insulating firebrick that permitted the inner wall of furnaces to be insulated instead of requiring an inner course of solid firebrick.
    nature of the plasticity of clays and to investigate the colloidal chemistry and evaluating it by measuring base-exchethods of controlling it by dialysis Less well known, perhaps, is his seminal work on fiber

    A merican Optical Company. He may be considered the father of this
    technology, and certainly did a great deal of the early development work
    he mally, I must mention his invaluable work for the Manhattan District in I was on the receiving end of the project at Los Alamos and recall the war. exquisite magnesia and beryllia crucibles we received for melting uranium and later plutonium.

    Earlier, there had been a similar development on crucibles made of what was called "Brass," which was actually cerium sulfide. Leo Brewer, I somewhere above $1600^{\circ} \mathrm{C}$ where the vapor pressure of Mg ould be hods for fabricating this esoteric material. Luckily, the melting point of plutonium turned out to be lower than $700^{\circ} \mathrm{C}$, so this material was not needed and MgO crucibles were used.

    One could go on endlessly. Professor Norton is a Fellow and Honorary Life Member of the American Ceramic Society and the British Ceramic Society. He has honorary doctorates from Alfred and the University of Toledo. He is a most skillful sculptor and artist potter and has written several books in this area.
    

    | Contents | $\mathbf{x x i}$ |
    | :---: | :---: |
    | Chapter 20 |  |
    | Mixedness of Suspensions <br> K. Sommer and $H$. Rumpf | 253 |
    | Chapter 21 |  |
    | Quantitative Theory of Cracking and Warping During the Drying of Clay Bodies <br> A. R. Cooper | 261 |
    | Chapter 22 |  |
    | Mineralogy of Curing and Drying of a Refractory Concrete R. E. Farris and J. S. Masaryk | 277 |
    | PART FOUR GREEN-BODY FORMATION AND MICROSTRUCTURE |  |
    | Chapter 23 |  |
    | Firing-The Proof Test for Ceramic Processing W. D. Kingery | 291 |
    | Chapter 24 |  |
    | Effect of Process Optimization Properties of Alumina Sintered Under Rate Control <br> T. M. Hare and H. Palmour III | 307 |
    | Chapter 25 |  |
    | Dynamic Particle Stacking F. N. Rhines | 321 |
    | Chapter 26 |  |
    | Particle Compaction O. J. Whittemore, Jr. | 343 |
    | Chapter 27 |  |
    | Adhesion Forces in Agglomeration Processes H. Rumpf and H. Schubert | 357 |
    | Chapter 28 |  |
    | Strength and Microstructures of Dried Clay Mixtures W. O. Williamson | 377 |
    | Chapter 29 |  |
    | Extrusion Defects G. C. Robinson | 391 |

     Chapter 13
    


    PART ONE
    It is appropriate that the two introductory chapters are
    written by the scientist and the engineer who probably
    contributed most to modern concepts in ceramic processing.
    The history described in these chapters serves to highlight the
    changes in approach and philosophy of thinkers and doers in
    this industry. Before this century ceramics processing was
    purely an art, but the rapid technological developments in our
    society required that new materials be developed rapidly.
    Leisure was no longer an available luxury, and inventiveness
    and understanding of why processes did or did not work were
    crucial to meet the new demands of technology.
    411
    449
    463
    $47!$


    J. A. Pask, A. G. Pincus, R. Russell. Jr., J. E. Burke,
    R. A. Alleigro, W. B. Crandall, D. W. Fuerstenau

    ```
    ```

[^1]:    
    

[^2]:     density and pockets of porosity remain. These pockets of porosity limit the attainable density, act as light-scattering centers, and act as critical flaws for fracture initiation.

    By contrast, the fracture surface of the compact prepared from the drymilled powder is uniform (Figure 7.8). This type of microstructure is
    
    
     in Figure 7.9. Final microstructures of this quality cannot be obtained from
     Figure 7.7.

    The fracture surface of the compact prepared from the wet-milled powder appears to be quite uniform. However, closer examination reveals numerous
    
     phase inversions in the hydrated phase that served as the bond phase in the powder agglomerates. Except for small samples, the disruption leads to bulk rupture of the compact during sintering.

[^3]:    $C=$ pellet pressed at 4000 psi, 4 Reynolds. Fired densities obtained at $1620^{\circ} \mathrm{C}$ for 1 hr soak ${ }^{4}$ Fired densities obtained at $1510^{\circ} \mathrm{C}$ for 2 hr soak. 10 g pellet pressed at $5000 \mathrm{psi}, 4$ hour grind.

[^4]:    H. Rumpf, "Physical Aspects of Comminution and New Formulation of a Law of Comminution," Powder Tech., 7, 145-149 (1973).

[^5]:    B. Ya. Pines, Uspekhi Fiz. Nauk, 52, 501 (1954); translation AES-TR 5563, 2/15, 1963.
    5. W. D. Kingery, Introduction to Ceramics, Wiley, New York, 1963, p. 376.
    6. P. Reyner, Reacilvily of Solids, Wiley-Interscience, New York, 1969.
    7. F. A. Kroger, The Chemistry of Imperfect Crystals. Wiley, New York, 1964.
    8. D. N. Polyboyarinov, Refractories (Moscow), 27, 137 (1962).
    W. A. Weyl. Ceram. Age, 60, 28 (1952).
    11. I. M. Fedorchenko and V. V. Skorokhod, Sov. Powder Metall.; 10 (58) 805 (1967).
    12. A. L. McLaren and P. W. M. Atkinson, J. Nucl. Mater. 17, 332 (1965).
    13. V. A. Bron and N. V. Semkina, Sov. Powder Metall., 5, 332 (1962).
    W. H. Gitzen, "Alumina as a Ceramic Material," Amer. Ceram. Soc., Columbus, Ohio, 1970. p. 7.
    15. B. E. Warren and B. L. Averbach, J. Appl. Phys., 21, 595 (1950).
    16. E. A. Metzbower, NRL Report 7253, 1971.
    17. A. R. Stokes, Proc. Phys: Soc., London, B61, 382, (1948).
    > 1. J. Frenkel, J. Phys. (USSR), 9, 385 (1945).
    > G. C. Kucyzinski, J. Appl. Physics, 21, 632 (1945).
    > D. L. Johnson, Phys. Sintering, 1 (Y3), (July 1969) B1.
    > 1.
    2.
    3.

[^6]:    Screened through 400 mesh.

[^7]:    The Structure of Water and its Role in Clay-Water Systems

[^8]:    E

    苞
    Figure 18.1. Flow curves of closely sized glass spheres
    two different oils with viscosities $\eta_{n}=0.43$ and 2.51 P .

[^9]:    nalyse," Chem.-Ing.-Techn., 47, 1 (1975).

[^10]:    2. B. Francois, R. Delmas, G. Cizeron, and W. D. Kingery, Mem. Sci. Rev. Metall., 64,
    1079 (1967).
[^11]:    D. E. Niesz, R. B. Bennett, and M. J. Snyder, "Strength Characterization of Powder
    Aggregates," Technical Report Number I, Contract Number N00014-68-0347, Office of Naval Research, Oct. 1970
    6. R. B. Bennett and D. E. Niesz, "Comminution of a Reactive Alumina Powder," Technical Report Number 2, Contract Number N00014-68-C-0342, Office of Naval
    Research, Oct. 1971 . R. B. Bennett and D.

    Technical Report Number 3, Contract Number N00014-68-C-0342, Office of Naval Research, Oct. 1972. 15
    16.
    17.

[^12]:    size grog in upper picture.

[^13]:    RAW MATERIAL PROPERTIES DETERMINING
    EXTRUDABILITY

[^14]:    1. A curved bed, 1 ft wide and 14 ft long with its maximum height under
    2. A well-constructed, stable table base.
    the doctor blade.
    3. A thin carrier tape with close thickness tolerances.
    4. A doctor blade with an edge milled to a fraction of a mil in straightness. 5. A doctor-blade configuration to minimize the effects of hydrodynamic and suface tensile forces at the blade.
[^15]:    A-16, Aluminum Company of America, Pittsburgh, Pennsylvania.
    A. Union Carbide Company, East Chicago, Indiana.

    Experimental, Western Electric Company, Princeton, New Jersey.
    Experimental, E. I. duPont De Nemours and Company, Wilmington, Delaware.

[^16]:    The objective of the present study was to develop a process for producing a pigment (finely divided powder) for use in spacecraft thermal control coatings. The desired pigment was $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$, a binary oxide that normally requires temperatures of $900^{\circ} \mathrm{C}$ or greater for its formation from ZnO and $\mathrm{TiO}_{2}$. Thus the studies were directed toward maintenance of the powder in a discrete particle state under the relatively rigorous temperature regimes that Although oridinarily encourage sintering of particles (conglomeration). by grinding, the potential can be comminuted to a pigment particle size makes its elimination desirable. A process was developed in
    is, submicron to developed in which $\mathrm{Zn}_{2} \mathrm{TiO}_{4}$ powder of pigment size, that $1200^{\circ} \mathrm{C}$. This was accomplishes could be obtained at temperatures up to rate at lower temperatures through the use the ZnO and $\mathrm{TiO}_{2}$ reaction rate at lower temperatures through the use of intimately mixed, finely

[^17]:    This work has been sponsored by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, under Contract No. NAS8-26791. The authors wish to express their appreciation to W. R. Logan for conducting the experimental studies and to J. E. Gilligan for his valuable contributions.

[^18]:    In other studies，increased stability of $\mathrm{BaTiO}_{3}$ has been

[^19]:    6， 139 1．A．VON Hippel et al．，RPTPB 4860 （1944）．
    2．W．Jackson and W．Redish，Nature 156， 717 （1945）． 3．H．Meanw，Nature 155，484（1945）． 4．H．P．Rooxssy，Nature 155， 484 （1945）． 5．B．M．Vox，Nature 156， 480 （1945）． 6．B．M．Vul and I．M．Goldman，O．R．Acad．Sci．URSS （1946）． S．Mryake and R．Ueda，J．Phys．Soo．Japan 1， 32 （1945）． W．J．Merz，J．Appl．Phys．17， 938 （1956）．

    1．A．G．Chynowetr，Phys．Rev．102， 705 （1956）．

[^20]:    In the complex perovskite structures the $\mathrm{B}^{\prime}$ ions are separated by an OWO array, and in MeO by a single ox exchange Since the Néel temperature is lnearly relate $B^{\prime}-O-B^{\prime}$ interconstant of the $180^{\circ} \quad B-0-W-O-B^{\prime}$ shows that the $B^{\prime}-O-B^{\prime}$ interactions, the data in Table 7.2 shows that the $\mathrm{B}^{\prime}-\mathrm{O}-\mathrm{B}$ inter
    interaction.
    In addition, from measurements on $\mathrm{Ca}\left(\mathrm{Fe}_{0.5} \mathrm{Sb}_{0.5}\right) \mathrm{O}_{3}$ and

[^21]:    References

    1. W. J. Merz, Phys. Rev. 76, 1221 (1949). Appl. Phys. 35, 2638 (1964).
    2. J. A. Noland, Phys. Rev. 94, 724 (1954).
    3. A. Linz, Jik. and K. Herrinaton, J. Chem. Phys. 28, 824 (1958).
    4. C. D. SALzBerg, J. Opt. Soo. 51, 1149 (1961).
    5. W. M. MaoNevin and P. R. OGLE, J. Am. Chem. Soc. 76, 3849
    6. J. E. Gedsio, S. K. Koriz, L. G. Van Uitirit and S. H. Wempien,

    Appl. Phys. Letters 4, 14 (1964). . Ppl. Phys. Letters 5, 181 (1964). I. P. Kasmnow, Appl. Phys. Letters 7, 123 (1985). N. F. Borrewhr, A. Hmrozog and R. D. Maureir, Appl. Phys.
    Letters 7, 117 (1965). J. MORPHY, R. C. O
    ters 13, 136 (1984). Airtron Semiannual Tech. Sum. Rpt., NONR 4816(00) (1 July-
    
    F. Galasso, G. Jayden and D. Finnorbajgr, J. Chem. Phys.
    15. G. Brasse, A. Brif and W. C. Niewwpoort, J. Phys. Chem. Soc. 97, 1587 (1986).

[^22]:    The nitrides $\mathrm{Fe}_{4} \mathrm{~N}, \mathrm{Mn}_{4} \mathrm{~N}, \mathrm{Fe}_{8} \mathrm{NiN}$ and $\mathrm{Fe}_{3} \mathrm{PtN}$ were also found to be ferromagnetic with Curie points of $488^{\circ}, 465^{\circ}$, $487^{\circ}$ and $369^{\circ} \mathrm{C}$, respectively.

    Studies by Machin et al. ${ }^{(10)}$ showed that many of the ternary perovskite-type fluorides also had interesting magnetic properties. The fluorides $\mathrm{KFeF}_{3}, \mathrm{KCoF}_{3}$ and $\mathrm{KNiF}_{3}$ are antiferromagnetic with Néel points of $112^{\circ}, 135^{\circ}$ and $280^{\circ} \mathrm{K}$. The evidence for antiferromagnetism below $80^{\circ} \mathrm{K}$ for $\mathrm{KMnF}_{3}$ and $215^{\circ} \mathrm{K}$ for $\mathrm{KCuF}_{3}$ appears to be less certain. However, a study of the absorption spectra of $\mathrm{KMnF}_{3}$ as a function of temperature does show anomalies in the maxima at $184^{\circ} \mathrm{K}$ and at $88^{\circ} \mathrm{K}$. The first the authors attribute to a phase transformation and the latter to electron spin coupling.

    Other fluorides which were found to be antiferromagnetic
     $75^{\circ}$ and $83^{\circ} \mathrm{K}$ respectively. Small changes in the fluorescent properties in the vicinity of the Néel temperature have been reported for the latter compound and $\mathrm{KMnF}_{3} .{ }^{(22,}$, At about half the Néel temperatures larger and more strongly temperature-dependent changes were observed in the fluores-
     of the lattice and magnetic interaction of the excited $\mathrm{Mn}^{2+}$

[^23]:    162
    
    
    

    | $\mathrm{YFeO}_{\mathbf{a}}$ crystallography density 148 | 8, 22 |
    | :---: | :---: |
    | $\begin{aligned} & \mathrm{YSoO}_{3} \\ & \text { crystallography } \\ & \text { density } 148 \end{aligned}$ | 9, 22 |
    | $\mathrm{A}_{3} \mathrm{BO}_{3}$ and $\mathrm{ABO}_{3-3}$ |  |
    | $\mathrm{Ce}_{0.95} \mathrm{NbO}_{3}$ crystallography density 148 | 22 |
    | $\mathrm{Ce}_{0.3 \mathrm{~s}} \mathrm{TaO}_{8}$ crystallography density 148 | 22 |
    | $\begin{gathered} \mathrm{Dy}_{2} \mathrm{sys}^{\mathrm{TaO}_{a}} \\ \text { cystallography } \\ \text { density } \end{gathered}$ | 23 |
    | $\begin{aligned} & \mathrm{Gd}_{0.83 \mathrm{TaO}_{8}} \\ & \text { orystallography } \\ & \text { density } 148 \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{La}_{0.88} \mathrm{NbO}_{3} \\ & \text { cryatallography } \\ & \text { dansity } \\ & 148 \end{aligned}$ $\text { density } 148$ | 23 |
    | $\begin{aligned} & \mathrm{La}_{0.93} \mathrm{TaO}_{3} \\ & \text { crytallography } \\ & \text { density } 148 \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{Nd}_{0.88} \mathrm{NbO}_{3} \\ & \text { crystallography } \\ & \text { density } 148 \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{Nd}_{0.3 s \mathrm{TaO}_{\mathrm{g}}}^{\text {crystallography }} \\ & \text { density } 148 \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{Pr}_{0.92} \mathrm{NbO}_{3} \\ & \text { crystallography } \\ & \text { density } 148 \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{Pr}_{\mathrm{r}_{0.93} \mathrm{Ta} \mathrm{TaO}_{\mathrm{a}}}^{\text {crystallography }} \\ & \text { density } \end{aligned}$ | 23 |
    | $\begin{gathered} \mathrm{Sm}_{\text {oryssitallography }}^{\text {crysiog }} \text { density } \\ 148 \end{gathered}$ $\text { density } 148$ | 23 |
    | $\begin{aligned} & \mathrm{Y}_{0.83 \mathrm{TaO}}^{3} \\ & \text { crystallography } \\ & \text { density } \\ & \text { den } \end{aligned}$ | 23 |
    | density $\begin{aligned} & \mathrm{Yb}_{\text {o.as } \mathrm{TaO}_{\mathrm{a}}} \\ & \text { orystallography } \\ & \text { density } 148 \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{Ca}_{0.8 \mathrm{saO}}^{9} \\ & \text { crystallography } \\ & \text { density } \\ & \hline \end{aligned}$ | 23 |
    | $\begin{aligned} & \mathrm{Li}_{x} \mathrm{WO}_{3} \\ & \text { catalyst } \\ & \text { crystallography } \end{aligned}$ | y 10, 23 |

    196
    
    
    
    
    
    
    

    ## $\stackrel{5}{\circ}$

    
    

    ## BRIEF ATTACHMENT F

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT F

    

    # Oxygen Defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$-Type Oxides: The Compounds $\mathbf{L a}_{2-x} \mathbf{S r}_{x} \mathbf{C u O}_{4-x / 2+\delta}$ 

    NINH NGUYEN, JACQUES CHOISNET, ${ }^{1}$ MARYVONNE HERVIEU, and bernard raveau<br>Laboratoire de Cristallographie et Chimie du Solide, L.A. 25I, ISMRA, Université de Caen, 14032 Caen Cedex, France

    Received December 29, 1980; in final form February 18, 1981


    #### Abstract

    Oxygen defect $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type oxides $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-x / 2+\delta}$ have been synthesized for a wide composition range : $0 \leq x \leq 1.34$. From the X-ray and electron diffraction study three domains have been characterized: orthorhombic compounds with $\mathrm{La}_{2} \mathrm{CuO}_{4}$ structure for $0 \leq x<0.10$, tetragonal oxides similar to $\mathrm{LaSrCuO}_{4}$ for $0.10 \leq x<I$ and several superstructures derived from the tetragonal cell ( $a=$ $n . a_{\text {Lasicua }}$ with $n=3,4,4.5,5,6$ ) for $1 \leq x \leq 1.34$. The compounds corresponding to $0<x<1$ differ from the other oxides in that they are characterized by the presence of copper with two oxidation states: +2 and +3 . A model structure for $\mathrm{La}_{0.8} \mathrm{Sr}_{1.2} \mathrm{Cu}^{2} \mathrm{O}_{3.4}$, in which copper has only the +2 oxidation state, and for which the actual cell is tetragonal- $a=18.80_{4} \AA$ and $c=12.94 \AA$-has been established. The particular structural evolution of these compounds is discussed in terms of a competition between the capability of $\mathrm{Cu}(\mathrm{II})$ to be oxidized to Cu (III) and the ordering of oxygen vacancies.


    ## Introduction

    A lot of oxides, with the $\mathrm{A}_{2} \mathrm{MO}_{4}$ formula, characterized by the intergrowth of perovskite- and sodium chloride-type layers are known at the present time. Contrary to the perovskite oxides, no oxygen defect has been observed for this structural series to our knowledge, Copper, due to its ability to take different coordinations smaller than six, is a potential candidate which could form such anion defect compounds. However the only isostructural copper compounds which have been synthesized, $\mathrm{La}_{2} \mathrm{CuO}_{4}(l, 2)$ and SrLaCuO 4 (3) are stoichiometric. Nevertheless, the recent results concerning the oxides $\mathrm{La}_{2-x} A_{1+x} \mathrm{O}_{6-x / 2}(A=\mathrm{Ca}, \mathrm{Sr})(4)$, whose


    structure is strongly related to that of $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$ (5) suggest the possibility of oxygen defect for $\mathrm{A}_{2} \mathrm{CuO}_{4}$ compounds. Thus, the present work deals with the oxides $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-x / 2+\delta}$, for which the replacement of lanthanum by strontium leads to the formation of oxygen vacancies, involving order phenomena.

    ## Experimental

    For the synthesis of the compounds of the system $\mathrm{La}_{2} \mathrm{CuO}_{4}-\mathrm{Sr}_{2} \mathrm{CuO}_{3}, \mathrm{SrCO}_{3}, \mathrm{CuO}$ and $\mathrm{La}_{2} \mathrm{O}_{3}$ were mixed according to the following ratios: $(2-x) / 2 \mathrm{La}_{2} \mathrm{O}_{3} / x \mathrm{SrCO}_{3} / 1$ CuO . All these reactions were made in a platinum crucible in air. The synthesis of the compounds with high purity strongly depends on the temperature for a fixed pressure. The mixtures were thus first heated for 5 hr at $900^{\circ} \mathrm{C}$, and then at tem-
    peratures ranging from 1000 to $1200^{\circ} \mathrm{C}$ for 12 hr .

    The oxidation state of copper, i.e., the oxygen defect, was determined by reducing the compounds by hydrogen: the reduction reactions were followed by thermogravimetry using a Setaram microbalance.

    The crystallographic data were established by two complementary methods: Xray diffractometry using $\mathrm{Cu} K \alpha$ radiation with a Philips goniometer and electron diffraction using an EM 200 Philips microscope.

    ## Results

    Study of the System $\mathrm{La}_{2} \mathrm{CuO}_{4}-\mathrm{Sr}_{2} \mathrm{CuO}_{3}$ :
    The Compounds $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO} \mathrm{C}_{4-x / 2+\delta}$
    According to the methods previously described, $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type compounds corresponding to the nominal composition $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{Cu}^{11} \mathrm{O}_{4-x / 2}$ were synthesized in a large composition range: $0 \leq x \leq 1.34$. The microthermogravimetric study of these oxides under hydrogen showed, however, that a part of Cu (II) had been oxidized to

    Cu (III), leading to the formula $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-x / 2+\delta}$ with $0 \leq \delta<0.12$. For $x>1.34$ a mixture of the $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type phase and $\mathrm{Sr}_{2} \mathrm{CuO}_{3}$ (6) was observed.

    The crystallographic data of different compositions are summarized in Table I. The study of the X-ray patterns showed a continuous evolution of the structure and allowed to characterize three composition ranges which were studied by electron diffraction.
    (I) $0 \leq x<0.10$. The X-ray patterns very similar to that of $\mathrm{La}_{2} \mathrm{CuO}_{4}$ (1) were indexed in an orthorhombic cell with:

    $$
    \begin{aligned}
    & a_{\mathrm{I}}=2 a_{\mathrm{p}} \sin \beta / 2 \simeq a_{\mathrm{La}_{2} \mathrm{CuO}_{4}} \\
    & b_{1}=2 a_{\mathrm{p}} \cos \beta / 2=b_{\mathrm{La}_{2} \mathrm{CuO}_{4}} \\
    & c_{1} \simeq c_{\mathrm{La}_{2} \mathrm{CuO}_{4}}
    \end{aligned}
    $$

    where $a_{\mathrm{p}}$ is the parameter of the perovskite cubic cell, and $\beta$ defines the monoclinic distortion of the cell.

    From the conditions limiting possible reflections- $h k l: h+k, l+h, k+l=2 n-$ three space groups are possible: $F m m m$, Fmm 2, and F222.

    TABLE I
    Crystallographic Data of $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4-x / 2+\delta}$ Compounds

    | Range | $x$ | $\bigcirc$ | Composition | $\begin{gathered} a \\ (\AA) \end{gathered}$ | $\stackrel{b}{(\AA)}$ | $\stackrel{c}{c}\left(\begin{array}{c} \dot{A}) \end{array}\right.$ | Heating temperature ( $\left.{ }^{\circ} \mathrm{C}\right)$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | I | 0 | 0 | $\mathrm{La}_{2} \mathrm{CuO}_{4}$ | 5.366 (2) | 5.402(2) | 13.149(4) | 1100 |
    |  | 0.08 | 0.030(1) | $\mathrm{La}_{1.92} \mathrm{Sr}_{0.08} \mathrm{CuO}_{3.99}$ | $5.351(1)$ | 5.368(2) | 13.200(5) | 1000 |
    | II | 0.25 | 0.060(4) | $\mathrm{La}_{1.75} \mathrm{Sr}_{0.25} \mathrm{CuO}_{3.835}$ | 3.775(2) |  | 13.247(5) | 1000 |
    |  | 0.333 | $0.119(4)$ | $\mathrm{La}_{1.66} \mathrm{Sr}_{0.33 \mathrm{~S}} \mathrm{CuO}_{3.85}$ | $3.776(1)$ |  | $13.250(2)$ | 1100 |
    |  | 0.50 | 0.100(4) | $\mathrm{La}_{1.50} \mathrm{Sr}_{0.50} \mathrm{CuO}_{3.85}$ | 3.773(1) |  | $13.204(3)$ | 1160 |
    |  | $0.66_{6}$ | $0.092(4)$ | $\mathrm{La}_{1.35_{2}} \mathrm{Sr}_{0.08_{6}} \mathrm{CuO}_{3.75}$ | 3.775(1) |  | $13.150(4)$ | 1170 |
    |  | $0.88{ }_{0}$ | 0.088(4) | $\mathrm{La}_{1.12} \mathrm{Sr}_{0.88} \mathrm{CuO}_{5.44}$ | 3.773(1) |  | $13.073(5)$ | 1170 |
    | III | $1.00^{a}$ | 0.0 | $\mathrm{LaSrCuO}_{3.50}$ | 3.767(1) |  | 13.002(3) | 1200 |
    |  | $1.28{ }^{\text {a }}$ | 0.0 | $\mathrm{La}_{0.72} \mathrm{Sr}_{1.28} \mathrm{CuO}_{3.36}$ | 3.761(2) |  | 12.922(9) | 1200 |
    |  | $1.34{ }^{\text {a }}$ | 0.0 | $\mathrm{La}_{0.66} \mathrm{Sr}_{1.54} \mathrm{CuO}_{3.33}$ | 3.759(3) |  | 12.907(9) | 1200 |
    |  | 1.20 | 0.0 | $\mathrm{La}_{0.80} \mathrm{Sr}_{1.20} \mathrm{CuO}_{3.40}$ | 18.803(7) |  | 12.941(7) | 1200 |


    (II) $0.10 \leq x<1$. The symmetry is tetragonal like that of $\mathrm{LaSrCuO}_{4}$ (3); the cell parameters are related to the latter and to I in the following manner:
    \[

    $$
    \begin{aligned}
    & a_{\mathrm{II}}=a_{\mathrm{I}} / 2^{1 / 2} \simeq a_{\mathrm{p}} \simeq a_{\mathrm{LaSrCuO}_{4}} \\
    & c_{\mathrm{\Pi}} \sim c_{\mathrm{I}} \sim c_{\mathrm{LaSrCuO}_{4}}
    \end{aligned}
    $$
    \]

    The reflection conditions are those of $\mathrm{LaSrCuO}-h k l: h+k+l=2 n$-involving the space groups: $14 / \mathrm{mmm}, I 4 / \mathrm{m}, I 422$ and I $\overline{4} 2 \mathrm{~m}$.
    (III) $1 \leq x \leq 1.34$. The X-ray diffractograms are characterized by the existence of a system of strong peaks, which was already observed for the compounds (II), involving at least the existence of a tetragonal subcell of the same type. However, for all these patterns, weak peaks were always observed which could not be indexed in this cell. An electron diffraction study was thus undertaken: about 50 crystals were examined for each value of $x$ given in Table II. Several types of crystals were isolated:
    -Small number of crystals, about $10 \%$, were characterized by a tetragonal cell similar to that of $\mathrm{LaSrCuO}_{4}$ :

    $$
    \begin{aligned}
    & a_{\mathrm{III}} \sim a_{\mathrm{II}} \sim a_{\mathrm{P}} \sim a_{\mathrm{LaSrCuO}_{4}} \\
    & c_{\mathrm{III}} \simeq c_{\mathrm{II}} \simeq c_{\mathrm{I}} \sim c_{\mathrm{LaSrCuO}_{4}}
    \end{aligned}
    $$

    -Most of the crystals, i.e., about $90 \%$, presented, in addition to the fundamental reflections previously described, superstructure reflections with a variable inten-

    TABLE II
    $n$ Values Observed by Electron Diffraction for Compounds of Range III

    | Composition | $x$ | $n$ |
    | :--- | :--- | :--- |
    | $\mathrm{LaSrCuO}_{3.5}$ | 1.00 | $1 ; 4.5$ |
    | $\mathrm{La}_{0.88} \mathrm{Sr}_{1.2} \mathrm{CuO}_{3.44}$ | 1.12 | $1 ; 4.5 ; 5$ |
    | $\mathrm{La}_{0.80} \mathrm{Sr}_{1.20} \mathrm{CuO}_{3.40}$ | 1.20 | 5 |
    | $\mathrm{La}_{0.72} \mathrm{Sr}_{1.28} \mathrm{CuO}_{3.36}$ | 1.28 | $1 ; 4.6 ; 5 ; 5.3 ; 5.4$ |
    | $\mathrm{La}_{0.68} \mathrm{Sr}_{1.34} \mathrm{CuO}_{3.33}$ | 1.34 | $1 ; 4 ; 5 ; 5.6 ; 6$ |

    sity. The electron diffraction patterns allowed us to find the following relations for the actual tetragonal cell for a composition $x$ :

    $$
    \begin{aligned}
    & a_{\mathrm{III}}^{x}=n a_{\mathrm{III}} \sim n a_{\mathrm{II}} \\
    & c_{\mathrm{II}}^{x}=c_{\mathrm{III}} \# c_{\mathrm{II}} \simeq c_{\mathrm{I}} .
    \end{aligned}
    $$

    For a same composition $x$, several sorts of superstructures were generally observed, characterized either by integral $n$ values ( $n$ $=4,5$, or 6 ) or nonintegral values of $n(n$ ranging from 4.5 to 5.6), as shown. for several compositions in Table II. Figure 1 shows, as an example, the electron diffraction patterns of the (001) planes for $\mathrm{La}_{2 / 3} \mathrm{Sr}_{4 / 3} \mathrm{CuO}_{3,33}$. From Table II it can be seen that a pure term, characterized by a superstructure with an integral value of $n$ ( $n$ $=5$ ), is only obtained for $x=1.20$. It has thus been attempted to elaborate a structural model for this phase.

    ## A Structural Model for $\mathrm{La}_{0.8} \mathrm{Sr}_{1.2} \mathrm{Cu} \mathrm{O}_{3.4}$

    The actual cell of this compound is tetragonal: $a=18.80_{4} \AA$ and $c=12.94 \AA(Z=$ 50 ). The conditions limiting possible reflections are the same as those of the subcell ( $a=3.760, c=12.94 \AA ; Z=2$ ), leading to the space groups $14 / \mathrm{mmm}$, $I 4 / \mathrm{m}, I 422$, and $I \overline{4} 2 \mathrm{~m}$. The intensity calculations were first made in the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ type cell, with the most symmetric space group $14 / \mathrm{mmm}$. For these calculations, reflections corresponding only to the subcell were used. Copper atoms were placed on $2(a)$, lanthanum and strontium atoms were statistically distributed on $4 e$, and oxygen atoms and anionic vacancies were statistically distributed over two sorts of sites $4 e\left(\mathrm{O}_{1}\right)$ and $4 c \quad\left(\mathrm{O}_{\mathrm{I}}\right)$. After refinement of the atomic parameters the discrepancy factor could not be lowered below $R=0.104$. The possibility of an order of the oxygen atoms and vacancies over the $O_{1}$ and $O_{I I}$ sites was thus considered. The occupancy factors of both sites
    

    Fig. 1. Electron dif (d) 6.
    were refined successi neously and the besi (Table IV) was obtain

    TABI
    $\mathrm{La}_{0.80} \mathrm{Sr}_{1.20} \mathrm{O}_{3.40}:$ Атом Pc
    \(\left.\begin{array}{llll} \& Sites \& x \& y <br>
    \hline \mathrm{La} <br>

    \mathrm{Sr}\end{array}\right\}\)|  | $4(e)$ | 0 |
    | :--- | :--- | :--- |
    | Cu | $2(a)$ | 0 |
    | $\mathrm{O}_{1}$ | $4(e)$ | 0 |
    | $\mathrm{O}_{\mathrm{I}}$ | $4(c)$ | 0 |


    

    Fig. 1. Electron diffraction patterns of the (001) planes for $\mathrm{La}_{2 / 3} \mathrm{Sr}_{4 / 3} \mathrm{CuO}_{3.23} ;$ (a) $n=1$; (b) 4: (c) 5.6:
    were refined successively and then simultaneously and the best value of $R=0.081$ (Table IV) was obtained for a total occupa-

    TABLE III
    $\mathrm{La}_{0.80} \mathrm{Sr}_{1.20} \mathrm{O}_{3.40}$ : Atom Positions in the Subcell ${ }^{a}$

    |  | Sites | $x$ | ${ }^{\prime}$ | $z$ | $\begin{gathered} B \\ \left(\AA^{2}\right) \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\left.\begin{array}{l} \mathrm{La} \\ \mathrm{Sr} \end{array}\right\}$ | 4(e) | 0 | 0 | $0.357 \pm 0.001$ | 0.88 |
    | Cu | 2(a) | 0 | 0 | 0 | 0.85 |
    | $\mathrm{O}_{1}$ | 4(e) | 0 | 0 | $0.168 \pm 0.002$ | 1.68 |
    | $\mathrm{O}_{1}$ | 4(c) | 0 | 0,5 | 0 | 4.25 |

    tion of the $\mathrm{O}_{1}$ sites, while vacancies and oxygen atoms were distributed over the $\mathrm{O}_{\text {II }}$ sites. The location of the vacancies preferentially on the $\mathrm{O}_{\mathrm{II}}$ sites, at the same level as the copper atoms, can be considered as significant, on account of the relatively weak scattering factor of oxygen. This is confirmed by the high $R$ value ( $R=0.153$ ) obtained for a total occupation of the $\mathrm{O}_{\mathrm{I}}$ sites, vacancies and oxygen atoms being distributed on the $O_{1}$ sites. The first results which are summarized in Table III show the atoms are located in positions very close to those usually observed in $\mathrm{K}_{2} \mathrm{NiF}_{4}$ type structures. The main difference with

    TABLE IV
    $\mathrm{La}_{0.8} \mathrm{Sr}_{1,2} \mathrm{CuO}_{3.4}$ : ObSERVED aND Calculated Intensities for atomic Positions of Table MII ${ }^{a}$

    | hkl | $I_{\text {obs }}$ | $I_{\text {cale }}$ |
    | :---: | :---: | :---: |
    |  | 4.0 | 4.0 |
    |  | 13.0 | 15.1 |
    | 004 | 17.0 | 16.9 |
    |  | 164.0 | 156.1 |
    | 110 | 114.0 | 115.1 |
    | 112 | 0.1 | 1.7 |
    |  | 29.0 | 23.6 |
    | 105 | 27.0 | 23.5 |
    | 114 | 35.0 | 34.6 |
    | 200 | 44.0 | 49.8 |
    | 202 | 0.1 | 0.4 |
    | 1116 | 26.0 | 25.2 |
    | $\begin{array}{llll}2 & 1 & 1\end{array}$ | 3.9 | 3.8 |
    | 107 | 12.0 | 11.1 |
    | 204 | 10.3 | 8.2 |
    | 008 | 6.6 | 5.3 |
    | 213 | 48.0 | 48.1 |
    | 206 | 15.8 | 18.1 |
    | 21.5 | 8.1 | 9.4 |
    | 118 | 9.0 | 7.5 |
    | 109 | 0.1 | 1.7 |
    | 220 | 9.0 | 12.4 |
    | 222 | 0.1 | 0.1 |
    | 0010 | 0.1 | 0.8 |
    | 31 | 0.1 | 0.7 |
    | 217 | 6.0 | 7.0 |
    | 2243 | 3.3 | 3.0 |
    | 2088 | 7.6 | 6.9 |
    | 303 | 7.0 | 8.8 |

    ${ }^{a}$ Subcell, space group $I 4 / m m m ; R=$
    0.081 .
    the ideal structure concerns the existence of vacancies located in the same plane as the copper atoms (Fig. 2). Moreover, the high $B$ value for oxygen of $O_{1}$ sites ( $4.2 \AA^{2}$ ) suggests that in this plane oxygen and vacancies were ordered.

    Calculations in the actual cell in space group $14 / \mathrm{mm}$, were undertaken with 136 possible reflections, including superstructure reflections. Using the position and distributions determined from the subcell, the $R$ factor increased to 0.104 , showing, of course, a weak contribution of the superstructure reflections to the $R$ value. The
    

    Fig. 2. Ideal drawing of the tetragonal $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type structure showing the localization of oxygen vacancies for $\mathrm{La}_{0.8} \mathrm{Sr}_{1.2} \mathrm{CuO}_{3.4}$.
    atomic parameters were then refined and the $R$ value was lowered to 0.07 for the final atomic parameters given in Table V. From this table it can be seen that copper atoms are not significantly displaced from their ideal positions, while the bigger cations La , Sr , and the oxygen atoms are only slightly displaced from their ideal positions, but enough to produce the superstructure reflections. These small displacements are certainly induced by an order of the oxygen vacancies, whose contribution to intensities is too small to be detected here. Thus, on account of the numerous possibilities of order between vacancies, and oxygen atoms, and of the weak scattering power of these atoms, we did not try any hypothesis of distribution. Nevertheless, the very likely ordering of vacancies in the "copper plane," should also involve an ordering of lanthanum and strontium over the different sites. Refining the occupancy factors of La and Sr , led to an $R$ value of 0.064 which is not very significant due to the weak contribution of La and Sr to the superstructure reflexions; a preferential occupation of the different sites is, however, likely: $A_{1}, A_{4}$, and $A_{5}$ would only be occupied by strontium, while lanthanum would occupy $90 \%$ of $A_{6}$ sites, the remaining strontium and lanthanum atoms being located statistically over the $A_{2}$ and $A_{3}$ sites.
    

    ## Discussion

    The stabilization, $\mathrm{Cu}($ III $)$ by only heati worthy of note. Bui characteristic of this existence of a $\mathrm{Cu}(\mathrm{III})$ $<x<1$ ) which lies regions ( $x=0$ and $x$ strongly related one $t$ be explained by two o are competitive: the stoichiometric $\mathrm{K}_{2} \mathrm{NiI}$ $\mathrm{La}_{2} \mathrm{CuO}_{4}$ and LaSrCu form a related defect :

    TABLE V
    $\mathrm{La}_{0.8} \mathrm{Sr}_{1,2} \mathrm{SuO}_{3.4}$ : Atomic Parameters of the Actual Cella ${ }^{a}$

    F4-type cancies
    :d and te final
    From atoms 1 their ins La, ilightly ss, but ucture ats are jxygen ntensi. Thus, ities of oxygen Jwer of othesis : very copper ring of ifferent $s$ of La hich is contriructure 1 of the $A_{1}, A_{4}$, ${ }^{\prime}$ stronpy $90 \%$ um and istically

    | Sites | $x$ | $y$ | $z$ | $\begin{gathered} B \\ \left(\AA^{2}\right) \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | $A_{1}(4 e)$ | 0 | 0 | 0.347 | 0.35 |
    | $A_{2}(16 n)$ | 0.194 | 0 | 0.359 | 1.00 |
    | $A_{3}(16 n)$ | 0.403 | 0 | 0.356 | 0.39 |
    | $A_{4}(16 m)$ | 0.200 | 0.200 | 0.357 | 0.32 |
    | $A_{5}(16 m)$ | 0.410 | 0.410 | 0.358 | 1.00 |
    | $A_{8}(320)$ | 0.389 | 0.192 | 0.357 | 0.86 |
    | $A_{7}(2 a)$ | 0 | 0 | 0 | 0.80 |
    | $A_{8}(8 i)$ | 0.200 | 0 | 0 | 0.51 |
    | $A_{9}(8 i)$ | 0.400 | 0 | 0 | 0.43 |
    | $A_{\text {to }}(8 h)$ | 0.200 | 0.200 | 0 | 0.31 |
    | $A_{11}(8 h)$ | 0.405 | 0.405 | 0 | 1.00 |
    | $A_{12}(160)$ | 0.403 | 0.205 | 0 | 0.37 |
    | $A_{15}(4 e)$ | 0 | 0 | 0.168 | 1.00 |
    | $A_{14}(16 n)$ | 0.216 | 0 | 0.168 | 1.00 |
    | $A_{15}(16 n)$ | 0.382 | 0 | 0.168 | 1.00 |
    | $A_{46}(16 m)$ | 0.182 | 0.182 | 0.172 | 1.00 |
    | $A_{17}(16 m)$ | 0.400 | 0.400 | 0.168 | 1.00 |
    | $A_{18}(320)$ | 0.400 | 0.202 | 0.163 | 1.00 |
    | $A_{10}(8 i)$ | 0.100 | 0 | 0 | 1.00 |
    | $A_{80}(8 i)$ | 0.300 | 0 | 0 | 1.00 |
    | $A_{21}(4 c)$ | 0 | 0.500 | 0 | 1.00 |
    | $A_{22}(161)$ | 0.214 | 0.100 | 0 | 1.00 |
    | $A_{23}(161)$ | 0.430 | 0.100 | 0 | 1.00 |
    | $A_{21}(161)$ | 0.300 | 0.200 | 0 | 1.00 |
    | $A_{25}(161)$ | 0.390 | 0.310 | 0 | 1.00 |
    | $A_{20}\left(8{ }^{\text {j }}\right.$ ) | 0.200 | 0.500 | 0 | 1.00 |
    | $\mathrm{A}_{27}(8 \mathrm{j})$ | 0.400 | 0.500 | 0 | 1.00 |

    ## Discussion

    The stabilization, in this system, of Cu (III) by only heating the oxides in air is worthy of note. But the most important characteristic of this system concerns the existence of a Cu (III) composition range (0 $<x<1$ ) which lies between two $\mathrm{Cu}(\mathrm{II})$ regions ( $x=0$ and $x \geq 1$ ), for structures strongly related one to the other. This can be explained by two opposite effects which are competitive: the trend to preserve a stoichiometric $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure as for $\mathrm{La}_{2} \mathrm{CuO}_{4}$ and $\mathrm{LaSrCuO}_{4}$ and the trend to form a related defect structure but with an
    ordering of the oxygen vacancies. Thus, rather close to the stoichiometric compound $\mathrm{La}_{2} \mathrm{CuO}_{4}(x<1)$, the trend to stoichiometry is favored and the vacancies formed from the nominal compositions involving only Cu (II) are partly balanced by the oxidation of Cu (II) to Cu III. For $x \geq 1$, i.e., rather far from stoichiometry, the $\mathrm{La}_{2} \mathrm{CuO}_{4}$ or " $\mathrm{LaSrCuO}_{4}$ " stoichiometric compounds cannot be stabilized any more and orderings of the oxygen vacancies appear leading to different microphases as observed from the electron diffraction study, favoring Cu (II) with smaller coordinations $(2,5)$.

    Structure is not, of course, the only factor governing the relative stability of Cu (II) and $\mathrm{Cu}(I I I)$ in these oxides. Kinetics play an important part for determining the ratio Cu (III) $/ \mathrm{Cu}$ (II) in the richer Cu (III) oxides. For $0<x<1$, we have indeed noticed that the pure compounds could only be synthesized by heating at least 12 hr at the formation temperature (Table I) in order to ensure a good crystallization. Annealing the same samples at the same temperature, during longer periods ( 24 hr ) allows us to prepare pure phases with the same structure, but with greater amount of Cu (III). The oxygen pressure will also influence the Cu (III) $/ \mathrm{Cu}$ (II) ratios. Heating, for example, some Cu (III) samples at low temperature under vacuum, involves a decrease of Cu (III) amount without destroying the structure. In the same way, a reaction under oxygen allows us to increase the $\mathrm{Cu}(\mathrm{III})$ amount.

    The influence of the Cu (III) amount can also be detected by considering the structural evolution, especially the $c$ parameter, of these compounds as a function of composition (Fig. 3). This evolution is rather complex and quite different from that usually observed for single solid solutions. The substitution of strontium for lanthanum, should not affect this evolution, due to the similar sizes of these cations. It seems interesting to take the $\mathrm{Cu}(\mathrm{II})$ compounds as
    

    Fig. 3. Evolution of the " $c$ " parameter as a function of $x$.
    a reference (dotted lines). Although we have only our compositions for comparison it can be seen that from $\mathrm{La}_{2} \mathrm{Cu}^{\mathrm{I}} \mathrm{O}_{4}$ to $\mathrm{La}_{0.7} \mathrm{Sr}_{1.3} \mathrm{Cu}^{11} \mathrm{O}_{3.35}$, a continuous decrease of $a$ and $c$ parameters could be foreseen for all $\mathrm{Cu}(\mathrm{II})$ compounds, as $x$ increases, in agreement with the increase of oxygen vacancies. This evolution is not linear, probably due to ordering of the vacancies observed for different compositions. What is worthy of note is the large deviation from this law observed for the only compounds containing $\mathrm{Cu}($ III ) (continuous line): the $c$ parameter is greater than that obtained from the "reference line" corresponding to the presence of $\mathrm{Cu}(\mathrm{II})$ only, while the $a$ parameter is smaller. Moreover, the largest deviations are observed for $x=0.33$ which corresponds to the maximum value of $\delta(\delta$ $=0.119$ ), i.e., for the greatest amount of Cu (III). It can thus be observed that the $c / a$
    ratio increases with the $\mathrm{Cu}(\mathrm{III}) / \mathrm{Cu}(\mathrm{II})$ ratio in agreement with the observations previously made by Goodenough et al. (3). Attempts to modify the $a$ and $c$ parameters for $x=0.16$ and 0.5 , were successful: heating these compounds under vacuum at $500^{\circ} \mathrm{C}$ led to a decrease of $c$ and a slight increase of $a$, while a decrease of the Cu (III) $/ \mathrm{Cu}$ (II) ratio was confirmed.

    ## Conclusion

    The stabilization of a great number of oxygen vacancies in the $\mathrm{K}_{2} \mathrm{NiF}_{4}$-type structure has been shown. It is easily explained by the ability of copper to show square and square-pyramidal coordinations. During the synthesis in air, two phenomena are competitive: the substitution of $\mathrm{Cu}^{3+}$ for $\mathrm{Cu}^{2+}$, and ordering of oxygen and vacancies involving the existence of microphases.

    The influence of the o : formation of these str tigated. The relations I properties and the strı will be studied.

    ## References

    I. J. M. Longo and P. M Chem. 6, 526 (1973).

    The influence of the oxygen pressure on the formation of these structures will be investigated. The relations between the electrical properties and the structure of these oxides will be studied.

    ## References

    1. J. M. Longo and P. M. Raccah, J. Solid State Chem. 6, 526 (1973).
    2. B. Grande, H. K. Müller-Buschbaum, and M. Schweizer, Z. Anorg. Allg. Chem. 428, 120 (1977).
    3. J. B. Goodenough, G. Demazeau, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 8, 325 (1973).
    4. N. Nguyen, L. Er-Rakho, C. Michel, J. Choisnet, and B. Raveau. Mater. Res. Bull. 15, 891 (1980).
    5. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958).
    6. C. H. R. L. Teske and H. K. Müller-BuschBaUM, Z. Anorg. Allg. Chem. 371, 325 (1969).
    [I) ratio ; previ3). At:ters for heating t $500^{\circ} \mathrm{C}$ ncrease $1 / \mathrm{Cu}$ (II)
    nber of e struc.plained are and During ena are $\mathrm{u}^{3+}$ for cancies phases.

    ## BRIEF ATTACHMENT G

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT G

    Nat: Res. Bull., Vol. 20, pp. 667-671, 1885. Printed in the USA. 0025-5408/85 \$3.00 + .00 Copyright (c) 1885 Pregamon Press Lid.

    THR OKIGEN DEFECT PEROUSXITE BALe $\mathrm{Cu}_{5} \mathrm{O}_{13.4}$, A METALEIC CONDUCTOR
    C. Michel, L. Er-Rakto and B. Raveau

    Laboratoire de Cristallographie, Chimie et Physique des Eolides, 0.A. 251
    IStRa-Duiversite de Caen, 14032 Caen Cedex, France
    (Received March 14, 1985; Refereed)

    ## ABSTPAGI

    A new oxygen defect perovskice balay $\mathrm{Cu}_{5}{ }^{1} 13.4$. charactexized by a milimed Valence of copper has been isolated: the parnaieters of the terragonal cell are closely related to that of the cubic perouskitesa $=8.644$ (4) d $=a_{p} \sqrt{5}$ and $c=3.867(3) \&=a_{p}$. The $x-r a y$ diffraction study shows that the atoms are displaced from their ideal positions in the cubic cell. owing to the presence of ordered oxygen vacancies. The stady of conductivity, magnetic susceptibility and thermoelectric power versus. temperature ghows that this oride is a very good metallic conductor.

    ## INTRODUCTION

    Oxygen defect perovekitef; have been more extengively toudied thest last years oriog to their potential applicitions in catalysis, electracatalysis or as gauges (1-3). In this respect urixed valence copper oxides offer a wide field for investigation s several perovskites (4) or perovskice-related structures have been isolated (5-6). These aterials in which copper takes several coordinations simulcaneously and a valence state intermediate betreen II and III can intercalate large emounts of oxygen according to the oxygen pressure and the cemperstare. Their electron trensport propetcles ranging from semi-conductive to metallic. (7) are closely correlated to the amout of intercalated oxygen.

    The present paper deals whth a new ongen defect perovskite
     hat phope betraior is quite different:

    ## EXPERTHEXTAL

    Synthesis
    Samples rere prepared iv platinum crucible and in air froo appropriate mixtures of dried oxides $\mathrm{La}_{2} \mathrm{O}_{3}$. CuO and carbonate $\mathrm{BaCO}_{3}$. The mixtures were firse heaced a few hours at $900^{\circ} \mathrm{C}$, ground and heated at $1000^{\circ} \mathrm{C}$ during several bours. They werie then ground gain, and mixed vith to orgaic binder, coidpressed into bars and then slouly heated up to $1000^{\circ} \mathrm{C}$. After 24 hours or wore at $1000^{\circ} \mathrm{C}$, the bars were finally quenched to room temperature, the use of a binder was necessary to avoid thac the compressed bars break before
    Vol.
    heating. In these conditions the compactness of bars was of about 80 X . Chealcal aralysis
    In order to detemine the oxidation atate of the trangition metal ions, chemical amalyeis were carried out by iodometric titration using $g I$ and by re-
     anferobalance for weight loss measuramente.
    Structural analysis
    The cell parameters were determined from $X$-ray powder diffractogramms registered with philips goniometer using Cu $\mathrm{K}_{\mathrm{a}}$ radiation. The apace group was deternined by electron diffrection using a JEOL $120 c \mathrm{C}$ electron aicroscope.
    Magoetic and electrical measurements
    The magnetic susceptibility was measured on powders by the Faraday method in the range $80-300 \mathrm{~K}$ uising a Caha RG picrobalance.
    The comuctivity mas messured by the four points method on initered bors. It was calculated by qeasuring the intepsity/voitage ratio betreen the points in each current circulation direction in order co mindmise the dispymetry effect betwen the contacts; The seebeck coefficient was measured on the aame sincered birs boid between twọ Pt beads.
    Heasurements ware carried out up to 600X under an belium pressure of 200 mbars for $T<290$ and in air for $T ; 290$ in order to avoid possible departure of oxygen.

    ## RESULTS AKD DISCUSSIOS

    The scamning of the system $L_{2} 2_{3}-B a O-C N O$ for the compositions corresponding to the nolar ratio ( $\mathrm{La}+\mathrm{Ba}$ )/Cu$=1$ allowed us to isolate a perovskite for La/Ba = 4. The f -ray diffraction pattern of this compounde presents betides the intense lines which can be indexed in a cubic perovskite cell. extra lines which are rather weak. This featare is confirued try the electron diffraction stiady, wich shows superstructure reflectionis, leading to a tecragonal cell whose parsmeters are related to the cubic perovikite subcell (a. as follows :

    $$
    a=a_{p} \sqrt{5} \quad c=a_{p}
    $$

    all the lines of the i-ray diffraction patterns can be then iviexed with accuracy in the tetragomal system with $a=8.644$ (4) i and $c=$ 3.867(3) A. No reflection conditions are observed. The analysis of the oxygen content leads to the fotmulation BalaqCugO 13.4 involving the presence oimaltaneously of $\mathrm{Cu}($ II) and Ca (III) in spite of the presence of nowerous our gen vacancies ( 10.7 X ). The measure of the density by pycnometry in benzene at $25^{\circ} \mathrm{C}$ (dexp $=7.05$ ) confiras this composition for one mole per cell (dape a 7.03). Thus it appears that the oxide BaLag $\mathrm{CuII}_{2}, \mathrm{CO}^{\mathrm{III}} 2,8 \mathrm{Cl}_{13,4} 1.6$ eminbits
     previonaly described. However, this conpound is very differtent 2 ron $\mathrm{Ba}_{3} \mathrm{La}_{3} \mathrm{Cu}_{6}{ }^{0} 16$ is from the point of viev of the axygen intercalation $t$ no intercalation or fesintercaiacion of oxygen has been observed by anyealing this phase at low cemperature $\left(400^{\circ} \mathrm{C}\right.$ to $500^{\circ} \mathrm{C}$ ) and under different oxygen pressures up to 1 bar contraty to $\mathrm{Ha}_{3} \mathrm{La}_{3} \mathrm{Ku}_{6} \mathrm{O}_{14} .6$. In the same vay, no oxygen loss has been observed by TGA measurements for tenperatures up to 650 ; 750 and $850^{\circ} \mathrm{C}$ and umder oxygen pressures of $0.02,0.2$ and 1 bar respectively.
    Taking inco account the fact chat che fundamental lines are indexed in a cubic perovakite cell and are strong with respect to the superstructure limes it was interesting to determine ohetber the metallic atoms vere displaced
    
    

    FIG: 1
    Resistivity plotted as a function of cemperature
    show: ratui seebc is me
    tron of th. preta
    1.
    2.
    3.
    4.
    $\vdots$
    5. K
    6. K

    3
    7. C
    8. N
    9. N
    10. J
    

    FIG. 2
    Evolution of the themoelectric power as un funcrion of absolute remperature.

    $$
    \square
    $$

    ## BRIEF ATTACHMENT H

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT H

    Table des matteres

    | CHMMIE DOUCB - SOFT CHEMISTRY |  |
    | :---: | :---: |
    |  J.-L. Pourqust, M.-F Ranou \& R. Da Papa. | 383 |
    | Ion axchanga and interealation propertles of some oxldes with a layer and an Infersectitas tomvel structirie. <br> B. Raviaio. | 391 |
    | Oxpgea interculation in mixed milence copper ouldes reated to the peroiskitabi <br> C. Michei \& B. Raviad. | 407 |
    |  tuterometalle layess. <br> R. CLABMT \& A. Michalouncz. | 425 |
    | Litilum Insertion/extraction reactions with raxpganese oxides. <br>  | 435 |
    | Littilum insartion reacilioss th oxfde bronxes. <br> I. D. Ruistrica. . | 456 |
    | Soff chemietry: cho derivailives of tro-dimeosional sillicon. <br> M. Fouruitiga \& M. Axinid. | 88 |
    | Rydinotyris-pyroljair propess applied to $\mathrm{K}_{3} \mathrm{TH}_{1} \mathrm{O}_{3}$. <br> R. Marcrund, Li Bxochan, R. M'Bgel \& M. Tournoux. . | 76. |
    | Sol-gel doctred eltetrochromic layers. <br> A. Cranstrddina; M. BanRy \& J. Livacte. $\qquad$ | 487 |
    | A. norel nickel( +m hydroxide obrained by soff chrmistry. <br> J. J. Braconntir, C Dilaus, C. Pooisirir, M. Ftolanz, B. Bealmouin <br> \& P. Fhozincerser. | 48 |
    |  dridected a do nourveller syatilises. <br> M. Porsh, P: Govoron, R, Chavasi \& M. SERCTETT. | 509 |
    | Chemiced and electrocheonical alliali metal intercatation in the 3D. frameroits of Paf(MOO). <br> A: WhDia, C. Dilmas, R. Banton \& P. Huosmarusa. <br> ................ | 537 |
    | Onfborhomble turgeten disulade: formatlon and properdies. <br> R. SChiclukork U. Bstarl \& W, Patcus. | 545 |
    | Metastable conligurittons durims lithlam: Intercalmion lato $\mathbf{2 H} \cdot \mathrm{TaS}_{1}$. T. Butr, A. Leu \& J. O. Bessamiaio. | 556 |


    | Reose de Cillonte mindrale,t. 21, 5984, p. $\$ 07$ |  |  |
    | :---: | :---: | :---: |
    |  | Oxygen intercalation <br> in mixed valence copper oxddes related to the perorskites |  |
    |  |  |  |
    |  | by |  |
    |  | Equipe Oxydos du Laborthoire do cannaliographio. Chlmo at parriquo das soildan, Undvessit, 14032.Caso Cedex, France. |  |
    |  |  |  |

    
    
     rointed to thit of the perovetite; and to thore or we theo memibers of the intersolowthas
    
    
    
    
     as the oxyton prespare aod on the patere of the oxides.
    
     -арzя
    
    
    
    
    
    
    
    
     All the metallo stios cormesponding to the storchiomerric persespetively, oocupled by copper fons and hesites are occupled in ap ordered manner.
    
    Fig. 1. - Scheranacic firucture of a stoichiomotinc $A B O_{1}$ prarartblio Considering the tetragonal coll of this compound ( $a \approx a, \sqrt{2}=5.525 A$.
    
    
     hodra are missing at $z=1 / 2$. If results that this roduced form can bo considered as a true layer structure: double deloal peravski layers
    
    
    
    
    
    
    
    
     (נuq s-01'S ~)
     during several hours.
    The deviation from exoichiometry in the oxides $\mathrm{La}_{2},{ }_{8} \mathrm{~A}_{1+5} \mathrm{CH}_{4} \mathrm{O}_{6-3 / 2+4}$
     tium for lanthanum, in a amall homogenoity mage ( $0 \leqslant x \leqslant 0.14$ for

    Intarcalation of oxygen in ao oxide, by a simplo reversible oxchange witb $\mathrm{O}_{1}$ in air or in a gaseous atmosphare cas ba used for different applicatlous such as oleotrocatalysis, or gaugep for materiale with electrical propenties sengitive to the oxygen contcat. Thus if appeare that such oxides must exhibit rather lacge axygen defects in thoir a reducod $n$ fomi, and must be able to absorb oxygen from atmosphore vending sorrarda a stoicbiometric
    
     atoms whioh partolipate to the fremeovork of tho oxide. In this respoct, copper oxides are very good candidater, orving to the abyly of copper to take soveral ocordinations-octahedral, equare pyramidal, square planar-and soveral oxidetions stades: $+1,+2,+3$. Cu(II) and $\mathrm{Cu}(I I I)$ must be
    
     $\mathrm{Le}_{2} \mathrm{Cu}^{\mathrm{I}} \mathrm{O}_{4}[1-2]$ and $\mathrm{LaSrCu}^{311} \mathrm{O}_{4}$ [3], whioh aro inostruotural with $\mathrm{K}_{2} \mathrm{NiP}_{4}$. Ternary oxides $\mathrm{ArCupO}_{3}$ containing Cu (Ili) are more dffleult to prepare than those with $\mathrm{Cu}(11)$, sioce oxyzen pressures ranglag from 1 bar [4.7] to soveral kbans [3-8] are dust of the dme necossary to syathesize these compounds. Howovec, the presence of $A$ elements like baeflum favours the formation of $\mathrm{Cu}(111)$ in normal pressure conditions [9-10]. The present papor
     and at low temaperature ( $\mathrm{\sim} \sim 400.500^{\circ} \mathrm{C}$ ) in threo seritos of lernary copper oxides re]sted to the porovskito $[11.13]$ and bolonging to the gystems $\mathrm{La}_{2} \mathrm{O}_{3}$ : AO.CuO with $\mathrm{A}=\mathrm{Ca}, \mathrm{Br}$, Ba. The influenoe of oxygen intercalation on the electron transport proposties of these phases are discussed.

    ## STRUCTURAL CONSTDRRATIONS

     systioms $\mathrm{La}_{2} \mathrm{O}_{3}-\mathrm{AOCLO} \mathrm{C}$

    - Tho axygen defect perovskites $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{4} \mathrm{O}_{14+2}$
    - The oxygen defect intergrowthB $\mathrm{Sr}_{3} \mathrm{Ti}_{2} \mathrm{O}_{7}$ typo $\mathrm{La}_{2-\ldots} \mathrm{A}_{8+2} \mathrm{CH}_{2} \mathrm{O}_{6-212+d} \mathrm{~A}=\mathrm{Ca}$, Sr .
     The most reducod form which has beta isolated for the defeer perovakites $\mathrm{La}_{1} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14+4}$ corrosponds to the formulation $\mathrm{La}_{4} \mathrm{Ba}_{2} \mathrm{Cu}_{6} \mathrm{O}_{14}$. Its
    rove 21 - $1984-$ N" 4
    oxyoen intrachiation in copper oxwls
    characlerized by a greal stability in spite of its oxygen defed structure：
    
     Contrary to $\mathrm{La}_{\mathrm{g}} \mathrm{Ba}_{3} \mathrm{Cu}_{5} \mathrm{O}_{14}$ ，copper is in its lower oxidation state， $\mathrm{Cu}(\mathrm{I})$ in this oxido．

    The oxides $\mathrm{La}_{2 \rightarrow+} \mathrm{A}_{x} \mathrm{CuO}_{4-x / 2+1}$ exhibit an oxygen defect $\mathrm{K}_{2} \mathrm{NiP}_{4}$ type structure involving different coordinations of copper：octabedral，square pyramidal and eventually square planar（igg．3）．Their oxygen conteal
    
    
    
    
    
     in the case of atrondum for $x=4 / 3: \mathrm{La}_{3 / 3} \mathrm{Sr}_{4,3} \mathrm{CuO}_{3,13}$ ．Contrary to the two other series，the oxysen vacancies are located in the basal plane of the
    
    
    
     tymmetry changes and order－disorder phenomena in this plane may appesr
    
     $\mathrm{K}_{\mathbf{2}} \mathrm{NIF}_{4}$ structure，whintever the $x$ valuo may be $0 \leqslant x \leqslant 0.20$ ；the same
    strontiun and $x=0.10$ for calcium）．The most reduced oxide which has been isolated io this family corresponds to the formulation $\mathrm{Li}_{2} \mathrm{SrCH}_{2} \mathrm{O}_{4}$ ． Its teitragonal sell $(a=3.865 A, c=19.887$ A $)$ ，corresponds to a structure closely related to that of $\mathrm{Sr}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}(68.2 \mathrm{a}) . \mathrm{Cu}^{2+}$ ions are indeed located on the $\mathrm{Ti}^{+4}$ sites， $\mathrm{La}^{9+}$ and $\mathrm{Sr}^{2+}$ jons are located on the $\mathrm{Sr}^{2+}$ sites，whereas six anionic siles out of seven are occupied by orygen lo an ordered ababuer； thurs，this oxide can be consldered at an intergrowth of double oxygen perovskite layers and Sro type lnyers．The perovskite layers exhibit some similarity with those obsorved for $\mathrm{La}_{3} \mathrm{Ba}_{5} \mathrm{Cu}_{6} \mathrm{O}_{14}$ ：the basal planes of the octahedra parallel to（ 00 I ）are also preserved whereas at $z=0$ and $z=1 / 2$ all the apicos of the oxygen octahedra are missing．However，the resulting configuration of the framework in different from $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14}$ ： $\mathrm{Cu}(\mathrm{M})$ exhbits here orly ove coordination whloh is square pyramidal． Nevertheless this oxide，like $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{8} \mathrm{O}_{14}$ ，must be considered as a struc． ture with low dimonsionality．It can indoed be described as built up from slabs $\mid \mathrm{LaSr}_{2} \mathrm{O}_{2} \mathrm{O}_{6} \ln$ parallel to（ 001 ）whose cohesion is cosired by $\mathrm{Sr}^{2+}$ and $\mathrm{La}^{3+}$ ions looated at $z=0$ and $z=1 / 2$ The $\left|\mathrm{LaSrCu}_{2} \mathrm{O}_{6}\right|_{\infty}$ slabs are themselves an intergrowth of Sro－type layors and comer－sharing square pyrarnid layers．Suoh slabs are in raci derived from the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure：the latter cocresponds indeed to tho superposition of two $\left|\mathrm{K}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{6}\right|_{\infty}$ slabs which soould：share the face of their squire pyramids， Corming $\mathrm{NiF}_{6}$ octahedra（fig． 2 b）．Like Lay $\mathrm{Ha}_{3} \mathrm{Cu}_{6} \mathrm{O}_{\text {，}}+\mathrm{n}+\mathrm{La}_{2} \mathrm{SrCu}_{2} \mathrm{O}_{6}$ is
     Fig． 2.
    
     to glive the $\mathrm{K}_{\mathbf{2}} \mathrm{NiP} \mathrm{P}_{1}$ atructure．

    ## rower $21-3984-\mathrm{N}^{+4}$

    OCYOLAN INEBRCALATION IN COPPGR OXIDAS 413
    SrO structures，conresponding to the general formulation $A_{n+1} B_{n} O_{5 n+t}$ ；
    
     an oxido with low dimenslonality．

    ## OXYGBN INXIERCALATION AND DESNTRRCALATION：

     annealling of the matertals at low temperalure，i．e． $400^{\circ} \mathrm{C}-500^{\circ} \mathrm{C}$ ，vader differant oxygen preseures．

    The oxygen defect perowakile $\mathrm{La}_{3} \mathrm{Ba}_{2} \mathrm{Cu}_{6} \mathrm{O}_{14,50}$ byothesized in aic can absorb rather mpoortant oxyeen amounts by annealing the samples at $400^{\circ} \mathrm{C}$ undor oxygen premures ruaging from $10^{-2}$ to 1 bar as showa from tablo II．In the same ryay，oxyeen cana be desinterealated from the structure of $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{44}$ ． 0 or from more oxddized compounds by simply annealing the samples always at $400^{\circ} \mathrm{C}$ ．under lower oxysen pressure， $5.10^{-3}$ bar （tablo［1）．Thus it appoans that tho intorcalated oxidet $\mathrm{La}_{3} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{14+9}$
    TAMLS II

    ## 

    －훙exhibit a rather wido homogencity range $0.05 \leqslant \delta \leqslant 0.43$ ．The iutercalation of oxygen in this structurb does not influence the cell parameters，siace the
    
    
     ajzed oxide is obseryed when $\delta$ tends tovards zero．It is of course aot
     tion；howover site polemitial calculations（14），assumiag that Cula is ocia－ hodrally coordinated，shov that this additional oxjegen should be located botween two aquare pyramids $\mathrm{CuO}_{b 1}$ f．e．at $2=1 / 2$ ，betwein the layern
    
    
    
    ie true for the stronthum compounde with $0 \leqslant x \leqslant 0.10$ ．Thus，the oxides correspondiag to theso homogenerity ranges axbiblt an orthoriombic cell rolated to that of $\mathrm{K}_{2} \mathrm{NiP}_{4}$ in the following way：$a \leq b \simeq a \mathrm{~K}_{2} \mathrm{NIF}_{4} \sqrt{2}$ and $c \cong \mathrm{CK}_{2} \mathrm{NHF}_{4}$ ． Heating

    은온을
    
    （＂）Thase Fermmaters are those of the tetragonal atboedl．
    On the other hand，the strontium compounds oxhibit a letragomal sym metry almilar to that of $\mathrm{K}_{2} \mathrm{NIF}_{4}$ or $\mathrm{LaSrCuO}_{4}[3]$ for $0.10<x<1$ （ $a \simeq a K_{1} \mathrm{NIF}_{4} ; c \simeq c \mathrm{~K}_{2} \mathrm{NiF}_{4}$ ），whareas $\operatorname{cor} 1 \leqslant x<4 / 3$ ，superstructures appoar on the electron diffraction pattoras which involve letragonal colls
     $c$ remalaing unchanged（ $c \simeq c \mathbb{K}_{2} \mathrm{NiP}_{4}$ ）．These oxides are very stable in
    
     at $1200^{\circ} \mathrm{C}$ and quenching the phase at noom temperature．It appoars here that the most reduced phase extibils aimo only Cu（m）He $\mathrm{La}_{3} \mathrm{SrCu}_{3} \mathrm{O}_{6}$ belongiag to the second aeries．Tho oxides $\mathrm{La}_{2-} \mathrm{A}_{x} \mathrm{CuO}_{4-2 / 2+j}$ appear very ciosely related to the second sertes formulated $\mathrm{LA}_{2} \ldots \mathrm{~A}_{1}+\mathrm{Cl}_{2} \mathrm{O}_{6-2 / 2+d}$ in that they can be coposidered pis baing respectively the members $n=1$ and 2 of a secies of oxygen defeet intergnowiths between perovakite and

    Intarcalation on the o patsmefer, can be explained by the fact that the repe layers are more sagld than the $\left|\mathrm{Ba}_{1 . g} L_{\mathrm{O}_{0}, 5} \mathrm{Cu}_{3} \mathrm{O}_{7}\right|_{\infty}$ slabs, and are 'only displaced by the introduction of oxygen betwean them. However the bebavour of the oxidee $\mathrm{La}_{1}, \mathrm{Ca}_{1,1} \mathrm{Ca}_{2} \mathrm{O}_{6-x / 2+1}$ where c parabueter is independent of $\delta$ is cot explained; nevertholess in this latles case $\&$ recmains rather weak ( $\delta \leqslant 0.08$ ). The oxygen dexiatercialation of theme oxides is similer to that observed for the first framily: for instanoe bealiog the most oxddized com. pound $\mathrm{La}_{2} \mathrm{SrCu}_{2} \mathrm{O}_{6,20}$ at $400^{\circ} \mathrm{C}$ nader low oxygen pressures ( $\sim 10^{-3}$ bar) lends progressively to the reduced phase $\mathrm{La}_{2} \mathrm{SrCu}_{3} \mathrm{O}_{6}$.

    The behaviour of the oxddes $\mathrm{La}_{3-x} \mathrm{~A}_{-} \mathrm{CuO}_{4-\mu / 2+\%}$ is much more complex owing to the wide homogeneity rangez observed for these oxides expecially in the case of strontium. For instanos, the $\delta$ values observed for the stronLiam oxides aynthesized in air (table $\cap$ do not increase progressively with $x$ contrary to $\mathrm{La}_{2 \ldots, 3} \mathrm{Sr}_{1+x} \mathrm{Cu}_{2} \mathrm{O}_{6-a / 24}$, but increase up to $x \simeq 1 / 3$ and
    
    
    
     gives in table I correspond to hation tiraes of 12 h and annealing these
    
    
    
    
     כ.00p 18 'נ! under an oxygen pressare of one bar or under vecuum ( $10^{-1}$ bar) respec tively. The curves $8=f(x)$ are given in figure 4 for the strontium com-
    
    
    
    
    
    
    
     the trond to prererve a stoichiometric $\mathrm{K}_{2} \mathrm{NiF}_{4}$ sitruclure as for $\mathrm{La}_{3} \mathrm{Cu}^{\prime \prime} \mathrm{O}_{1}$ and $\mathrm{LaSrCu}^{111} \mathrm{O}_{4}$ and the trend to form a related defect structuro bul with зрршо!! qu!
    
    the c parbcuelor doas not vary, in splio of the intercolation of rather great amounts of oxygen is casily explainod by the high oxjgen defoet content in the struoturo: the ajabs $\mid \mathrm{Ba}_{1}, \mathrm{Sa}_{0.5} \mathrm{Cu}_{3} \mathrm{O}_{7} \mathrm{I}_{\infty}$ oxhibit, thomselves, oxygon defcols, which may favour slight displacentents of the coppar and oxygen atoms along $\vec{c}$ during oxygen intercalation, betwoen the stabs, without changlag the a parameter.

    The exygen intercalation in the second series, $\mathrm{La}_{2}-x_{x} \mathrm{~A}_{1+2} \mathrm{Cu}_{2} \mathrm{O}_{6-x / 2+4}$ depende on the nature of the $\mathbf{A}$ ions, calciuin or strontrim, on the rate of substitution $x_{1}$ and on the oxygen presture as shown from table III. It cat

    ## Table III

    Crystallographic dala and anatytiont resulis for the oxtdey
    $\mathrm{La}_{2-2} \mathrm{~A}_{1+8} \mathrm{Cl}_{2} \mathrm{O}_{6-m / 2++}$.
    

    ## Quoncteod oxider (in ata)

    ## Cosnpontion 8 peramoniors <br> 

    Indeed be seen for the strontium oxides syathesized to atr, like $\mathrm{L}_{2} \mathrm{Ss}_{8} \mathrm{Cu}_{2} \mathrm{O}_{\mathrm{G}_{1}}$ that 8 Increasts with the strontium contont fendiog tormarde the formulation $\mathrm{La}_{2}-\mathrm{A}_{1+2} \mathrm{Cu}_{2} \mathrm{O}_{6}$. It rosults that the $\mathrm{Cu}^{3+}$ coortent increases with the divalent A ion content, fo order to compensato the oxysen vacancjes due to the eubstitution or $8 r^{3+}$ or $\mathrm{Ca}^{2+}$ for $\mathrm{La}^{2+}$. The annoaling of the latter oxides at $400^{\circ} \mathrm{C}$ vuder an oxygen préspure of one bar ahoiva the abitity or these phases to interculate orygen, 8 ranging from 0 lo 0.29 for $\mathrm{La}_{2-x} \mathrm{Sr}_{1+1} \mathrm{Cu}_{2} \mathrm{O}_{6-n / 2+1}$ whercas $0.02 \leqslant \delta \leqslant 0.08$ for. $\mathrm{La}_{2}, \mathrm{Ca}_{1,1} \mathrm{Cu}_{2} \mathrm{O}_{3,2 s+j}$. One can see that the rate of interoalation is higgher for tho atrontiom opdetes than for the calclum compound. Moreover is seoms that in the strontium oxides the maximum rate
    
     a variation of the inferlayar distances: the $a$ parmmeter of the totragonal roso 21 - $1954-\mathrm{NH}^{\prime} 4$

    OXYOEN DNTBRCALATION IN COPPER OXIDES 417
    The evolution of acyeran be interpreted by two opposito effects：increasing
    
    
    
     large and ite effects provails on that of substitution $\mathrm{Sr}^{2+} / \mathrm{La}^{3+}$ ，involving a decreare of $\mathbb{C l n}$ ．

    ## NHLOENCB OR THE INTERCALATION PROCESS

    ON THER BLECTRICAL PROPRRTIESOF TPES MIXED VALENCR COPPER OXM

    Most of the oxides derortbod above are characterized by the presence aimultaneounly of $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{IID}$ ，and are thus nixed－yalence oxides．
     conductors or $p$ type semb－metals or meials are strongly influenced by the rate of incorcalation．

    The evolution of conducuvity veraus reciprocal lempenture for different
    

    Mis．$\%$
    
     as a funcllon ort $T$ for difforal $\delta$ valaes．
    

    C．MCARAL AND B．sAvEad
    dation of $\mathrm{Cu}(\mathrm{LI})$ to $\mathrm{Cu}(\mathrm{TII})$ ，whereas rather far from $\mathrm{La}_{4} \mathrm{CuO}_{4}$ ，for exampte ror $x=1$ ，the stoichiometrio oxide LaSiCuO \＆［3］cannol be stabllizod any more under nocroal oxygen pressure，and oxyged vacancies are favoured； the resulting great amount of apionic racanoios are ordered，loadiog to different anierophases as observed by olectron diffraction．The＂an para． meler which characterizes the correspondiag $\mathrm{K}_{2} \mathrm{NiF}_{4}$ eype letcagonal cell is generaily not inflaenced by the intercalationidetintercalation procoss except for high $x$ values which exbibit suporatruetivece．For such oxygen defoct oxides，an order－disordar pheaomenon of tbe oxygen vacanciai appears in the $\left(\begin{array}{lll}0 & 01\end{array}\right)$ plane which contributes to the variation of the $14 a n$ parameter
    
     suporstructuro in the（ 001 ）plane with a $a \infty$ subcell parameler of 3.76 （table D ．The annealing at $400^{\circ} \mathrm{C}$ in oxygen of this phase iavolves an important decrease of the rate of the oxygen vacancies（ $\delta=0.33$ ）． It resulte that the order desappears，leadiag to a true tetragonal cell with uan greator than that of the quenched apecimon（ $0=3.791$ A），a boing
     for quenched and annealed comprounds it complex（ig．5）．It reaults from the fofivence of soveral factors：copper（III）and oxygen vacencies contents， 80s
     bigh $x$ valuts which oxhibit ordor－disordor phenomena．This bohavior is in agreement with the obseavation proviously mado by Goodenough et al．［3］．
    

    Fis． 4.
    
    of $x$ for oxdden wrilitfog fom difarival invimel treationents．
    
    POM－Vies－ 12 2mas
    419.
    siguo yaddos ni hourtyourun naoxio

    $$
    0 * 1, y \text {, band (bg. } 8 \text { b). Thus; it mppoars that intercalation of oxygen whioh }
    $$ comesponds to a local obange of coppor coordination，will lavolve an increase of the dansity of the $d z_{2}^{2}$ tevels above the filled $\sigma_{x}^{*} x_{2}^{2}$, ，band，$i$ e．an iserease of the sumbers of holes in the conduction band．The approximately －

    
     trapped at the top of the filled $3 d_{x}-p^{2}$ band．

    The oxidear $\mathrm{La}_{2}-\mathrm{A}_{1+\infty} \mathrm{Cu}_{2} \mathrm{O}_{6-x / 2+s}$ expibit a similar betbaviour［17］． From the civolution of the corves $\log \sigma=\lambda(1 / 7)$ ，between 80 K and 300 K （ $(8$ g．9）It and be soen that a contiouous transition from a semju－ conductive to a semb－metallio state is observed as tho oxygen intercalation atate increasces from $\delta=0\left(\alpha_{a_{2}} \mathrm{SrCu}_{2} \mathrm{O}_{6}\right)$ to $\delta=0.29\left(\mathrm{La}_{4,86} \mathrm{Sr}_{1,14} \mathrm{Cu}_{3} \mathrm{O}_{8,28}\right)$ ．
     drastically the e parametar：the calcium oxide $\mathrm{La}_{1,90} \mathrm{Ca}_{1,20} \mathrm{Cu}_{2} \mathrm{O}_{3.99}$ is
     $\mathrm{La}_{1,0,} \mathrm{Sr}_{\mathrm{a}}, 10 \mathrm{Cu}_{2} \mathrm{O}_{3, h r}$ ．Thb Soebeck coofficient curves a $=/(\mathrm{T})$（fig．10）
    

    

    $\delta$ walues of the oxides $\mathrm{La}_{3} \mathrm{Ba}, \mathrm{Cu}_{0} \mathrm{O}_{44+8}$（tig． 6 ）shows that the conduc－ tivity fincreases drastically with the intercalation of oxygoa，contracry to the strueture whiab rematins unctraoged．In the aamo way the thernoolectrio poviver of these phases（fig．7）is very sonstive to the intercalation rate． These proporties are inlerproted by a conduction band model whoso conif－ guratlon th mainly deteribioed by the splititing of the $3 d$ Cu orbilals by the
    
    
    
     bons along c ．The $\sigma_{m-\mu}^{*}$ ，bapds resell from $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ inderactions and ntrong electron－dectron interactions split the $d z_{2}^{1}$ and $d z_{2}^{2}$ leveds by a
     of $\mathrm{La}_{2} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{1} \dot{4}(\mathrm{fg}, 8 \mathrm{~b}$ ）is that of an insutator but this limit has not been syathesked；on the othor hand，the oaly level conffuration which can lead to a semb－metallio or melalific conduction for the limit $\mathrm{Ba}_{3} \mathrm{La}_{3} \mathrm{Cu}_{6} \mathrm{O}_{13}$ cor－ responds io a $d x_{2}^{1}$ empty level loceled Just abovs or aocross the filed

    ## $4 x^{2} x^{2}$

    rover 21 － 1981 －$-\mathrm{H}^{\bullet}$ ． 4

    421

    Crugin mitirdilation in copper oxotis
    
    
    a) $0<x<0.16 ;$ 6) $0.16<x<0.50 ;$ c) $0.5<x$ 在 1.20 .
    axides belongiag to the second domain $(0.16<x \leqslant 0.50)$, exhibit a metallic conductivity ( 18.12 6) whiloh increases with the intercalation rale: $p$ increases linearly with tempenture and the chermoslectric power values are weak
    
    
    
    
     relation $\alpha=A$ oxp $\left[-\left(Q / k_{a} I\right)^{1 / 4}\right)$ which characicrizes a variable range bopp-
    the gmall intercalation rates ( $\delta=0$ to 0.04 ) for formall $\mathrm{Cu}^{3+}$ contents, whoreas it becomes weak and mearly independent of the temperature, for high intercalation rates ( $a-0.20$ to 0.20 ), fie. forkigh hoto conoentration. Tbese proporties very similar to those obtained for $\mathrm{Lem}_{\mathrm{s}} \mathrm{Ba}_{3} \mathrm{Cu}_{6} \mathrm{O}_{1+4 \mathrm{~d}} \mathrm{can}$ be explained by the same Motl model of holos trapped at the top of the $\sigma_{x^{2}-p,}$ band. However the rather high conductivity of $\mathrm{La}_{2} \mathrm{SrCu}_{2} \mathrm{O}_{8}$ in spite of the vary reak $\mathrm{Cu}^{3+}$ content $-\delta \simeq 0$ - lot wis think that the intra-atomic coergy $U$ is in this caso of the same order of magaitude as tho band width W, (fig. 11). In the same manaer the rolatirely high and metalle conductivity of the cxicium oxide $\mathrm{La}_{1,90} \mathrm{Ca}_{0.10} \mathrm{Cu}_{2} \mathrm{O}_{5 . p 9}$ conppaned to the corresponding itrontium oxide shows that the band width $W$ must be lacger than $U$ in the caloium oompound so that the ovorlapping of the two $\sigma_{x^{*}-y^{\prime}}^{*}$ bands givos rise to a blgher mobility.
    
    
    The higheat conductivities are obsorved for the oxides $\mathrm{La}_{2-x} \mathrm{Sr}_{x}$ $\mathrm{CuO}_{4-\pi / 2+2}[18]$. Ror a given subitilution rite $x$, the conductivity ingreases
    
     as $a=\int(T\rangle$ is more complex than the two other series: $\delta$ is not the oolly factor goveroing the electron tranaport properities of the phases. Three
    
    
     semi-meiallic behaviour and their properties can bo jaterpreted by the model
    
     ร
    
    
    
    
    $\ddot{q}$
    
    
     at relativoly low tomperatures ( $\mathbf{T}<300 \mathrm{~K}$ ), where afl the compounds of the three families are not sensitive to intercalation or desintercalation. Such anomalies of the conductivity bave iodeed been observed for the oxddes $\mathrm{La}_{2} \mathrm{Si}_{2} \mathrm{Sr}_{2} \mathrm{CuO}_{4-\mathrm{m} / 2+8}$ correspondiag to $0 \leqslant x \leqslant 0.16$ and syathesized in
     oxygen pressure of 0.2 bar that o decreases Arst drastically in the temperature range: $300 \mathrm{~K}-420 \mathrm{~K}$ add thea increases agaio in the temperature range 420 K 650 K . The thermogravinetric curves of these phases, characlerized succosaivoly by a voight loss and weight gain, show clearly that this belaviour
     properties are obseryed for the oxideg $\mathrm{La}_{2}-\mathrm{SS}_{1+2} \mathrm{C}_{\mathrm{u}_{2}} \mathrm{O}_{6-x / 2+1}$ syathesized in air for $x=0.1$ and 0.14 (fig. 15) and for which the thermograyimetric measurenents confirm the oxygen desintercalation intercalation procese. The reveribility of the intercalation process in these phases is illustrated by the ovolution of this conductivity of $\mathrm{La}_{1.9} \mathrm{Ca}_{1.1} \mathrm{Cu}_{2} \mathrm{O}_{5.97}$ yersus recipraca!

    425
    
    
     intercalation. Tho bahaviour observed from 570 K to 77 K is then similar to that observed for the starting matecial.

    Referbnces
    (1). J. M. Lovor, P. ML. Raceah. J. Sofid Stare CATon., 1973. 6, p. 526.
     [4] W. RLDNe, O. Wilibinafiar. H. Bads, Elektrochemi. Ber. Dureantes Phys. Chem.,
     (67) K. Hertapiank, $A$. Hoppa, $Z$. Anars, Alls. Chem., 1869, 361, p. 261.
    
     (III) N. Nourre: L. Fa, Rakma, C. Micha, J. Chaienet, bi. Ravasu), Mor. Res. Buall.
     [1]] X. Nouven, J. Cmonsert, M. Heqviev, B. Raveau, f. Solld Staje Cham., 1981, ws,
    
    
    
    
    tomporature under argon and air (fig. 16). The behaviour of this phase is todeed very different in argon and in ait. The condrotivity decreases under argon as soon as the temperature it greater than 300 K ovting to the departare of oxygen and al about 570 K a decroases drastically. At this stige of the experimont, heating is stopped and the sample is cooted progressively down to 77 K . In this tacter temperature rabge a semi-conducXve bahaviour is observed owiag to the lower oxygen rate of intercalation. Heating agaip up to 500 K under argon leads to the same curve. Howerer.
    rols 21 - W08 - w 4
    

    ## BRIEF ATTACHMENT I

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT I

    ## 6t <br> TA <br> Thermal Analysis

    Vol． 2 Inorganic Chemistry／Metallurgy Earth Sciences Organic Chemistry／Polymers Biological Sciences／Medicine／Pharmacy

    Editor
    W．Hemminger
    Institut für Werkstoflkunde
    Universität Braunschweig
    Federal Republic of Germany
    

    1980
    3）Birkbäuser Verlag

    Proceedings of the Sixth International Conference on Thermal Analysis

    Bayreuth, Federal Republic of Germany July 6-12, 1980

    Vol. 1 Theory
    Instrumentation Applied Sciences Industrial Applications

    Vol. 2 Inorganic Chemistry/Metallurgy Earth Sciences Organic Chemistry/Polymers Biological Sciences/Medicine/Pharmacy
    

    Vol. 2 Inor Eart Org: Biol

    Edit W.] Insti Uni Fed

    Although the use o sions began in the： of the effects of hes 20ib century．In 4 broadly applicable For a demonstratio volume．Frorizacad quality control of is rooks for the scienti field of endeavour． others employ then and chemical proca Growth in the valu ing number of naui common ground al application of thes a similar but broad ing an opportunity common interests ： of experts continue ture，standards an
    CIR－Kuratilelaurnahure der Deurschen Bibiothck

    Themal anolysis．－Based，Borton．Stungar： Birchiuver．
    Bd． 1971 mit d．Erach cinungeorien：Bavel，
    Stulteqar．－Bd． 1977 im Verl．Heyden．Loa－ don Bellmumr（N），Rhcine．
    ISEN 3－7643－1202－S
    1980.

    Vol 2 Inorganic chemistry，metallurgy， earth sciences，organic chemiscry，palymers biologied sciences，modicine，pharmacy： proccodings of the 6．Intemat．Conference on Thermal Aastysic，Bayreuch，Fed．
    Republic of Germany，July 6－12，1980／ed． W．Hemminger，－ 1980 ．
    ISBN 3－7643－1086－3
    NE：Hemmiager，Wolfgang（Hrs．）：ICTA
    10，1980，Bayreuth）

    All rights reserved．No pari of chis public． tion may be reproducod，stored in a retrieval system，or uronntritted in any form or by any means，electronic，mechajical． photocopying reconding or otherwise，with． oult the prior pormission of the copyright owace．
    © Rirkhiucer Verlag Dasel． 1980
    ISAN 3－7643－108G－3
    Printed in Switzerland

    THERMAL BEHAVIOUR OF COMPOSITYONS TN XHE SYSTEMS

    $$
    \therefore \mathrm{BaTlO}_{3}+(1-x) \mathrm{Ba}\left(L \pi_{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}
    $$

    V.S. Chincholkax* and A.R. Vyawahare<br>Department of Chemistry, Institute of Science, Nagpux

    The effect of temperature on the dielectric eonstant ( $\varepsilon$ ). tan 6 (loss tangent) and the ferroelectric properties of compositions in the systems $x \mathrm{BaTiO}_{3}$ • (1-x) $\mathrm{Ba}\left(\mathrm{In}_{0.5} \mathrm{~B}_{0.5} 1 \mathrm{O}_{3}\right.$ $10 \leqslant x \leqslant 1 . \mathrm{Ln}^{3+}$ a a rare earch cation and $\left.\mathrm{Y}^{3+}, \mathrm{B}^{5+}=\mathrm{Ta}, \mathrm{Ab}, \mathrm{V}\right)$ reveal that in the $\mathrm{Ta}^{5+}$ system at $x=0.8$, the $\varepsilon_{\max }$ ( $\varepsilon$ at $T_{c}$ ' and $T_{c}$ (the Curie-point) exhibit an increating trend with decreasing ionic radil of the $\mathrm{In}^{3+}$ ions, whereas in the analogous wo ${ }^{54}$ system, an almost linear behaviour has been observed. In the $v^{5+}$ system, the pure phases $(x=0)$ exhibit increasing trend of $\varepsilon_{\text {max }}$ and $T_{c}$ values with decreasing race earth cation size. Phases with $x=0.8$, exhibit a break at $\mathrm{Na}^{3+}$ in $\varepsilon_{\text {max }}$ values, in contrast to an incraasing trend in $I_{c}$ values with decreasing rare earth cation size. Similar behaviour is observed for the polarization data. The increasiag trend in the $T_{c}$ values in the direction $2 a^{5+}-\mathrm{Nb}^{5+}$ $v^{5+}$ at $x=0.815$ perhaps reminiscent of the nephelauxetic effect.
    The $T_{c}$ values for these first order transitions have been confirmed by recording DTA curves agalnst inert $a-A d_{2} O_{3}$, the enthalpy change, however, being appreciably low in the present series.

    ## INTRODUCTION

    Recently emphasis has been placed on laser research and a concentrated effort has brought new and lmproved materials which can be used as hosts for transition. An imporeant part of this effort has been directed towards finding potentlal laser materials having fluorescent enexgy states with long life times. In order to determine, if symmetry conditions in pmermal analrsis . icta 60 . blakhaeuser verlac, basel, boston, stuttgart
    crystals also affect the life time of rare earth ion fluorescence, a series of ordered perovskite compounds having the general formula $A\left(B_{0.5}^{\prime} B_{0.5}^{\prime \prime}\right) O_{3}$ were studied [1]-[7]. However, temperature effects and doping characteristics were not studied. The present work concerns with the formation and the thermal oharaoteristics of compositions in the systems $x \mathrm{BaTiO}_{3}+(1-x) \mathrm{Ba}\left(1 n_{0.5} \mathrm{~B}_{0.5}\right) \mathrm{O}_{3}$ where $0 \leqslant x \leqslant 1$. $\mathrm{Ln}^{3+}$. a rare earth cation and $Y$. $B^{5+}=\mathrm{Nb}^{5+}, \mathrm{Ta}^{5+}$ and $\mathrm{v}^{5+}$.

    ## EXPERIKENTAAL PROCEDURE

    The compositions were prepared by the solid state reaction of the parent compounds (carbonates, oxides) at high eamperacure as described elsewhere [8].[9]. Room temperature X-ray structure was determined using Debye-Scherrer camera 114 cm dianeter) and nickel-filtered Cu-ka radiation. Temperature effects on the dielectrle constant (capacitance) and loss tangent (tan 6) were measured using a $716-C$ GR capacitance bridge together with type 1340-8 type audiobeat fxequency generator and 1231-8 type $u$ null detector and amplifier with $1231 P_{5}$ type varlable filter in a sample holder designed $L$ this laboratory (10).

    Modified [11] Sawyer-Tower type circuit was used to record hysteresis loops as a function of temperature in the abova Sample holder and a MOM Derivatograph was ueed to recozd DTA curves against $\mathrm{a}_{\mathrm{A}} \mathrm{Al}_{2} \mathrm{O}_{3}$ as reference.

    ## RESULTS AND DISCUSSION

    Tablas 1-3 show the room temperature $E$ values as also the $\varepsilon_{\max }$ and the Curienpoint ( $T_{c}$ ) values evaluated from the capacitance measurements for compositions in the various systems. The temperature study $e$ was restricted to $x=0.8$ compositions in the $\mathrm{Ta}^{5+}$. $\mathrm{Nb}^{5+}$ systems and over the entire composition range in the $v^{5+}$ systen which exhibitad the transition in the whole rangs of compositions. Table 4 shows these parameters at $x=0$ for compositions in the $v^{5+}$ system. In all the $6 y-$
    stems, an increasin with decreasing rar scent of the lantha
    $E_{\text {max }} P_{s}$ and $T_{c}$ vaj

    Composition
    $\mathrm{Ba} \mathrm{LLa}_{0.1} \mathrm{Ta}_{0.1} \mathrm{TI}_{0.8}$ $\mathrm{Ba} \mathrm{Na}_{0.1} \mathrm{Ta}_{0.1}^{\mathrm{Ti}} 0.8$ Ba (5mo.1 $\mathrm{Ta}_{0.1} \mathrm{TH}_{0.8}$ $\mathrm{Ba} \mathrm{CO}_{0.1} \mathrm{Ta}_{0.1} \mathrm{Ti}_{0.8}$ Ba.(Dy $0_{0.1} \mathrm{TA}_{0.1} \mathrm{TL}_{0 . B}$ $\mathrm{Ba}\left(\mathbf{Y}_{0.1} \mathrm{Ta}_{0.1}{ }^{\mathrm{T}} \mathbf{1}_{0.6}\right)^{( }$
    $\varepsilon_{\text {max }} P_{s}$ and $T_{c}$ ve $\mathrm{Ea} \mathrm{La}_{0.1} \mathrm{Nb}_{0.1} 1^{\mathrm{Ni}} 0.1$ Be iNd $0.1^{N b_{0}} 0.1^{2 j_{0}} 0.1$ $\mathrm{Ba} \mathrm{SNm}_{0.1} \mathrm{Nb}_{0.1} 1^{\mathrm{I}_{0 .}}$ $\mathrm{Ba} \mathrm{IGA}_{0.1} \mathrm{Nb}_{0.1^{\mathrm{Ti}} 0}^{\mathrm{M}}$. $\mathrm{Ba} \mathrm{lD}_{0.1} \mathrm{Nb}_{0.1} \mathrm{II}_{0}$. $\mathrm{Ba}\left(\mathrm{Y}_{0.1} 1^{\mathrm{Nb}} 0.1^{\mathrm{TI}} 0.8\right.$
    $\varepsilon_{\text {max }^{\prime}} P_{5}$ and $T_{c} v$
    Ba (La $0.1{ }^{V_{0.1}^{1 T i}} 0.8$ $\mathrm{Ba} \mathrm{KNd}_{0.1} \mathrm{~V}_{0.1} \mathrm{TI}_{0.0}$ $\mathrm{Ba} \mathrm{Sm}_{0.1} \mathrm{~V}_{0.1} \mathrm{Ti}_{\mathrm{O.E}}$ $\mathrm{Ba} \mathrm{CA}_{0.1} \mathbf{V}_{0.1} \mathrm{Ti}_{\mathrm{D}} \mathrm{E}$ $\mathrm{Ba}\left(\mathrm{Dy}_{0.1} \mathrm{~V}_{0.1} \mathrm{TI}_{0 . E}\right.$ $\mathrm{Ba}\left(\mathrm{Y}_{0.1} \mathbf{Y}_{0.1} \mathrm{~T}_{0.8}\right)$

    | res- re rex, itu- | stems, an inereasing trend in $\varepsilon_{\text {max }}$ as also $T_{c}$ is obsorved with decreasing rare earth cation size, and is perhaps rominiscent of the lanthanide coneraction. <br> Table 1 |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 18 | $\varepsilon_{\text {max }} g_{s}$ and $T_{c}$ values | for con | ositions | the | syste |
    | rarets | Composition | $\varepsilon_{25}{ }^{\circ} \mathrm{C}$ | $\begin{gathered} \mathrm{P}_{s} \\ \left(\mu \mathrm{C} / \mathrm{cm}^{2}\right) \end{gathered}$ | $E_{\max }$ | $\begin{gathered} \mathrm{T}_{\mathrm{c}} \\ \left.{ }^{\circ} \mathrm{C}\right] \\ \hline \end{gathered}$ |
    |  |  | 200 | 4.5 | 780 | 85 |
    |  | $\mathrm{Ba}\left(\mathrm{Na}_{0.1} \mathrm{Ta}_{0.1} \mathrm{Ti}_{0 . \mathrm{B}}\right)^{\mathrm{O}_{3}}$ | 250 | 6.0 | 850 | 90 |
    | in | $\mathrm{Ba}\left(\mathrm{Sm}_{0.1} \mathrm{Ta}_{0.1} \mathrm{T1}_{0.8}\right)^{0}$ | 342 | 8.1 | 1050 | 92 |
    | rera- | $\mathrm{Ba}\left(\mathrm{CA}_{0.1} \mathrm{Ta}_{0.1} \mathrm{TE}_{0.8}\right)^{0_{3}}$ | 480 | 8.5 | 1120 | 96 |
    | :ay | Ba (DY $\mathrm{O}_{0.1} \mathrm{Ta}_{0.1} \mathrm{TI}_{0.8} \mathrm{IO}_{3}$ | 530 | 8.9 | 1400 | 100 |
    | cm | $\mathrm{Ba}\left(\mathrm{Y}_{0.1} \mathrm{Ta}_{0.1} \mathrm{TL}_{0.8} \mathrm{lO}_{3}\right.$ | 580 | 9.6 | 1830 | 110 |

    Table 2
    $\varepsilon_{\text {max }}, P_{s}$ and $T_{c}$ values for compositions in the systems $\mathrm{Nb}^{5+}$

    | $\mathrm{Ba}\left(\mathrm{La} 0.11^{N b_{0.1}} \mathrm{TL}_{0.8} 1^{O_{3}}\right.$ | 232 | 5.3 | 580 | 90 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 260 | 6.2 | 900 | 100 |
    | $\mathrm{Ba}\left(\mathrm{Sm}_{0.1} \mathrm{Nb}_{0.1} \mathrm{Ti}_{0.8}\right)^{\mathrm{O}_{3}}$ | 290 | 8.4 | 9100 | 107 |
    | $\mathrm{Ba}\left(\mathrm{Gd}_{0.1} \mathrm{Nb} \mathrm{O}_{0.1} \mathrm{TE}_{0.8}\right)^{\mathrm{O}_{3}}$ | 380 | 9.2 | 1220 | 110 |
    | $\mathrm{Ba}\left(\mathrm{DY} 0.1 \mathrm{Nb} 0.1 \mathrm{I}^{\mathrm{T1}} 0.8\right)^{0} \mathrm{O}_{3}$ | 415 | 9.8 | 1350 | 115 |
    | $\mathrm{Ba}\left(Y_{0.1} \mathrm{Nb}_{0.1} \mathrm{TL}_{0.8}\right)^{O_{3}}$ | 530 | 10.2 | 1600 | 118 |

    Table 3
    $\varepsilon_{\text {max }} P_{s}$ and $T_{c}$ values for compositions in the $v^{5+}$ system
    apa-
    ems.
    tions
    the

    | $\varepsilon_{\text {max }} P_{s}$ and $T_{c}$ values for $\begin{array}{r}\text { Table } 4 \\ \text { compositions in the } V^{5 *} \text { system at } \\ x\end{array}$ |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | $0.5{ }^{V_{0}} 5^{10_{3}} \quad 60$ |  |  |  |  |
    | $\mathrm{Ba}\left(\mathrm{Na}_{0.5} \mathrm{~V}_{0.5} \mathrm{O}_{3}\right.$ | 20 | 7. 8 | 260 | -- |
    | $\mathrm{Ba}\left(5 \mathrm{~m}_{0.5} \mathrm{~V}_{0.5} \mathrm{O}_{3}\right.$ | 30 | 10.7 | 260 | 154 |
    | $\mathrm{Ba}\left(\mathrm{Gd}_{0.5} \mathrm{~V}_{0.5} \mathrm{lO}_{3}\right.$ | 35 | 10.7 | 500 | 168 |
    | $\mathrm{Ba}\left(\mathrm{Dy} \mathrm{O}_{0.5} \mathrm{~V}_{0.5}\right) 0_{3}^{3}$ | 25 | 11.3 | 850 | 175 |
    | $\mathrm{Ba}\left(\mathrm{Y}_{0.5} \cup_{0.5} \mathrm{JO}_{3}\right.$ | 25 | 12.5 | 1020 | 200 |
    | $0.50 .5{ }^{-5}$ | 40 | 17.9 | 1250 | 220 |

    Covaleney of the B-O bond is reported [12] to increase with decreasing rare earth cation size and may be responsible for the above occurrence. The behaviour, howaver, is linear in case of $\mathrm{Nb}^{5+}$ and non-linear in the case of $\mathrm{Ta}^{5+}, \mathrm{V}^{5+}$. Table 5 shows che $x_{f}$ and $A$ fladues as evaluated from the DTA curves. for sone representative samples.

    Table 5

    | Composition |  | $\begin{gathered} \Delta H \\ {\left[\text { cal mole } e^{-1}\right.} \end{gathered}$ |
    | :---: | :---: | :---: |
    | $\mathrm{Ba}\left(\mathrm{La} 0.1^{\mathrm{Ta}} 0.1^{\mathrm{Ti}} 0.8\right) \mathrm{O}_{3}$ | 80 | 25 |
    | $\mathrm{Ba}\left(\mathrm{La}_{0.1} \mathrm{Nb}_{0.1} \mathrm{TL}_{0.8}\right) \mathrm{O}_{3}$ | 90 | 45 |
    |  | 95 | 65 |

    A glance at the $A H$ values reveal dijution of the $A$ t value of the $120^{\circ} \mathrm{C}$ transition of BaTio $(46 \mathrm{cal} / \mathrm{mole})$ [13] by the addition of $\mathrm{ma}^{54}$ phases, no change with addition of $\mathrm{Nb}^{5+}$ phases ana a substantial increase with incorporation of $v^{5+}$ phases.

    Another significant reault of the present study is the observation of increating $T_{C}\left(T_{f}\right)$ values with decreasing $B^{5 *}$ radii, keeping the $\mathrm{Ln}^{3+}$ ion fixea, in the sequence $\mathrm{Ta}^{5+}-\mathrm{AD}^{5+}-\mathrm{v}^{5}$. Considering the energy level diagram of an octahedrally surrounded metal ion with configuration (np) ${ }^{6}$, we expect $\mathrm{Ta}^{5-}$ to
    be more ionic this the elec will da less justified by these ions $x$ Jorgensen has that the elec $\mathrm{Nb}^{5}-v^{54}$ and transition me cal bond beca Oux results as

    Elfeh ionizati

    Ion
    $v^{5+}$
    $\mathrm{Na}^{5}$
    $T a^{5}$ -
    (1) F. Galasbe Report DAs
    [2] F. Galassc 81 (1959)
    [3] F. Galasso 83 (1961)
    (4) F. Galasso
    [5] F. Gelasso
    [6] E. Galasso
    (7] F. Galasso
    (8) V.S. chine
    be more ionically bonded than $\mathrm{Nb}^{5 *}$ and $\mathrm{v}^{5+}$. As a result of this the electron density in the $\tau_{2 g}$-orbital of the $\mathrm{Ta}^{5+}$ fon will be less chan that in the case of $\mathrm{Nb}^{5+}, v^{5+}$. This is also justified by considering the fifth ionization potential of these ions $T$ (Table 6 ) which also increases in this seguence. Jprgensen has concluded from the electron transfer spectra that ehe electron affinity increases in the sequence $\mathrm{Ta}^{5+}$. $\mathrm{Nb}^{5+}-\mathrm{v}^{5+}$ and from the reduced Racah parameters of several transition metal ions (nephelauxetic effect) that the chemical bond becomes more covalent in the sequence 5d-4d-3d group.
    .h '0:

    Table 6
    Fifth ionixation potential and electron configuration of $\mathrm{B}^{5+}$ metal lons

    | Ion | Electron configuration | $I_{s}(\mathrm{eV})$ |
    | :--- | :---: | :---: |
    | $\mathrm{V}^{5+}$ | $3 s^{2} 3 p^{6}$ | 65 |
    | $\mathrm{Nb}^{5+}$ | $4 s^{2} 4 p^{6}$ | 52 |
    | $\mathrm{Ta}^{5+}$ | $5 s^{2} 5 p^{6}$ | 45 |

    ## REPERENCES

    [1] F. Galasso, United Aircraft Coxporation Laboratory, Report UAR-810. Jan 1963
    [2] E. Galasse, L. Katz, and R. Ward, J.Amex.Chem.Soc. 89 (1959) 820
    [3] F. Galasso, J.R. Barrante, and I. Katz, J.Amer.Chem.Soe. B3 (1961) 2830
    [1] F. Galasso, and W.J. Darby, J.Phys.Chem. 66 (1962) 131
    (5) F. Galasso, and J. Pyle, J.Fhys.Chem. 67 (1963) 533
    [6] F. Galasso, and J. Pyie, J. Fhys.Chem. 67 (1963) 1561
    [7] F. Galasso, and J. Pyie, Inorg-Chem. 2 (1963) 482
    [8] V.S. Chincholkar, J.inorg.Nucl.Chem. 34 (1972) 2973
    

    The solid etate 1 $\mathrm{Ia}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}=$ Ia. ( to galn better ni genexal and the , formation of tril partscular. Severel $I_{2}$ (Mo0 been oxtemsively eleotrical, mag cineties and macl reported voantil: reactivity of th ro-ergmine thla detall.

    ## BRIEF ATTACHMENT J

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of Date: March 1, 2005
    Applicants: Bednorz et al.
    Docket: YO987-074BZ
    Serial No.: 08/479,810
    Filed: Jüne 7, 1995
    Group Art Unit: 1751
    Examiner: M. Kopec
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT J

    # Model family of high-temperature superconductors: $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ ( $m=1,2 ; n=1,2,3$ ) 

    S. S. P. Parkin, V. Y. Lee, A. I. Nazzal, R. Savoy, T. C. Huang, G. Gorman, and R. Beyers IBM Research Division, Almaden Research Center, 650 Harry Road. San Jose, California 95120-6099<br>(Received 31 May 1988)

    We describe the structures and superconducting properties of six compounds in the T1-Ca-Ba-$\mathrm{Cu}-\mathrm{O}$ system of the general form, $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2}(n+1)+m$, where $m=1$ or 2 and $n=1,2$, or 3. One of the compounds displays the highest known superconducting transition temperature, $T_{c}=125 \mathrm{~K}$. The structures of these compounds consist of copper perovskitelike blocks containing 1, 2, or $3 \mathrm{CuO}_{2}$ planes separated by one or two $\mathrm{Tl}-\mathrm{O}$ layers and thus form a model family of structures in which both the size and separation of the copper oxide blocks can be independently varied. The superconducting transition temperature increases with the number of $\mathrm{CuO}_{2}$ planes in the perovskitelike block for both the T1-O monolayer and bilayer compounds. For each pair of compounds ( $m=1,2$ ) with the same number of $\mathrm{CuO}_{2}$ planes (same $n$ ), the transition temperatures are similar but are consistently $15-20 \mathrm{~K}$ lower in the materials with single T1-O layers. Variations in the transition temperatures in the double and triple $\mathrm{CuO}_{2}$-layer compounds are observed to correlate with increased densities of intergrowths of related structures.

    Recently ${ }^{1-7}$ several new high-temperature superconductors have been synthesized in the T1-Ca-Ba-Cu-O system, including $\mathrm{T}_{2} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10 \pm x}$, which displays the highest superconducting transition temperature yet found, $T_{c}=125 \mathrm{~K}$. ${ }^{3}$ In this article we present data on the structures and superconducting properties of six compounds of the form $\mathrm{T}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$, where $m=1$ or 2 and $n=1,2$, or 3 . The structures consist of copper perovskitelike blocks containing 1,2 , or $3 \mathrm{CuO}_{2}$ planes separated by one or two TI-O layers. These compounds thus form a model family of structures in which both the size and separation of the copper blocks can be independently varied. We present data that establish that the superconducting transition temperature increases with the number of $\mathrm{CuO}_{2}$ planes in the perovskitelike block for both the T1-O monolayer and bilayer compounds. For each pair of compounds ( $m=1,2$ ) with the same number of $\mathrm{CuO}_{2}$ planes (same $n$ ), the transition temperature is 15-20 K lower in the material with single TI-O layers. Variations in the transition temperatures in the double and triple $\mathrm{CuO}_{2}$ layer compounds are observed to correlate with increased densities of intergrowths of related structures.

    The samples were prepared by thoroughly mixing suitable amounts of $\mathrm{Tl}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{BaO}_{2}$, and CuO , and forming a pellet of this mixture under pressure. The pellet was then wrapped in gold foil, sealed in a quartz tube containing slightly less than 1 atm of oxygen, and baked for approximately 3 h at $=880^{\circ} \mathrm{C}$. A wide range of starting compositions was studied. In most cases the resulting pellet was comprised of several phases. However, for certain ranges of starting compositions, the pellets contained only one superconducting phase of the form $\mathrm{Tl}_{m} \mathrm{Ca}_{i_{-1}} \mathrm{Ba}_{2}-$ $\mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ together with minor amounts ( $<\approx 20 \%$ ) of insulating oxides such as those of $\mathrm{Cu}, \mathrm{Ca}-\mathrm{Cu}, \mathrm{Ba}-\mathrm{Cu}$, and T1-Ba. The relative amounts of each phase depended on the annealing time and temperature and the rate of
    cooling from this temperature. In particular, for slow cooling rates ( $=100^{\circ} \mathrm{C} / \mathrm{h}$ ) the composition of the major $\mathrm{T1}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ phase more closely matched that of the starting composition. The composition and microstructure of the pellets were determined from complementary powder x-ray diffraction, electron microprobe, electron diffraction, and high-resolution transmission electron microscopy (TEM) studies. The superconducting properties of each pellet were examined by resistivity and de Meissner susceptibility studies. The latter was measured with a SHE SQUID magnetometer. Cooling in a field of 100 Oe , the magnitude of the Meissner susceptibility at 5.5 K ranged from $10 \%$ to $35 \%$ of the susceptibility of a perfect diamagnet of the same volume, neglecting small demagnetizing corrections. The magnitude of the diamagnetic shielding signal is very dependent on the distribution of the normal and superconducting phases within the multiphase pellets and in most cases did not give useful information. The susceptibility data revealed that for some pellets the presence of a minority superconducting phase resulted in the resistance of the pellet dropping to zero at substantially higher temperatures than the $T_{c}$ of the majority superconducting phase. This type of behavior emphasizes the importance of determining the transition temperature from a flux exclusion measurement in this complex quinary system. These results are summarized in Table I.

    We have previously described the preparation and properties of the three members of the $\mathrm{T1}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n}-$ $\mathrm{O}_{2(n+1)+m}$ family, namely $\mathrm{T}_{2} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}(2: 2: 2: 3){ }^{3}$ $\mathrm{Tl}_{2} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2} \mathrm{O}_{8}$ (2:1:2:2), ${ }^{3}$ and $\mathrm{Tl}_{1} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{9}$ ( $1: 2: 2: 3$ ), ${ }^{4}$ which display superconducting transition temperatures of 125,108 , and 110 K , respectively. By systematically varying the starting composition of the pellets, the related compounds, $\mathrm{Tl}_{2} \mathrm{Ca}_{0} \mathrm{Ba}_{2} \mathrm{Cu}_{1} \mathrm{O}_{x}$ (2:0:2:1), $\mathrm{T}_{1} \mathrm{Ca}_{0} \mathrm{Ba}_{2} \mathrm{Cu}_{1} \mathrm{O}_{x}$ (1:0:2:1), and $\mathrm{Tl}_{1} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2} \mathrm{O}_{x}$ (1:1:2:2) were synthesized. The unit cells for each phase

    # Model family of high-temperature superconductors: $\mathbf{T 1}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathbf{C u}_{n} \mathbf{O}_{2(n+1)+m}$ ( $m=1,2 ; n=1,2,3$ ) 

    S. S. P. Parkin, V. Y. Lee, A. I. Nazzal, R. Savoy, T. C. Huang, G. Gorman, and R. Beyers<br>IBM Research Division, Almaden Research Center, 650 Harry Road,

    San Jose, California 95120-6099
    (Received 31 May 1988)
    We describe the structures and superconducting properties of six compounds in the T1-Ca-Ba-$\mathrm{Cu}-\mathrm{O}$ system of the general form, $\mathrm{T}_{m} \mathrm{Ca}_{4-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2}(n+1)+m$, where $m=1$ or 2 and $n=1,2$, or 3. One of the compounds displays the highest known superconducting transition temperature, $T_{c}=125 \mathrm{~K}$. The structures of these compounds consist of copper perovskitelike blocks containing 1,2 , or $3 \mathrm{CuO}_{2}$ planes separated by one or two $\mathrm{Tl}-\mathrm{O}$ layers and thus form a model family of structures in which both the size and separation of the copper oxide blocks can be independently varied. The superconducting transition temperature increases with the number of $\mathrm{CuO}_{2}$ planes in the perovskitelike block for both the T1-O monolayer and bilayer compounds. For each pair of compounds ( $m=1,2$ ) with the same number of $\mathrm{CuO}_{2}$ planes (same $n$ ), the transition temperatures are similar but are consistently $15-20 \mathrm{~K}$ lower in the materials with single T1-0 layers. Variations in the transition temperatures in the double and triple $\mathrm{CuO}_{2}$-layer compounds are observed to correlate with increased densities of intergrowths of related structures.

    Recently ${ }^{1-7}$ several new high-temperature superconductors have been synthesized in the $\mathrm{T} 1-\mathrm{Ca}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ system, including $\mathrm{Tl}_{2} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10 \pm x}$, which displays the highest superconducting transition temperature yet found, $T_{c}=125 \mathrm{~K} .{ }^{3}$ In this article we present data on the structures and superconducting properties of six compounds of the form $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$, where $m=1$ or 2 and $n=1,2$, or 3 . The structures consist of copper perovskitelike blocks containing 1,2 , or $3 \mathrm{CuO}_{2}$ planes separated by one or two Tl-O layers. These compounds thus form a model family of structures in which both the size and separation of the copper blocks can be independently varied. We present data that establish that the superconducting transition temperature increases with the number of $\mathrm{CuO}_{2}$ planes in the perovskitelike block for both the T1-O monolayer and bilayer compounds. For each pair of compounds ( $m=1,2$ ) with the same number of $\mathrm{CuO}_{2}$ planes (same $n$ ), the transition temperature is $15-20 \mathrm{~K}$ lower in the material with single T1-O layers. Variations in the transition temperatures in the double and triple $\mathrm{CuO}_{2}$ layer compounds are observed to correlate with increased densities of intergrowths of related structures.

    The samples were prepared by thoroughly mixing suitable amounts of $\mathrm{Tl}_{2} \mathrm{O}_{3}, \mathrm{CaO}, \mathrm{BaO}_{2}$, and CuO , and forming a pellet of this mixture under pressure. The pellet was then wrapped in gold foil, sealed in a quartz tube containing slightly less than 1 atm of oxygen, and baked for approximately 3 h at $\approx 880^{\circ} \mathrm{C}$. A wide range of starting compositions was studied. In most cases the resulting pellet was comprised of several phases. However, for certain ranges of starting compositions, the pellets contained only one superconducting phase of the form $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2}-$ $\mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ together with minor amounts $(<=20 \%)$ of insulating oxides such as those of $\mathrm{Cu}, \mathrm{Ca}-\mathrm{Cu}, \mathrm{Ba}-\mathrm{Cu}$, and T1-Ba. The relative amounts of each phase depended on the annealing time and temperature and the rate of
    cooling from this temperature. In particular, for slow cooling rates ( $=100^{\circ} \mathrm{C} / \mathrm{h}$ ) the composition of the major $\mathrm{T1}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ phase more closely matched that of the starting composition. The composition and microstructure of the pellets were determined from complementary powder x-ray diffraction, electron microprobe, electron diffraction, and high-resolution transmission electron microscopy (TEM) studies. The superconducting properties of each pellet were examined by resistivity and dc Meissner susceptibility studies. The latter was measured with a SHE SQUID magnetometer. Cooling in a field of 100 Oe , the magnitude of the Meissner susceptibility at 5.5 K ranged from $10 \%$ to $35 \%$ of the susceptibility of a perfect diamagnet of the same volume, neglecting small demagnetizing corrections. The magnitude of the diamagnetic shielding signal is very dependent on the distribution of the normal and superconducting phases within the multiphase pellets and in most cases did not give useful information. The susceptibility data revealed that for some pellets the presence of a minority superconducting phase resulted in the resistance of the pellet dropping to zero at substantially higher temperatures than the $T_{c}$ of the majority superconducting phase. This type of behavior emphasizes the importance of determining the transition temperature from a flux exclusion measurement in this complex quinary system. These results are summarized in Table I.

    We have previously described the preparation and properties of the three members of the $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n}$ $\mathrm{O}_{2}(n+1)+m$ family, namely $\mathrm{Tl}_{2} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{10}(2: 2: 2: 3),{ }^{3}$ $\mathrm{T}_{2} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2} \mathrm{O}_{8} \quad(2: 1: 2: 2),{ }^{3}$ and $\mathrm{Tl}_{1} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{9}$ ( $1: 2: 2: 3$ ) ${ }^{4}$ which display superconducting transition temperatures of 125,108 , and 110 K , respectively. By systematically varying the starting composition of the pellets, the related compounds, $\mathrm{Tl}_{2} \mathrm{Ca}_{0} \mathrm{Ba}_{2} \mathrm{Cu}_{1} \mathrm{O}_{x}$ (2:0:2:1), $\mathrm{Tl}_{1} \mathrm{Ca}_{0} \mathrm{Ba}_{2} \mathrm{Cu}_{1} \mathrm{O}_{x} \quad(1: 0: 2: 1)$, and $\mathrm{T}_{1} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2} \mathrm{O}_{x}$ (1:1:2:2) were synthesized. The unit cells for each phase

    TABLE I. Summary of properties of $\mathrm{Tl}_{m} \mathrm{Ca}_{\mathrm{a}-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{\boldsymbol{x}}$

    | Conc. ratio | Relative composition |  |  |  |  |  | Lattice parameters |  | Superlattice |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | T1 | Ca | Ba | Cu | 0 | Symmetry | $a$ (A) | $c(\AA)$ | wave vector (k) | $\boldsymbol{T}_{\boldsymbol{c}}(\mathrm{K})$ |
    | $\mathrm{Tl}_{4} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{x}$ |  |  |  |  |  |  |  |  |  |  |
    | 1:0:2:1 | 1.2 | 0.0 | 2 | 0.7 | 4.8 | $P 4 / \mathrm{mmm}$ | 3.869(2) | 9.694(9) | a | b |
    | 1:1:2:2 | 1.1 | 0.9 | 2 | 2.1 | 7.1 | P4/mmm | 3.8505(7) | 12.728(2) | <0.29,0,0.5) | 65-85 |
    | 1:2:2:3 | 1.1 | 0.8 | 2 | 3.0 | 9.7 | $P 4 / \mathrm{mmm}$ | 3.8429(6) | 15.871(3) | (0.29,0,0.5) | 100-110 |
    | $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{x}$ |  |  |  |  |  |  |  |  |  |  |
    | 2:0:2:1 | 1.9 | 0.0 | 2 | 1.1 | 6.4 | $F / \mathrm{mmm}^{\text {c }}$ | $a=5.445$ (2) | 23.172(6) | $\langle\overline{0} 08,0.24,1\rangle^{\text {c }}$ | b |
    |  |  |  |  |  |  |  | $b=5.492(1)$ |  |  |  |
    | 2:0:2:1 ${ }^{\text {d }}$ | 1.8 | 0 | 2 | 1.1 | 6.4 | $F / \mathrm{mmm}^{\text {c }}$ | $a=\underset{b-a}{ }=5.4634(3)$ | 23.161(1) | ( $\overline{0.08}, 0.24,1\rangle^{\text {c }}$ | 20 |
    | 2:0:2:1 | 1.8 | 0.02 | 2 | 1.1 | 6.3 | $14 / \mathrm{mmm}$ | 3.8587(4) | 23.152(2) | $\left(\overline{0.16,0.08,1)}{ }^{\text {e }}\right.$ | 15-20 |
    | 2:1:2:2 | 1.7 | 0.9 | 2 | 2.3 | 8.1 | [4/mmm | 3.857(1) | 29.39(1) | (0.17,0,1) | 95-108 |
    | 2:2:2:3 | 1.6 | 1.8 | 2 | 3.1 | 10.1 | $14 / \mathrm{mmm}$ | 3.822(4) | 36.26(3) | <0.17,0,1) | 118-125 |

    ${ }^{2}$ No superlattice spots observed.
    ${ }^{6}$ Nonmetallic or weakly metallic samples with no superconducting transition observed in resistivity and magnetic susceptibility studies for temperatures down to 4.2 K .
    The symmetry of the structure is orthorhombic if the observed superlattice is ignored. Taking the superlattice into account lowers the symmetry to monoclinic.
    ${ }^{d}$ Sample prepared from a Cu -rich starting composition, $\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$.
    ${ }^{\circ}$ The superstructure is identical to that for the orthorhombic 2:0:2:1 polymorph.
    were determined from powder x-ray diffraction patterns extending from $2 \theta=3^{\circ}$ to $70^{\circ}$ and verified by electron diffraction studies. These studies showed that all of the $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ compounds have tetragonal cells at room temperature. The $\mathrm{Tl}_{1} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+3}$ compounds contain $\mathrm{Tl}-\mathrm{O}$ monolayers, resulting in primative tetragonal cells, whereas the $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+4}$ compounds contain Tl-O bilayers, resulting in bodycentered tetragonal cells. The lattice parameters and symmetries of the various structures are included in Table I. As discussed later, the 2:0:2:1 compound also has an orthorhombic polymorph. As shown in Fig. 1, each oxide has a single peak in the low-angle portion ( $3^{\circ} \leq 2 \theta \leq 10^{\circ}$ ) of its $x$-ray diffraction pattern which results from the large c/a ratio in each structure. These peaks, (001) for $m=1$ and (002) for $m=2$, serve as fingerprints with which each of the compounds within the
    

    FIG. 1. Low-angle section of the powder $x$-ray diffraction patterns for the six phases $\mathrm{T}_{m} \mathrm{Ca}_{m-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}(m=1$, 2; $n=1,2,3$ ).
    $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ family can be uniquely identified. The peak systematically shifts to lower angles as $n$ increases within both the $\mathrm{T}_{1} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+3}$ and $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+4}$ families, consistent with an expansion of the unit cell along the $c$ axis by the addition of extra $\mathrm{CuO}_{2}$ and Ca planes. The peaks are in all cases at lower angles in the $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+4}$ compounds compared to the corresponding $\mathrm{Tl}_{1} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+3}$ compound, consistent with the increased number of T1-O layers in the $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+4}$ compounds. The peaks are asymmetrically broadened to low angles because of geometrical aberrations in the focusing condition resulting from the flat specimens used. ${ }^{8}$ The arrangement of the cations in the various compounds is shown in Fig. 2. The positions of the oxygen atoms are inferred by comparison with related structures in the $\mathrm{La}_{2}-\mathrm{Sr}_{x} \mathrm{CuO}_{4}$, $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{x}$, and $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ families. ${ }^{9-11}$ The six structures are comprised of Cu perovskitelike blocks containing one, two, or three $\mathrm{CuO}_{2}$ planes sandwiched between T1-O monolayers (1:0:2:1, 1:1:2:2, and 1:2:2:3 compounds) or bilayers (2:0:2:1, 2:1:2:2, 2:2:2:3 compounds). The Ba cations are located in planes adjacent to the T1-O unit and the Ca cations form planes within the interior of the Cu perovskitelike unit.

    Since the preparation, structure, and properties of the double and triple $\mathrm{CuO}_{2}$ layer oxides appear to be much less complex than those of the single $\mathrm{CuO}_{2}$ layer oxides for both the monolayer and bilayer T1-O compounds, we will discuss these groups of compounds separately. As described earlier, for each of the $n=2$ and $n=3$ compounds a single tetragonal structure was found. An important structural feature of these compounds observed by TEM, scanning electron microscopy (SEM), and electron microprobe studies are intergrowths of structures related to the primary phase by the addition or removal of $\mathrm{CuO}_{2}$ or T1-O layers. For some samples SEM images showed contrast striations $=5-10 \mu \mathrm{~m}$ in width within individual
    

    FIG. 2. Nominal structures of the six $\mathrm{Tl}_{m} \mathrm{Ca}_{\boldsymbol{m}-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n}$ $\mathrm{O}_{2}(n+1)+m$ phases for $n=1,2$ and $m=1,2,3$.
    grains which result from intergrowths of regions with different proportions of heavy atoms. TEM studies revealed the existence of intergrowths on much finer length scales, as demonstrated in Fig. 3 for a sample prepared from a starting composition of $\mathrm{Tl}_{0.85} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$. Figure 3 (a) shows a selected area diffraction pattern along $b^{*}$ which indicates that this grain contains both 1:1:2:2 and 1:2:2:3 phases. Indeed Meissner data on this sample lincluded in Fig 4(d)] indicate two superconducting transitions with $T_{c}=65$ and $=105 \mathrm{~K}$, consistent with the presence of extended regions of two distinct phases. Coincidently, the $c$ lattice parameters of the $1: 1: 2: 2$ and $1: 2: 2: 3$ phases are almost exactly in the ration of $4 / 5$ so that every fifth 1:2:2:3 hol spot coincides with every fourth $1: 1: 2: 2$ hol spot in Figure 3(a). High-resolution TEM micrographs in Figs. 3(b) and 3(c) show intergrowths of the
    

    FIG. 3. (a) [010] selected area diffraction (SAD) pattern and (b) corresponding image of crystallites containing regions of 1:2:2:3 and 1:1:2:2. The arrows in (b) denote unit-cell thick intergrowths of $1: 1: 2: 2$ in $1: 2: 2: 3$. (c) High-resolution transmission electron micrograph of one unit-cell thick 1:1:2:2 intergrowth in 1:2:2:3.
    

    FIG. 4. Meissner susceptibility vs temperature for an applied field of 100 Oe for materials with starting cation composition, (a) $\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{2}(o), \mathrm{Tl}_{2} \mathrm{Ca}_{0.05} \mathrm{Ba}_{2} \mathrm{Cu}_{1.05}\left(0,+\right.$ ), and $\mathrm{Tl}_{2} \mathrm{Ca} .15-$ $\mathrm{Ba}_{2} \mathrm{Cu}_{215}$ ( $\boldsymbol{\nabla}$ ); (b) $\mathrm{T1}_{1} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3}\left(\boldsymbol{)}\right.$ ), $\mathrm{T}_{2} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$ (0), and $\mathrm{Tl}_{22} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$ ( $\left(\right.$ ); (c) $\mathrm{T}_{1} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3}$ ( $(\mathrm{O}), \mathrm{T}_{1} \mathrm{Ca}_{2} \cdot \mathrm{Ba}_{1} \mathrm{Cu}_{3}$ ( 0 ), and $\mathrm{Tl}_{1} \mathrm{Ca}_{3} \mathrm{Ba}_{1} \mathrm{Cu}_{3}$ ( 0 ); (d) $\mathrm{Tl}_{035} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$ ( 0 ), $\mathrm{Tl}_{1} \mathrm{Ca}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$ $\left(O_{+}+\right)$, and $\mathrm{Tl}_{0 . a 5} \mathrm{Ca}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3}(\boldsymbol{\nabla})$. The phases present in the pellet giving rise to the diamagnetic susceptibility are (a) $2: 0: 2: 1$ and 2:1:2:2, (b) 2:1:2:2, (c) 2:2:2:3, and (d) 1:1:2:2 and 1:2:2:3.

    1:1:2:2 and 1:2:2:3 phases on length scales extending from $=1 \mu \mathrm{~m}$ down to one unit cell. The intergrowths are randomly distributed along the stacking axis. Isolated intergrowths comprising four $\mathrm{CuO}_{2}$ planes were found in some samples (see Fig. 5) but no evidence was found for extended intergrowths comprising greater than three $\mathrm{CuO}_{2}$ layers in these or other samples especially prepared from Cu - and Ca -rich starting compositions. A second type of intergrowth was observed in samples of the 1:2:2:3 phase in which an extra T1-O plane was occasionally inserted between the Cu perovskitelike units, creating local regions of the 2:2:2:3 phase. Microprobe data show that the Tl content is systematically high in the compounds containing single T1-O layers and systematically low in those com-
    

    FIG. 5. High-resolution TEM image of an isolated four-$\mathrm{CuO}_{2}$-layer intergrowth. The markers denote the positions of the Cu columns.
    pounds with T1-O bilayers (see Table I) thus suggesting that intergrowths of T1-O monolayers in the T1-O bilayers materials and $\mathrm{Tl}-\mathrm{O}$ bilayers in the $\mathrm{Tl}-\mathrm{O}$ monolayer compounds are a general feature of these materials.
    Meissner data (see Fig. 4) established that $T_{c}$ can take a range of values for all of the double and triple $\mathrm{CuO}_{2}$ layer compounds- $T_{c}=95-108 \mathrm{~K}$ for 2:1:2:2, $T_{c}=118-125$ K for $2: 2: 2: 3, T_{c}=65-85 \mathrm{~K}$ for $1: 1: 2: 2$, and $T_{c}=100$ -110 K for $1: 2: 2: 3$. For a given compound, $x$-ray diffraction and microprobe studies did not detect any obvious difference between the samples with different transition temperatures. TEM studies, however, showed a clear correlation between the density of intergrowths and $T_{c}$. For the $2: 1: 2: 2,2: 2: 2: 3$, and $1: 2: 2: 3$ phases the material with no intergrowths displayed the highest transition temperature, whereas for the $1: 1: 2: 2$ compound the sample with the lowest density of intergrowths had the lowest $T_{c}$. As the density of intergrowths increased we observed that $T_{c}$ systematically decreases or increases, respectively. It is possible that the structural or electronic modifications caused by the intergrowths are directly responsible for the decreased transition temperatures. Alternatively the presence of the intergrowths may simply reflect a means whereby the system accommodates, to some extent, offstoichiometry in the cation sites which in turn may influence $T_{c}$. It is difficult to determine whether it is the local change in structure or composition which is responsible for the decrease in $T_{c}$ since these are concurrent changes.

    A second important structural feature found in all of the double and triple $\mathrm{CuO}_{2}$ layer compounds is the presence of weak superlattice reflections in the selected area. electron diffraction patterns. These reflections are considerably weaker than those previously found in the $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ compound ${ }^{12-16}$ and indicate different structural modulations than those in the $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ compound. The patterns can be described by a set of symmetry-related wave vectors, $\mathbf{k}$. Each wave vector describes a pair of reflections symmetrically disposed a reciprocal distance | $\mathbf{k} \mid$ along $\mathbf{k}$ on either side of each Bragg peak, which would be consistent with a sinusoidal modulation of the charge density along this direction. ${ }^{17}$ The possibility that each $\mathbf{k}$ corresponds to a different crystal variant with lowered symmetry is unresolved. The Tl-O monolayer and bilayer families each display a distinctive pattern of superlattice reflections, shown schematically in Figs. 6(a) and 6(b). One example of electron diffraction patterns showing the superlattice reflections is given in Fig. 7 for the 1:1:2:2 phase.

    The structure and properties of the single $\mathrm{CuO}_{2}$ layer compounds are more sensitive to the preparation conditions than those of the double and triple $\mathrm{CuO}_{2}$ layer compounds. When prepared from a $\mathrm{T}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1}$ starting composition, the 2:0:2:1 compound has a face-centered orthorhombic cell and is not superconducting. The material is heavily twinned with twin planes of $\{110\}$ type in the orthorhombic cell. This cell is related to the tetragonal cell by a rotation of $=45^{\circ}$ about the $c$ axis with $a$ and $b$ increased in size by a factor of $=\sqrt{2}$. However when the 2:0:2:1 compound is prepared from a Cu -rich starting composition, $\mathrm{Tl}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{2}$, the compound is superconduct-
    

    FIG. 6. Schematic diagram of the arrangement of superlattice reflections about the fundamental reflections for (a) the 1:1:2:2 and 1:2:2:3 phases, (b) the 2:1:2:2 and 2:2:2:3 phases, (c) the $2: 0: 2: 1$ phase. The fundamental reflections are shown as solid circles, and those which are systematically absent are shown as dashed circles. The superstructure is shown by open circles and the corresponding wave vectors by bold arrows.
    ing at $=20 \mathrm{~K}$. While x -ray data indicate the structure is pseudotetragonal, transmission electron micrographs reveal a tweed pattern which is consistent with local orthorhombic distortion. A tetragonal polymorph with no evidence from TEM studies of either an average or local orthorhombic distortion can be formed by preparing the compound from a pellet containing a small amount of Ca ( $\mathrm{Tl}: \mathrm{Ca}: \mathrm{Ba}: \mathrm{Cu}=2: y: 2: 1+y$, with $y=0.05-0.15$ ). This polymorph is also superconducting with a $T_{c}$ which is independent of the amount of Ca in the starting composition but weakly dependent on the annealing time- $T_{c}=15$ and 20 K for anneal times at $880^{\circ} \mathrm{C}$ of 3 and 9 h , respectively. As suggested by the Meissner data in Fig. 4(a) these pellets contain, in addition to the tetragonal $2: 0: 2: 1$ phase, a substantial amount of the 2:1:2:2 phase which increases as the proportion of Ca in the starting composition is increased. There is a stfficient amount of this phase that the resistance of these pellets actually drops to zero at
    

    FIG. 7. (a) [100] and (b) [001] selected area diffraction patterns from crystallites of 1:1:2:2 showing superiattice reflections.
    $T_{c}=100 \mathrm{~K}$. The Meissner data in Fig. 4(a) show that for $y=0.05$ the ratio of $2: 1: 2: 2$ to $2: 0: 2: 1$ is about $8 \%$ and for $y=0.15$ the ratio is increased to $=30 \%$. Electron microprobe analysis shows that only a small amount of Ca ( $\simeq 0.2 \mathrm{at} . \%$ ) is incorporated into the $2: 0: 2: 1$ grains and consequently the role of the Ca doping in changing the structure and properties of the 2:0:2:1 material is unclear. Moreover there are reports that the 2:0:2:1 phase can be prepared without Ca with a transition temperature as high as $=85 \mathrm{~K} .{ }^{5}$ Both polymorphs of the 2:0:2:1 structures display a similar superlattice with an approximate wave vector, $k=[\overline{0.08}, 0.24,1]$ in the orthorhombic setting. Taking the superlattice into account lowers the symmetry of both the orthorhombic and tetragonal structures to monoclinic with the $c$ axis being unique. As shown in Fig. 8 this superstructure is different from those found in the double and triple $\mathrm{CuO}_{2}$ layer compounds.
    The other member of the $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ family which contains single $\mathrm{CuO}_{2}$ layers, the $1: 0: 2: 1$ phase, has a primitive tetragonal cell and is not superconducting for the wide range of preparative conditions considered in this study, including growth from Cu-rich or Ca-doped starting compositions. No superstructures have been observed in these crystals so far.
    

    FIG. 8. (a) [100], (b) [110], and (c) [001] selected area diffraction patterns from a crystallite of 2:0:2:1.

    As shown in Table I there is no obvious correlation of superlattice structure with the superconducting properties of the $\mathrm{Tl}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ compounds. Note that in the closely related compound, $\mathrm{Bi}_{2} \mathrm{Sr}_{1} \mathrm{Ca}_{2} \mathrm{Cu}_{2} \mathrm{O}_{x}$, it has recently been proposed that the observed incommensurate superlattice corresponds to a distortion of both the $\mathrm{Bi}-\mathrm{O}$ and $\mathrm{CuO}_{2}$ planes resulting from ordered vacancies
    

    FIG. 9. Dependence of $T_{c}$ on the number of $\mathrm{CuO}_{2}$ planes within the Cu perovskitelike unit for the $\mathrm{Tl}_{1} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+3}$ ( ) and $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+4}($ ( , this work; O , Ref. 5 ) series of compounds. The dashed vertical lines correspond to the variations in $T_{c}$ found for each phase. 0 corresponds to data for ( Tl , $\mathrm{Bi})_{1}(\mathrm{Ca}, \mathrm{Sr})_{2} \mathrm{Cu}_{1} \mathrm{O}_{x}$ (Ref. 21).
    on the Sr sites. ${ }^{16}$ The vacancies are postulated to determine the carrier density on the $\mathrm{CuO}_{2}$ planes and so influence the $T_{c}$ in a manner similar to that first noted by Schafer, Penney, and Olsen for the $\mathrm{La}_{2}-\mathrm{Sr}_{x} \mathrm{CuO}_{4-y}$ compounds. ${ }^{18}$ The number of different superlattice structures found in the T1-Ca-Ba-Cu-O system provides a more extensive basis with which to test such hypotheses. Indeed it may be significant that, as shown in Table I, there are important variations in stoichiometry away from the ideal stoichiometries expected for the various $\mathrm{T}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2^{-}}$ $\mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ phases. In particular, the [T1]/[Bal ratio is higher for the $n=1$ compounds compared to those for $n=2$ and $n=3$. Band-structure calculations of both the $\mathrm{TL}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2(n+1)+m}$ compounds and $\mathrm{Bi}_{2} \mathrm{Sr}_{1} \mathrm{Ca}_{2}-$ $\mathrm{Cu}_{2} \mathrm{O}_{x}$ indicate that the stoichiometry of the $\mathrm{Tl}-\mathrm{O}$ and $\mathrm{Bi}-\mathrm{O}$ layers would have a profound impact on the carrier density in these materials. ${ }^{19,20}$ The extent of offstoichiometry on the cation or the oxygen sites in the Tl-$\mathrm{Ca}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ phases requires further study. Note also that one group has recently prepared a complex material of the form $(\mathrm{T}, \mathrm{Bi})_{1}(\mathrm{Ca}, \mathrm{Sr})_{2} \mathrm{Cu}_{1} \mathrm{O}_{x}$ with the $1: 0: 2: 1$ structure which appears to superconduct at temperatures of up to 50 K (Ref. 21). The variation of properties of the single $\mathrm{CuO}_{2}$ layers compounds provides a fertile area for further study and highlights the difficulties in preparing these multicomponent oxides in a controlled manner.

    In conclusion, these studies have shown that the superconducting transition temperature increases with the number of $\mathrm{CuO}_{2}$ planes in the perovskitelike unit for both the $\mathrm{Tl}_{1} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+3}$ and $\mathrm{Tl}_{2} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{n} \mathrm{O}_{2 n+4}$ structures (Fig. 9). A similar dependency is found in both series of compounds with an increased spread of $T_{c}$ as the number of $\mathrm{CuO}_{2}$ planes is reduced. The range of $T_{c}$ in the double and triple $\mathrm{CuO}_{2}$ layer compounds correlates with the density of intergrowth defects. No such defects have ben observed so far in the single $\mathrm{CuO}_{2}$ layer compounds,
    even when doped with Ca . One might speculate that in this case the variation in transition temperature may result from variations in cation or oxygen site occupancy. The increase in $T_{c}$ as $n$ increases may be accounted for by various theories, including several based on the BCS theory ${ }^{19}$ and others invoking more exotic mechanisms such as the resonating-valence-bond model. ${ }^{22}$ The variety of structures and properties in the Tl-Ca-Ba-Cu-O system provides a model family of compounds with which various
    theories of high-temperature superconductivity can be evaluated.

    We are indebted to S. J. La Placa, F. Herman, and J. B. Torrance for many useful discussions. We thank C. C. Torardi, R. B. Flippen, and R. M. Hazen for discussions regarding the 2:0:2:1 compound. We are grateful to Professor Sinclair at Stanford for the use of his electron microscope.
    ${ }^{1}$ Z. Z. Sheng and A. M. Hermann, Nature (London) 332, 138 (1988); 332, 55 (1988).
    ${ }^{2}$ R. M. Hazen, L. W. Finger, R. J. Angel, C. T. Prewitt, N. L. Ross, C. G. Hadidiacos, P. J. Heaney, D. R. Veblen, Z. Z. Sheng, A. El Ali, and A. M. Hermann, Phys. Rev. Lett. 60, 1657 (1988).
    ${ }^{3}$ S. S. P. Parkin, V. Y. Lee, E. M. Engler, A. I. Nazzal, T. C. Huang, G. Gorman, R. Savoy, and R. Beyers, Phys. Rev. Lett. 60, 2539 (1988).
    ${ }^{4}$ S. S. P. Parkin, V. Y. Lee, A. I. Nazzal, R. Savoy, R. Beyers, and S. J. La Placa, Phys. Rev. Lett. 61, 750 (1988).
    ${ }^{5}$ C. C. Torardi, M. A. Subramanian, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdry, and A. W. Sleight, Science 240, 631 (1988).
    ${ }^{6}$ M. A. Subramanian, J. C. Calabrese, C. C. Torardi, J. Gopalakrishnan, T. R. Askew, R. B. Flippen, K. J. Morrissey, U. Chowdry, and A. W. Sleight, Nature (London) 332, 420 (1988).
    ${ }^{7}$ S. Kondoh, Y. Ando, M. Onoda, and M. Sato, Solid State Commun. 65, 1329 (1988).
    ${ }^{8}$ W. Parrish, X-ray and Electron Methods of Analysis (Plenum, New York, 1968).
    ${ }^{9}$ J. M. Tarascon, Y. Le Page, P. Barboux, B. G. Bagley, L. H. Greene, W. R. McKinnon, G. W. Hull, M. Giroud, and D. M. Hwang, Phys. Rev. B 37, 9382 (1988).
    ${ }^{10}$ S. A. Sunshine, T. Siegrist, L. F. Schneemeyer, D. W. Murphy, R. J. Cava, B. Batlogg, R. B. van Dover, R. M. Fleming. S. H. Glarum, S. Nakahara, R. Farrow, J. J. Krajewski, S. M. Zahurak, J. V. Waszczak, J. H. Marshall, P. Marsh, L. W.

    Rupp, and W. F. Peck, Phys. Rev. B 38, 893 (1988).
    IJ. B. Torrance, Y. Tokura, S. J. LaPlaca, T. C. Huang, R. J. Savoy, and A. I. Nazzal, Solid State Commun. 66, 703 (1988).
    ${ }^{12}$ T. M. Shaw, S. A. Shivanshankar, S. J. LaPlaca, J. J. Cuomo, T. R. McGuire, R. A. Roy, K. H. Kelleher, and D. S. Yee, Phys. Rev. B 37, 9856 (1988).
    ${ }^{13}$ D. R. Veblen, P. J. Heaney, R. J. Angel, L. W. Finger, R. M. Hazen, C. T. Prewitt, N. L. Ross, C. W. Chu, P. H. Hor, and R. L. Meng, Nature (London) 332, 334 (1988).
    ${ }^{14}$ E. A. Hewat, M. Dupuy, P. Bordet, J. J. Capponi, C. Chaillout, J. L. Hodeau, and M. Marezio, Nature (London) 333, 53 (1988).
    ${ }^{15}$ H. W. Zandbergen, Y. K. Huang, M. J. V. Menken, J. N. Li, K. Kadowaki, A. A. Menovsky, G. van Tendeloo, and S. Amelinckx, Nature (London) 332, 620 (1988).
    ${ }^{16}$ P. L. Gai and P. Day (unpublished).
    ${ }^{17}$ P. M. De Wolff, Acta Crystallogr. Sec. A 30, 777 (1974).
    ${ }^{18}$ M. W. Shafer, T. Penney, and B. L. Olsen, Phys. Rev. B 36, 4047 (1987).
    ${ }^{19}$ M. S. Hybertson and L. F. Mattheiss, Phys. Rev. Lett. 60, 1661 (1988).
    ${ }^{20}$ F. Herman, R. V. Kasowski, and W. Y. Hsu, Phys. Rev. B 38, 204 (1988); F. Herman, R. V. Kasowski, S. J. La Placa, and S. S. P. Parkin (unpublished).
    ${ }^{21}$ P. Haldar, A. Roig-Janicki, S. Sridhar, and B. C. Giessen (unpublished).
    22J. M. Wheatley, T. C. Hsu, and P. W. Anderson, Nature (London) 333, 121 (1988).
    

    FIG: 2. Nominal structures of the six $\mathrm{TI}_{m} \mathrm{Ca}_{n-1} \mathrm{Ba}_{2} \mathrm{Cu}_{4}$ : $O_{2 i n+1)+m}$ phases for $n=1,2$ and $m-1,2,3$.
    

    FIG. 3. (a) [010] selected area diffraction (SAD) patterin and (b) corresponding image of crystallites containing regions of $1: 2: 2: 3$ and $1: 1: 2: 2$. The arrows in (b) denote unit-cell thick intergrowths of $1: 1: 2: 2$ in $1: 2: 2: 3$. (c) High-resolution transmission electron micrograph of one unit-oell thick 1:1:2:2 intergrowth in 1:2:2:3.
    

    EIG. 5. Highresolution TEM image of an tolated four-CuOr-layer intergrowth. The markers denote the positions of the Ca columas.
    

    FIG. 7. (a) [100] and (b) [001] selected area diffraction patterns from crystallites of 1:1:2:2 showing superlattice refiections.
    

    FIG. 8. (a) [100], (b) [110], and (c) [001] selected area diffraction patterns from a crystallite of 2:0:2:1.

    ## BRIEF ATTACHMENT K

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Date: March 1, 2005
    Applicants: Bednorz et al.
    Docket: YO987-074BZ
    Serial No.: 08/479,810
    Filed: June 7, 1995
    Group Art Unit: 1751
    Examiner: M. Kopec
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT K

    # A New High- $\mathrm{T}_{\mathrm{c}}$ Oxide Superconductor without a Rare Earth Element 

    Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi and Toshihisa Asano<br>National Research Institute for Metals, Tsukuba Laboratories, Ibaraki 305<br>(Received January 22, 1988; accepted for publication January 23, 1988)


    #### Abstract

    We have discovered a new high- $T_{c}$ oxide superconductor of the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system without any rare earth element. The oxide $\mathrm{BiSrCaCu}_{2} \mathrm{O}_{x}$ has $T_{c}$ of about 105 K , higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ by more than 10 K . In this oxide, the coexistence of Sr and Ca is necessary to obtain high $T_{c}$.


    KEYWORDS: oxide superconductor, $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system, rare earth, high $\mathrm{T}_{\mathrm{c}}$, new stable superconductor

    Soon after the discovery of high- $T_{c}$ superconductors of the layered perovskites $(\mathrm{LaBa})_{2} \mathrm{CuO}_{4}{ }^{1)}$ and $\left(\mathrm{LaSr}_{2} \mathrm{CuO}_{4}{ }^{2}\right)$ with $T_{c}$ of about $40 \mathrm{~K}, \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}{ }^{3}$ with $T_{\mathrm{c}}$ of 94 K was synthesized. The discovery of these materials stimulated many researchers to investigate new oxide superconductors of still higher $T_{c}$ and extensive studies have been carried out to search for these oxides. Up to now, however, no new stable supercondutors with $T_{\mathrm{c}}$ higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ have been reported. The values of $T_{c}$ have not improved by the substitution of other rare earth elements for yttrium.

    In order to find high- $T_{c}$ superconductors, we believe that it is important to investigate other classes of oxides which do not include rare earth elements. This led us to study the superconducting oxide system including the Vb -element group such as Bi and Sb of trivalent elements, and we discovered a new high- $T_{c}$ superconducting material $\mathrm{BiSrCaCu}_{2} \mathrm{O}_{\text {. }}$. This oxide has $T_{\mathrm{c}}$ of about 105 K , being higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$, by more than 10 K .
    The value of $T_{\mathrm{c}}$ in the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}$ oxide system which does not include Ca is very low being about $8 \mathrm{~K} .{ }^{4,7} \mathrm{In}$ order to obtain high $T_{c}$, the coexistance of Sr and Ca in the Bi oxide system is found to be absolutely necessary.
    The $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ oxide samples were prepared from powder reagents of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{SrCO}_{3}, \mathrm{CaCO}_{3}$ and CuO . The appropriate amounts of powders were mixed, calcined at $800-870^{\circ} \mathrm{C}$ for 5 h , thoroughly reground and then cold-pressed into disk-shape pellets $(20 \mathrm{~mm}$ in diameter and 2 mm in thickness) at a pressure of 2 ton $/ \mathrm{cm}^{2}$. Most of the pellets were sintered at about $870^{\circ} \mathrm{C}$ in air or in an oxygen atmosphere and then furnace-cooled to room temperature.

    The electrical resistivity was measured by the standard four-probe method for a bar-shaped specimen of about $1 \times 2 \times 20 \mathrm{~mm}^{3}$ cut out from the pellets. Magnetization measurements were carried out with a vibrating sample magnetometer. The temperature was measured by Au7\%Fe-Chromel thermocouples. Figure 1 shows the resistivity vs temperatue curves of $\mathrm{BiSrCaCu}_{2} \mathrm{O}_{x}$ oxides thus prepared. Specimen (a) was sintered at a relatively low temperature of $800^{\circ} \mathrm{C}$ for 8 h while specimen (b) was sintered at a higher temperature of $882^{\circ} \mathrm{C}$ for 20 min followed by annealing at $872^{\circ} \mathrm{C}$ for 9 h . In the case of the lower sintering temperatue, the onset temperature ( $T_{c}^{\text {aa }}$ ) of the superconducting transition is about 83 K and the zero resistance state ( $T_{c}^{\text {off }}$ ) is reached at 75 K (low- $T_{c}$
    phase). On the other hand, in the case of a higher sintering temperature, a high- $T_{\mathrm{c}}$ phase appears, the onset temperature of which is about 120 K and $T_{c}$ extraporated to zero resistance is as high as 105 K . The value of $T_{c}^{o \mathrm{of}}$ is higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ by more than 10 K . Since a little amount of the low- $T_{c}$ phase still remained in the sample, a complete zero resistance state is achieved at 75 K which corresponds to that of the low- $T_{\mathrm{c}}$ phase. We have not succeeded in synthesizing the oxides with a single phase of the high- $T_{c}$ material at this moment. From our preliminary experiments, we know that sintering at high temperatures for a short duration of time is effective enough to increase the relative amount of the high $-T_{c}$ phase. This may indicate that the high- $T_{c}$ phase is stable at elevated temperatures.

    Figure 2 shows the magnetization vs temperature curve for the specimen (b) in Fig. 1 which was sintered at the higher temperatures. A Meissner effect showing a perfect diamagnetic state is observed exactly in the same temperature range as in curve (a) shown in Fig. 1. We conclude, therefore, that the present high- $T_{c}$ phase is indeed superconducting.

    The high- $T_{c}$ phase appears near the composition ratios of $\mathrm{Bi}: \mathrm{Sr}: \mathrm{Ca}=1: 1: 1$. As the composition deviates from
    

    Fig. 1. Temperature dependence of resistivities in $\mathrm{Bi}_{1} \mathrm{Sr}_{1} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ oxides (a) sintered in air at $800^{\circ} \mathrm{C}$ for 8 h , then cooled in a furnace and (b) sintered at $882^{\circ} \mathrm{C}$ for 20 min followed by annealing at $872^{\circ} \mathrm{C}$ for 9 h .

    # A New High- $\mathbf{T}_{\mathrm{c}}$ Oxide Superconductor without a Rare Earth Element 

    Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi and Toshihisa Asano<br>National Research Institute for Metals, Tsukuba Laboratories, Ibaraki 305<br>(Received January 22, 1988; accepted for publication January 23, 1988)


    #### Abstract

    We have discovered a new high- $T_{c}$ oxide superconductor of the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system without any rare earth element. The oxide $\mathrm{BiSrCaCu}_{2} \mathrm{O}_{x}$ has $T_{c}$ of about 105 K , higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ by more than 10 K . In this oxide, the coexistence of Sr and Ca is necessary to obtain high $T_{c}$.


    KEYWORDS: oxide superconductor, $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ system, rare earth, high $\mathrm{T}_{\mathrm{c}}$, new stable superconductor

    Soon after the discovery of high- $T_{c}$ superconductors of the layered perovskites $\left(\mathrm{LaBa}_{2} \mathrm{CuO}_{4}{ }^{1)}\right.$ and $\left.(\mathrm{LaSr})_{2} \mathrm{CuO}_{4}{ }^{2}\right)$ with $T_{c}$ of about $40 \mathrm{~K}, \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}{ }^{3}$ with $T_{\mathrm{c}}$ of 94 K was synthesized. The discovery of these materials stimulated many researchers to investigate new oxide superconductors of still higher $T_{\mathrm{c}}$ and extensive studies have been carried out to search for these oxides. Up to now, however, no new stable supercondutors with $T_{\mathrm{c}}$ higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ have been reported. The values of $T_{\mathrm{c}}$ have not improved by the substitution of other rare earth elements for yttrium.
    In order to find high- $T_{\mathrm{c}}$ superconductors, we believe that it is important to investigate other classes of oxides which do not include rare earth elements. This led us to study the superconducting oxide system including the Vb -element group such as Bi and Sb of trivalent elements, and we discovered a new high- $T_{c}$ superconducting material $\mathrm{BiSrCaCu} \mathrm{O}_{2}$. This oxide has $T_{\mathrm{c}}$ of about 105 K , being higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ by more than 10 K .

    The value of $T_{\mathrm{c}}$ in the $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Cu}-\mathrm{O}$ oxide system which does not include Ca is very low being about $8 \mathrm{~K}{ }^{4,5}$ In order to obtain high $T_{c}$, the coexistance of Sr and Ca in the Bi oxide system is found to be absolutely necessary.

    The $\mathrm{Bi}-\mathrm{Sr}-\mathrm{Ca}-\mathrm{Cu}-\mathrm{O}$ oxide samples were prepared from powder reagents of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{SrCO}_{3}, \mathrm{CaCO}_{3}$ and CuO . The appropriate amounts of powders were mixed, calcined at $800-870^{\circ} \mathrm{C}$ for 5 h , thoroughly reground and then cold-pressed into disk-shape pellets ( 20 mm in diameter and 2 mm in thickness) at a pressure of $2 \mathrm{ton} / \mathrm{cm}^{2}$. Most of the pellets were sintered at about $870^{\circ} \mathrm{C}$ in air or in an oxygen atmosphere and then furnace-cooled to room temperature.

    The electrical resistivity was measured by the standard four-probe method for a bar-shaped specimen of about $1 \times 2 \times 20 \mathrm{~mm}^{3}$ cut out from the pellets. Magnetization measurements were carried out with a vibrating sample magnetometer. The temperature was measured by Au7\%Fe-Chromel thermocouples. Figure 1 shows the resistivity vs temperatue curves of $\mathrm{BiSrCaCu} \mathrm{O}_{2}$ oxides thus prepared. Specimen (a) was sintered at a relatively low temperature of $800^{\circ} \mathrm{C}$ for 8 h while specimen (b) was sintered at a higher temperature of $882^{\circ} \mathrm{C}$ for 20 min followed by annealing at $872^{\circ} \mathrm{C}$ for 9 h . In the case of the lower sintering temperatue, the onset temperature ( $T_{c}^{\circ 9}$ ) of the superconducting transition is about 83 K and the zero resistance state ( $T_{\mathrm{c}}^{\text {off }}$ ) is reached at 75 K (low- $T_{\mathrm{c}}$
    phase). On the other hand, in the case of a higher sintering temperature, a high- $T_{c}$ phase appears, the onset temperature of which is about 120 K and $T_{c}$ extraporated to zero resistance is as high as 105 K . The value of $T_{\mathrm{c}}^{\text {off }}$ is higher than that of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ by more than 10 K . Since a little amount of the low- $T_{c}$ phase still remained in the sample, a complete zero resistance state is achieved at 75 K which corresponds to that of the low- $T_{c}$ phase. We have not succeeded in synthesizing the oxides with a single phase of the high- $T_{c}$ material at this moment. From our preliminary experiments, we know that sintering at high temperatures for a short duration of time is effective enough to increase the relative amount of the high- $T_{c}$ phase. This may indicate that the high- $T_{c}$ phase is stable at elevated temperatures.

    Figure 2 shows the magnetization vs temperature curve for the specimen (b) in Fig. 1 which was sintered at the higher temperatures. A Meissner effect showing a perfect diamagnetic state is observed exactly in the same temperature range as in curve (a) shown in Fig. 1. We conclude, therefore, that the present high- $T_{c}$ phase is indeed superconducting.

    The high- $T_{c}$ phase appears near the composition ratios of $\mathrm{Bi}: \mathrm{Sr}: \mathrm{Ca}=1: 1: 1$. As the composition deviates from
    

    Fig. 1. Temperature dependence of resistivities in $\mathrm{Bi}_{1} \mathrm{Sr}_{1} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ oxides (a) sintered in air at $800^{\circ} \mathrm{C}$ for 8 h , then cooled in a furnace and (b) sintered at $882^{\circ} \mathrm{C}$ for 20 min followed by annealing at $872^{\circ} \mathrm{C}$ for 9 h .
    

    Fig. 2. Magnetization of $\mathrm{Bi}_{1} \mathrm{Sr}_{1} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ for the sample (b) in Fig. 1 in a field of 100 Oe .
    

    Fig. 3. X-ray ( $\mathrm{Cu} \mathrm{k} \alpha$ ) diffraction pattern of the $\mathrm{Bi}_{1} \mathrm{Sr}_{1} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ oxide superconductor for the sample (b) in Fig. 1 .
    this ratio, a low- $T_{c}$ phase tends to appear irrespective of the sintering conditions. In $\mathrm{BiSrCaCu}_{y} \mathrm{O}_{x}$ oxides, the oxide of $y=1$ is not superconducting. According to the results of the X-ray diffraction analyses, the starting material corresponding to the composition of $\mathrm{Bi}_{1} \mathrm{Sr}_{1} \mathrm{Ca}_{1} \mathrm{Cu}_{2} \mathrm{O}_{x}$ seems to form a single phase. While in the nominal composition of oxides with $y>2$, unreacted CuO remained in the sample. A typical X-ray diffraction pattern for the oxide of $y=2$ (sample (b) in Fig. 1) is shown in Fig. 3. Although the structure of this oxide is not identified yet, it appears to be different from those of $(\mathrm{LaSr})_{2} \mathrm{CuO}_{4}$ and $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$.
    This material having high $T_{c}$ above 105 K may have potential application in various industrial fields in the near future. It should be noted that these oxides are extremely stable in water and moisture and that no change in the superconducting properties has been observed even after the thermal cyclings between 4 K and room temperature or above.
    Furthermore, the oxide has two phases with different
    $T_{c}$ and their structures seem to be different from those of high- $T_{c}$ oxide superconductors discovered up to now. We believe that this new oxide will contribute greatly to elucidating the high $-T_{\mathrm{c}}$ superconducting mechanism.

    ## Acknowledgements

    We would like to thank Dr. M. Uehara for the measurements of magnetization and Dr. K. Ogawa for his useful discussions.

    ## References

    1) J. G. Bednorz and K. A. Müller: Z. Phys. B64 (1986) 189.
    2) S. Uchida, H. Takagi, K. Kitazawa and S. Tanaka: Jpn. J. Appl. Phys. 26 (1987) L1.
    3) M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Haang, Y. Q. Wang and C. W. Chu: Phys. Rev. Lett. 58 (1987) 908.
    4) J. Akimitsu, A. Yamazaki, H. Sawa and H. Fujiki: Jpn. J. Appl. Phys. 26 (1987) L2080.
    5) C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau: Z. Phys. B68 (1987) 421.

    ## BRIEF ATTACHMENT L

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT L

    The resulting map (Fig. 1e) shows that the absorption feature has a mean $W$ of 0.2 nm and stretches from roughly north to south across the entire emission line region, corresponding to a length of $\mathbf{> 3 0} \mathrm{kpc}$ (the map presents only the area with good signal-to-noise ratio). Its spatial width is rather uncertain, because it is unresolved in the east-west direction ( $<1.5^{\prime \prime}$ ). It cannot be narrower than $0.5^{4}$ because otherwise even a $100 \%$ obscuration would be washed out by our beam into a relative depression of $<25 \%$ ( 0.25 nm ). So we assume a projected size of $10 \times 10 \mathrm{kpc}^{2}$ for the absorber, with a deconvoluted equivalent width of about 0.5 nm .

    Such an absorber can either consist of one or more clouds located well in front of 4C41.17 (if the blueshift of the absorption is cosmological, the absorber sits at a comoving distance of $5 \mathrm{Mpc})$. On the other hand, the velocity in the EELR itself is large enough to cover this blueshift; otherwise we would be unable to detect the feature. Thus, a dense, partially ionized cloud at the edge of 4C41.17 could equally explain the absorption. In this latter case more detailed observations are necessary for a physical interpretation. We therefore would like to pursue the former possibility of a physically separated absorber. Such clouds-commonly known as Lyman-forest clouds-and their properties have been extensively studied in the absorption line spectra of high redshift quasars.
    For comparison we make use of a spectrum ${ }^{14}$ of the quasar Q0000-263 ( $z=4.11$ ), the Lyman-forest of which covers the $\lambda$ range of our observation. We smoothed the original spectrum (resolution, 0.1 nm ) to our instrumental resolution of 1.0 nm . The comparison between smoothed and original spectrum reveals that any absorption feature as deep as that observed in 4C41.17 typically consists of two or more narrow absorption lines. We have to realize therefore, that our 'absorption cloud' is likely to be a superposition of several individual Lyman-forest clouds. Nevertheless, we believe that the outline of the absorber in the $W$ map (Fig. $1 e$ ) is most likely to be determined by onesingle cloud which made the feature strong enough to become detectable, and we assign half of the measured equivalent width ( 0.25 nm ) to this cloud. Assuming a Doppler parameter $b=$ $35 \mathrm{~km} \mathrm{~s}^{-1}$ and $N_{\mathrm{H}} / N_{\mathrm{Hn}}=10^{-4}$ as typical for Lyman clouds of that depth (refs 1,3 ), we find a column density $N_{H}, \sim 10^{15} \mathrm{~cm}^{-2}$. A cigar-shaped cloud of 40 kpc length and 10 kpc diameter would contain a total hydrogen mass of $\sim 3 \times 10^{7} \mathrm{Mo}_{\circ}$.
    What is the probability of detecting such an absorption feature in front of 4C41.17? Both the smoothed spectrum of Q0000-263 (ref. 14) and the standard $\mathrm{d} N(W, z) / \mathrm{d} z$ relation ${ }^{\text {ts }}$ yield -25 features with $W>0.4 \mathrm{~nm}$ on each line of sight and within one $\pm$ unit at the observed wavelength. Considering the 'useful' wavelength range of $\sim 1.2 \mathrm{~nm}$ (the blue half of the width of the emission line) in our search for line features, and the area of the EELR inspected of -20 arcsec $^{2}$, the probability of detecting a cloud of a typical size of a few arcsec${ }^{2}$ is close to 1 .
    In conclusion, we believe that we have succeeded in obtaining the first direct observation of a Lyman absorption cloud. Either this cloud belongs directly to the mass concentration around 4 C 41.17 or it is a physically separated foreground object. In the latter case it would represent the population of Lyman-forest clouds known from the absorption spectra of quasars. In either case, our observations indicate that the relevant absorbers have projected sizes of some $100 \mathrm{kpc}^{2}$ and an elongated shape, like a cigar or a sheet seen almost edge-on in the case of 4C41.17.


    9. Spirrad H in Epoch of Cataxy formation (eds Frent C. S. ef af) 39-56 (Kawwer, Dordrecht 19883
    10. Lilly. S. Astroptys 1 333, 161-167 (1988)
    11. Chambers K. C. Miley. G. K. \& ven Breaged, W. Astraptys 1 363, 21-39 [1990)
    12. Benserthelmer, K. \& Hipoetain, H. Astr. Astroptys, 284, 455-471 (1992).
    13. Röser, S. a Bastlan, U. Fran Star Catatogivo ispektrum Akad.. Heidelberg, 1991).
    14. Wetch. J. K. et at ESO Messenger 51, 15-18 (1988).
    15. Murcoch, H. 5., Hertstead R. W. Pettini, M. \& Blades. L. C. Astraptys. $\&$ 309, 19-32 (1986).

    ACXNOWLEDGEMENTS. We thank R. Carswell for the specturn of Q0000-236 and H. filser for discussions.

    ## Supercomductivity di 9ßK m $\mathrm{Mg} \mathrm{Bl}_{2} \mathrm{CuO}_{4+\delta}$

    S. N. Purtirn*t, E. V. Antipov*, D. Chmaissem $\dagger$ © M. Marcziot

    * Chemical Department, Moscow State University.

    119899 Moscow, Russia
    $\dagger$ Leboratoire de Cristallographie CNPSUF, BP 166.
    38042 Grenoble Cedex 09, France
    $\ddagger$ AT\&T Bell Laboratories, Murray Hill, New Jersey 07974, USA
    FOLLOWING the discovery ${ }^{1}$ of high-transition-temperature (high$T_{c}$ ) saperconductivity in doped $\mathrm{La}_{2} \mathrm{CuO}_{4}$, several families of related compormds have been discovered which have layers of $\mathrm{CuO}_{2}$ as the essential requirement for superconductivity: the highest transition temperatures so far have been found for thalliumbearing compounds². Recently the mercury-bearing compound $\mathrm{HgBa}_{2} \mathrm{RCa}_{2} \mathrm{O}_{6+\delta}$ ( $\mathrm{Hg}-1212$ ) was synthesized ${ }^{3}$ (where R is D rareearth element), with a structure similar to the thallium-bearing superconductor $\mathrm{TIBa}_{2} \mathrm{CaCa}_{2} \mathrm{O}_{7}$ (TI-1212), which has one TIO layer and two $\mathrm{CuO}_{2}$ layers per unit cell, and a $T_{\mathrm{c}}$ of 85 K (ref. 2). But in spite of its resemblance to $\mathrm{Tl}-1212, \mathrm{Hg}-1212$ was found not to be superconducting. Here we report the synthesis of the related compound $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+8}$ ( $\mathrm{Hg}-1201$ ), with oaly one $\mathrm{CuO}_{2}$ layer per unit cell, and show that it is superconducting below 94 K . Its structure is similar to that of T1-1201 (which has a $T_{e}$ of $<10 \mathrm{~K}$ ) ${ }^{4}$, but its transition temperature is coasiderably higher. The availability of a material with bigh $T_{c}$ but only a single metal oxide ( HgO ) layer may be important for technological applications, as it seems that a smaller spacing between $\mathrm{CuO}_{2}$ planes leads to better superconducting properties in a magnetic field ${ }^{5}$.
    The samples were prepared by solid state reaction between stoichiometric mixtures of $\mathrm{Ba}_{2} \mathrm{CuO}_{3+8}$ and yellow $\mathrm{HgO}(98 \%$ purity, Aldrich). The precursor $\mathrm{Ba}_{2} \mathrm{CuO}_{3+8}$ was obtained by the same type of reaction between $\mathrm{BaO}_{2}$ ( $95 \%$ purity, Aldrich) and CuO (NormaPur, Prolabo) at $930^{\circ} \mathrm{C}$ in oxygen, according to the procedure described by De Leeuw et al ${ }^{6}$. The powders were ground in an agate mortar and placed in silica tubes. All these operations were carried out in a dry box. After evacuation, the tubes were sealed, placed in steel containers, as described in ref. 3, and heated for 5 h to reach $-800^{\circ} \mathrm{C}$. The samples were then cooled in the furnace, reaching room temperature after -10 h .
    The formation of the new phase $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+\delta}$ was revealed by X-ray powder analysis, performed with a Guinier-Hägg focusing camera and $\mathrm{Fe} \mathrm{K} \alpha$ radiation ( $1.93730 \AA$ ). Finely powdered silicon ( $a=5.43088 \AA$ at $25^{\circ} \mathrm{C}$ ) was used as an internal standard. The intensities of the reflections were evaluated by means of an automatic film scanner and indexed on a tetragonal cell with lattice parameters $a=3.8797$ (5) $\AA, c=9.509$ (2) $\AA$ and assignment $Z=1$. No systematic absences were observed, leading to the number of molecules per unit cell of the space group $P 4 / \mathrm{mmm}$. The $c$ parameter corresponded to the value calculated from the formula $c \approx 9.5+3.2(n-1)$, similar to that deduced for the $71 \mathrm{Ba}_{2} \mathrm{R}_{n-1} \mathrm{Cu}_{n} \mathrm{O}_{2 n+3}$ homologous series. We took this as a strong indication that the powder pattern corresponded to that of the first member of the $\mathrm{HgBa}_{2} \mathrm{R}_{n-1} \mathrm{Cu}_{n} \mathrm{O}_{2 n+2+\delta}$ series.
    

    FIG. 1 AC magnetic suscepthility $X(a)$ and normailzed resistivity (b) as a function of temperature for $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+6}$.

    Scanning electron microscopy using a JEOL SM 840A equipped with an energy-dispersive spectroscopy (EDS) attachment revealed that the sample was well crystallized with particle sizes of several micrometres. EDS analysis of several well crystallized, flat and oriented grains was performed. Beside $\mathrm{Hg}, \mathrm{Ba}, \mathrm{Cu}$ and 0 , no other element was detected in the spectra. The average metal ratio found for eight grains was $\mathrm{Hg}: \mathrm{Ba}: \mathrm{Cu}=$ 28(1):47(2):25(1), where the numbers between parentheses are the standard deviations. Determination of the oxygen content by EDS analysis was not possible, so it was estimated by structural analysis and iodometric titration. The cation stoichiometry is in qualitatively good agreement with the proposed formula of the new compound.
    Alternating-current magnetic susceptibility measurements between 4.2 and 120 K , done without any additional oxygen treatment, showed that $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+8}$ samples undergo a transition from paramagnetic to diamagnetic with an onset as high as 94 K (Fig. $1 a$, where the susceptibility is in electromagnetic units $\mathrm{g}^{-1}$ ). The estimated magnetic susceptibility at 4.2 K . corresponds to $>50 \%$ of the ideal diamagnetic values.
    The resistivity was measured between 4.2 and 250 K by the four-probe technique. The sample was a pressed pellet which was annealed in oxygen for 2 h . The temperature dependence of the normalized resistivity, shown in Fig. 1, exhibits a sharp drop at $T_{\mathrm{c}}$, but the transition is broad and it reaches the value of zero resistance only at 35 K . This behaviour indicates that the sample is not homogeneous.
    To determine the structure of $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+8}$, X-ray powder data were collected by a $\theta / 2 \theta$ STADI P diffractometer in transmission mode. The experimental conditions were as follows: $2 \theta$ range $=6-115^{\circ}\left(0.02^{\circ}\right.$ steps) with fixed counting time 60 s and a rotating sample. An absorption correction was applied and the sample thickness was calculated from the primary beam absorption ( $\mu R=1.7$, where $\mu$ is absorption coefficient and $R$ is thickness). The structural refinements were done by the Rietveld method. The initial positional parameters were deduced from a structural model containing the sequence $(\mathrm{Hg})(\mathrm{BaO})$ $\left(\mathrm{CuO}_{2}\right)(\mathrm{BaO})(\mathrm{Hg})$. After convergence (intensity discrepancy factor, $R_{1}=0.039$ ), a Fourier difference map revealed that the position at $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ of the Hg layer was partially occupied. During the final cycle of refinement, the occupancy factor of a third oxygen atom placed in this position was varied together with the positional and thermal parameters for all atoms (except for the thermal parameter of $O(3)$ which was kept fixed at $1.0 \AA^{2}$ ). The final intensity $\left(R_{i}\right)$ and profile ( $R_{p}$ ) discrepancy factors based on 84 reflections were $R_{1}=0.0367$ and $R_{\mathrm{p}}=0.116$, with a GOF (goodness of fit) $=0.33$.
    The final positional and thermal parameters together with the relevant interatomic distances are given in Table 1. Observed, calculated and difference diffraction patterns are shown in Fig. 2. A schematic representation of the structure is shown in Fig. 3. Preliminary structural refinements based on powder neutron diffraction data support the presence of oxygen in the $O$ (3) position with an occupancy factor slightly larger than that found by X-ray powder diffraction data. The neutron data also

    | TABLE 1 Crystailographlc data for $\mathrm{HgBa}_{2} \mathrm{CuO} \mathrm{O}_{4-4}$ |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Positionad, thermat and occaponcy parameters |  |  |  |  |  |  |
    | Atom | Position | $x$ | $y$ | 2 | $\mathrm{E}_{150}\left(\mathcal{A}^{2}\right)$ | Octupancy |
    | Hg | 12 | 0 | 00 |  | 2.55 (5) | 1.00 |
    | Ba | 21 | 0.5 | 0.50. | 979 (1) | 1.43 (4) | 1.00 |
    | Cu | 16 | 0 | 00.5 |  | 0.88 (9) | 1.00 |
    | O(1) | 2 e | 0.5 | 00.5 |  | 0.4 (3) | 1.00 |
    | O(2) | 2 g | 0 | 0 0. 0 | 206(2) | 2.2 (3) | 1.00 |
    | O(3) | 1 c | 0.5 | 0.50 |  | 1.0 | 0.10 (3) |
    | Selected interatomic distances ( $\lambda$ ) |  |  |  |  |  |  |
    | $\begin{aligned} & \mathrm{Hg}-\mathrm{O}(2)(\times 2) \\ & \mathrm{Hg}-\mathrm{O}(3)^{*} \end{aligned}$ |  | 1.95 (2) | Cu-C(1) ( $\times 4$ ) | 1.940(1) | Ba-O(1) $(\times 4)$ | 2730(1) |
    |  |  | 2.742(1) | Cu-O(2) ( $\times 2$ ) | 2.79(2) | Ba-O(2) ( $\times 4$ ) | 2880(5) |
    |  |  |  |  |  | $\mathrm{Ba}-\mathrm{O}(3)^{*}$ | 2.831(1) |

    Data obtained usine monochromatized Cuk $\alpha_{1}$ radiation $(\lambda=1.54056 \lambda)$, giving $\theta=$ $3.87766(4) A, c=9.5073(1) \AA$.

    - Partialy occurpied sites.
    confirm the large value for the mercury thermal factors. As in the case of the X-ray data, the anisotropic model shows a very slight difference between $B_{11}=B_{22}$ and $B_{33}$, the thermal factors along $x, y$ and $z$ respectively.
    $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+\mathrm{s}}$ has a structure related to that of $\mathrm{Hg}-1212$ (ref. 3). Its lattice parameters correspond to four-layered packing along the $c$-axis of a unit cell: $a=a_{\text {per. }}, c=2 a_{\text {per }}$ (where $a_{\text {per. }}$. is the parameter of the perovskite subcell) and its structure contains the sequence $\left(\mathrm{CuO}_{2}\right)(\mathrm{BaO})\left(\mathrm{HgO}_{5}\right)(\mathrm{BaO})\left(\mathrm{CuO}_{2}\right)$. The Cu cations are octahedrally coordinated, while the coordination of the other cations depends upon the value of $\delta$. This, as obtained from powder X-ray data, is $0.10(3)$. An important consequence is that most of the Hg cations have two oxygen atoms near them in a 'dumb-bell' configuration, an appropriate coordination for $\mathrm{Hg}^{\mathbf{2 +}}$ cations. Because 8 is small and different from zero (within about three standard deviations) X-ray powder data alone are insufficient to determine which sites of the rocksalt positions in the HgO layer are occupied and how they affect the Hg coordination. The extra oxygen atoms are needed in order to increase the average oxidation number of the Cu and to create the concentration of holes necessary for superconductivity. lodometric titration performed with a large excess of KI leads to $16 \%$ of $\mathrm{Cu}^{3+}$, corresponding to $\delta=0.08$.
    Similarly, the structure of $\mathrm{HgBa}_{2} \mathrm{RCu}_{2} \mathrm{O}_{\mathrm{b}+8}$ (the second member of the $\mathrm{HgBa}_{2} \mathrm{R}_{n-1} \mathrm{Cu}_{n} \mathrm{O}_{2 n+2+8}$ series) can be described as six-layered blocks made of rock-salt and perovskite-type structures. In the structure of $\mathrm{Hg}-1212$ the layer sequence is:


    ## $(\mathrm{BaO})\left(\mathrm{HgO}_{8}\right)(\mathrm{BaO})\left(\mathrm{CuO}_{2}\right)(\mathrm{R})\left(\mathrm{CuO}_{2}\right)(\mathrm{BaO})\left(\mathrm{HgO}_{8}\right)(\mathrm{BaO})$ rock-salt perovskite rock-salt

    The $\mathrm{CuO}_{2}$ monolayer in $\mathrm{Hg}-1201$ has been replaced by the $\left(\mathrm{CuO}_{2}\right)(\mathrm{R})\left(\mathrm{CuO}_{2}\right)$ block. As a consequence the Cu cations are
    

    FIG. 2 Observed ( $a$ ), calculated (b) and difference ( $c$ ) powder patterns after Rietveld refinement for $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+8}$.
    

    FIG. 3 Structure of $\mathrm{HgBa}_{2} \mathrm{CuO} \mathrm{O}_{4+8}$. The large, medium and small circles represent the $\mathrm{Ba}, \mathrm{Hg}$ and O atoms, respectively. The Cu atoms are inside the octahedra. Note that the partially ocrupled oxygen $\mathrm{O}(3)$ site on the Hg layer is represented by a partially filled circle.
    pyramidally coordinated. The coordination of the Ba and Hg cations in $\mathrm{Hg}-1212$ is similar to that of the same cations in $\mathrm{Hg}-1201$. The R cations are surrounded by 8 oxygen atoms arranged as a prism. The valence of the Cu cations depends upon the value of $\delta$ and the valence of the $R$ cations: if the same Cu valence or hole concentration as in $\mathrm{Hg}-1201$ is needed to induce the superconducting state in $\mathrm{Hg}-1212$, then the R cations should be $2+$ and $\delta_{1212}$ should be appreciably greater than $\delta_{1201}$. For the previously reported $\mathrm{Hg}-1212$, R was a mixture of Eu and Ca , and $\delta$ was not precisely determined ${ }^{3}$. It is possible that $\delta$ was not large enough to compensate for the higher valence of the $R$ cations and to transfer the needed extra charges to $\mathrm{CuO}_{2}$ layers.

    As stated above, the structural arrangment of $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+8}$ is similar to that of $\mathrm{TIBa}_{2} \mathrm{CuO}_{3-8}$, except for the oxygen stoichiometry of the $\mathrm{HgO}_{5}$ and $\mathrm{TiO}_{1-8}$ layers respectively. For the former, $\delta$ is very small and this depletion is possible because the dumb-bell coordination is appropriate for the $\mathrm{Hg}^{2+}$ cations. For the latter, the $\mathbf{T 1 O _ { 1 - 8 }}$ layer is only slightly oxygen depleted, creating the appropriate coordination for the thallium cations, resulting in either a distorted octahedron or a five-coordinated polyhedron. These different requirements for attaining the optimal concentration of holes are due to the different preferred coordination geometries of the $\mathrm{T}^{3+}$ and $\mathrm{Hg}^{2+}$ cations.
    The first member of the latter series (T1-1201) has been reported and found to become superconducting at $<10 \mathrm{~K}$ (ref. 4). By doping the Ba sites with La this value can be increased to 52 K (ref. 7). The second member of the mono-Tl series becomes superconducting at 85 K (ref. 2). This increase is a general rule for the first few members of this series of compounds. If this behaviour holds for the Hg -series, the second member could reach values for $T_{c}$ as high as those of the thallium.
    The possible advantages for technical applications of $\mathrm{HgBa}_{2} \mathrm{CuO}_{4+8}$, in analogy with one- T -layer materials, would be due to the relatively short distance between $\mathrm{CuO}_{2}$ layers. This might lead to lower anisotropy of the superconducting properties and to higher fux-melting temperatures than those of two-Tho-layer superconductors'.

    Paceived 18 Dacember 1992. acoepted 12 February 1993

    1. Bedrorz, J. G. \& Matler, K, A. 2 Physs B64, 189-183 (1986)
    
    2. PAklin S. N. Eryntse. L \& Antipov. E. V. Ask. M. Pfusica C 175, 183-186 (1991).
    3. Copetaurstonar L K. YelturtiL I V. \& Yer, R. M. PM
    4. Kim D. H of ai. Pipsica C 177, 431-437 (1991).
    5. De Loerm. O. M. Mutssers C.
    
    6. Suhramariinn, oh

    ACYNOWAEDGEVENTS. The euthors thark R. Y. Shpencherko and $\mathcal{L}$ L. Tholenca for their conaborotion SMP. thenks 0 . Massenet for a grant to ettend the Laboratoire de Cistack of the Russtan Sctendific Grenobke. SMP. and E.V.A are supported by erants from the Project "Poisk" of the Russtan Scterxific Counci on Scperconductivity.

    ## Dependence of aggregate morphology on structure of dimeric surfactants

    ## R. Zana* \& Y. Talmon

    ## Department of Chemical Engineering. Technion-Israel Institute of

    Technology, Haifa 32000, IsraelSURFACTANT molecules in water form organized assemblies of various shapes, such as micelles and bilayer lamellae, which are of interest as analogues of biological structures, as model systems for studying complex phase behaviour and because of their technological importance, for example to the food and paint industries. The polar bead groups are usually arranged randomly at the surface of these assemblies. We have studied the effect on the microstracture of these assemblies of imposing constraints on the head-group spacing. We investigate the structures formed by 'double-headed' surfactants in which two quaternary ammonium species ( $\left.\mathrm{C}_{m} \mathrm{H}_{2 m+1} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{2}\right)$ are linked at the level of the head groups by a hydrocarbon spacer $\left(\mathrm{C}_{3} \mathrm{H}_{2 s}\right)$. Here we report the microstructures formed by these dimeric surfactants with $m=12$ and $s=2,3$ or 4 in aqueous solution, by rapidly cooling the miceltar solutions and investigating the vitrified structures with transmission electron microscopy. The surfactants with a short spacer ( $s=2,3$ ) form long, thread-tike and entangled micelles even at low concentrations, whereas the corresponding monomeric ammonium surfactants can form only spherical anicelles. The dimeric surfactants with $s=4$ form spheroidal micelles. Thus short spacers (which impose reduced head-group separation) appear to promote lower spontaneous curvature in the assemblies. This approach may afford a new way to control amphiphile self-aggregation.

    Conventional surfactant molecules generally comprise two distinct parts that are incompatible with each other: one polar head and either one or two alkyl chains. These molecules tend to self-associate in water, where they produce micellar solutions in the dilute range, and lyotropic mesophases at higher concentrations. Whatever the structure, the surfactant polar heads are located at the interface between the hydrocarbon and water regions. Their relative positions and distances are determined mainly by their electrostatic interactions, and also by the packing requirements of the disordered alkyl chains ${ }^{1-3}$. In caesium or rubidium soaps at low temperature in the presence of water, for example the head groups form well developed hexagonal or rectangular crystalline arrays ${ }^{4}$. Generally, however, they are arranged randomly, and little is known of their packing geometry or the width of their spacing distribution.

    To investigate the effect of a perturbation of the local arrangement of polar heads on the micellar and mesomorphic properties

    - To whom corresponctance shouta be addressed in Heira. On leave of absence from thatiut charlor Sadron (INPRI). 6 rue Boussirgeath 67083 Strasbourg Ceter, France.


    ## BRIEF ATTACHMENT M

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir.

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT M

    # Superconductivity near 70 K in a new family of layered copper oxides 

    R. J. Cava, B. Batlogg, J. J. Krajewski, L. W. Rupp, L. F. Schneemeyer, T. Siegrist, R. B. vanDover, P. Marsh, W. F. Peck, Jr, P. K. Gallagher, S. H. Glarum, J. H. Marshall, R. C. Farrow, J. V. Waszczak, R. Hull \& P. Trevor

    AT\&T Bell Laboratories, Murray Hill, New Jersey 07974, USA

    A new family of high-temperature superconductors is described, with the general formula $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{ACu}_{3} \mathrm{O}_{8+8}$. Although they have the planes of $\mathrm{CuO}_{s}$ square pyramids characteristic of the other copper-oxide superconductors, the new compounds belong to a distinct structural series, with wide scope for elemental substitution. Their unusual electronic configuration also gives new insight into the role of charge distribution among the structural building blocks in controlling superconductivity.

    SINCE the first observation of high-transition-temperature (high- $T_{c}$ ) superconductivity in La-Ba-Cu-O, progress in the understanding of this remarkable phenomenon has been coupled to the discovery of new materials. Until now, three families of copper-oxide-based high- $T_{c}$ superconductors have been identified, based on $\left(\mathrm{La}_{2} \mathrm{M}_{2} \mathrm{CuO}_{4}, \mathrm{LnBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}\right.$, and $(\mathrm{H}, \mathrm{Bi})_{m}(\mathrm{Ba}, \mathrm{Sr})_{2} \mathrm{Ca}_{n+1} \mathrm{Cu}_{n} \mathrm{O}_{m+2 n+2}$ (ref. 2). (Here M represents : metal cation that may substitute on some La sites, and Ln represents a lanthanide.) Here we report the discovery of a new family of planar copper-axide superconductors with general formula $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{ACl}_{3} \mathrm{O}_{8+8}$ (where A is a lanthanide or a mixture of $\mathrm{Ln}+\mathrm{Sr}$ or Ca ), and describe the synthesis, crystal structure and properties of prototype compounds. We find, for example, that one preliminary optimal composition $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{X}_{0.5} \mathrm{Ca}_{0.5} \mathrm{Cu}_{3} \mathrm{O}_{8}$ has a superconducting $T_{c}$ of 68 K . The new family displays the same kind of rich substitutional chemistry as is observed for $\mathrm{Lu} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$, with the phase forming for Y and at least $\mathrm{La}, \mathrm{Pr}$, $\mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Tm}, \mathrm{Yb}$ and Lu , spanning the entire rare-earth series. Wide ranges of large-metal-atom solid solution and oxygen stoichiometry are observed, suggesting many possble avenues to be explored for the optimization of superconducting properties.
    Superconductivity is induced in the host compounds $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{LnCu}_{3} \mathrm{O}_{3+6} \cdot(\delta=0)$ either by partial substitution of a divalent ion (such as Sr or Ca ) on the lanthanide site, or possibly by the accommodation of excess oxygen ( $8>0$ ), or a combination of both. The compounds cau be synthesized only under arildly redueing conditions, which are necessary to maintain Pb in a $2+$ oxidation state. Oxidation of $\delta=0$ compounds is possble, but only at low temperatures, where decomposition to a Pb (IV)-containing perovskite is sluggish. Remarkably, the formal average oxidation state of copper in the superconductors is less than $2+$, but a clear structural distinction between different types of copper layers leads us to hypothesize that holes are nonetheless present on electronically active CuO pyramidal planes.

    ## Syathesis

    The preparative conditions for the new materials are considersbly more stringent than for the previously known copper-based. superconductoris. Direct synthesis of members of this family by reaction of the component metal oxides or carbonates in air or oxygen at tomperatures bolow $900^{\circ} \mathrm{C}$ is not possible because of the stability of the oxidized $\mathrm{SrPbO}_{3}$-based perovskite. Successful synthesis is accomplished by the reaction of P6O with prereacted ( $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Ln}$ ) oxide precursors. The precursors are propared : from oxides and carbonates in the appropriate metal ratios; calcined for 16 hours (in dense $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucibles) at $920-$ $980^{\circ} \mathrm{C}$ in air with one intermediate rding. Some of the
    $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{LnCu}_{3} \mathrm{O}_{8+8}$ compounds can be prepared in air from $\mathrm{PbO}+\mathrm{LnSr}_{2} \mathrm{Cu}_{3} \mathrm{O}_{x}$ precursor mixtures, which are not reacted at temperatures below $\sim 850^{\circ} \mathrm{C}$. For example, single-phase $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{8+8}(\delta=0)$ can be prepared by reacting PbO with $\mathrm{YSr}_{2} \mathrm{Cu}_{3} \mathrm{O}_{x}$ at $920^{\circ} \mathrm{C}$ for 1 h , followed by quenching. Slower cooling results in partial decomposition through oxidation. Short reaction times are generally sufficient to obtain singlephase products. The same air-heating/quenching process does not appear to work, however, for $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{LaCu}_{3} \mathrm{O}_{8+8}$ or $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{LuCu}_{3} \mathrm{O}_{8+8}$.
    The best synthetic conditions found so far involve the reaction of PbO with the cuprate precursors in thoroughly mixed pressed pellets. Reaction temperatures are between 860 and $925^{\circ} \mathrm{C}$, for times between $1-16 \mathrm{~h}$, in a flowing gas stream of $1 \% \mathrm{O}_{2}$ in $\mathrm{N}_{2}$, a mildly reducing atmosphere. For $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{\mathrm{i}-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$, for example, single-phase materials are obtained for $0 \leq x<0.5$ in $1 \% \mathrm{O}_{2}$ after heating overnight at $865^{\circ} \mathrm{C}$ and cooling in the gas stream to room temperature in 15 minutes. Using higher temperatues, higher $\mathrm{PO}_{2}$ in the gas stream or higher Ca contents of the starting mixture results in the intergrowth of 123-type $\mathrm{YSr}_{2}(\mathrm{~Pb}, \mathrm{Cu})_{3} \mathrm{O}_{x}$ with the new compound, or the formation of an $\mathrm{SrPbO}_{3}$-based second phase. Similar procedures are successful for other $\mathrm{Sr} /$ rare-earth/Ca combinations. The oxygen contents of $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{1-x} \mathrm{Ca}_{x} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$ for $0 \leq x \leq 0.50$, prepared under these conditions, are measured by reduction in $\mathrm{H}_{2}$ and are uniformly $\delta=0 \pm 0.1$. Ca is employed as a dopant on the Ln site because it has an ionic size similar to the intermediate rare-earths. We have not yet found synthetic conditions under which $\mathrm{Pb}_{2} \mathrm{Sr}_{2+x} \mathrm{Ln}_{1-x} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$ solid solutions can be prepared as single-phase polycrystalline samples that are good bulk superconductors; although superconducting single crystals: of that stoichiometry have been prepared.
    Single crystals of the superconducting compounds were grown from PbO and CuO -rich melts using a similar precursor technique. Melt compositions were generally $\mathrm{Pb}_{3,5} \mathrm{Sr}_{3} \mathrm{YCu}_{4} \mathrm{O}_{x}$. Following a 30 -min soak at $1,025^{\circ} \mathrm{C}$, samples were cooled at $2^{\circ} \mathrm{C}$ $\min ^{-1}$ in the $1 \% \mathrm{O}_{2}$ atmosphere to temperatures between 800 and $400^{\circ} \mathrm{C}$, and were then rapidly cooled to room temperature in the same gas stream. Crystals are plate-like in habit, but are generally more equiaxed than those of $\mathrm{LnBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$.

    ## Stoichiometry and crystal structure

    Compounds of stoichiometry $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{LnCu}_{3} \mathrm{O}_{8}(\delta=0)$ are not bulk superconductors, although. we often observe small amounts of superconductivity ( $1 \%$ or less) in materials of that stoichiometry prepared either by the quench or by the $1 \%-\mathrm{O}_{2}$ synthetic techniques. The non-bulk superconductivity may be due to inhomogeneities in either oxygen content or $\mathrm{Sr} / \mathrm{Ln}$ distribution.

    Fig. 1 Two representations of the crystal structure for the new superconducting compounds, for the case of $\mathrm{Pb}_{2} \mathrm{Sr}_{224} \mathrm{Nd}_{0,76} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$. Representation a emphasizes the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{O}$ bonding scheme, and representation $b$ emphasizes the manner in which $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{O}$ coordination polyhedra are arranged.
    
    b
    

    The range of oxygen contents possible for these compounds is remarkable. $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{8+\delta}, \delta=0$, for example, can be oxidized by heating in $\mathrm{O}_{2}$ to temperatures below $500^{\circ} \mathrm{C}$ for short times ( $2-4$ h) to $\delta$ values of $\sim 1.6$, retaining the same basic crystal structure. We have observed values as large as $\delta=1.8$ for $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{0.75} \mathrm{Ca}_{0.25} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$. Oxidation at temperatures higher than $500^{\circ} \mathrm{C}$, or for longer reaction periods, generally results in decomposition to the $\mathrm{SrPbO}_{3}$-based perovskite. Powder samples of $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{3+8}$ with large values of $\delta$ are not superconducting. Single crystals of the $\mathrm{Pb}_{2} \mathrm{Sr}_{2+x} \mathrm{Ln}_{x} \mathrm{Cu}_{3} \mathrm{O}_{3+8}$ type are superconductors with transition temperatures between 10 and 70 K . These crystals may have non-zero values of $\delta$ but have not yet been fully characterized. The range of $T_{s} s$ observed suggests a complex and interesting relationship between $T_{c}, \delta$ and the Sr:Ln ratia.

    Powder X-ray diffraction indicates that the new phases have an orthorhombic unit cell which is based on a many-layer peroyskite structure. The characteristic X-ray pattern for the prototype compound $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{3}$ is presented in Table 1. The compound doviates, only slightly from tetragonal symmetry. The simplest cell consistent with the X-ray pattern is c-centred, with lattice parameters $a=5.40, b=5.43$, and $c=15: 74 \AA$. Systematic absences are consistent with a c-centred cell down to the detectability limit of $1 \%$ maximum intensity. The orthorhombic cell gives an excellent fit to the powder diffraction pattern but a hint of a shoulder on the high $2 \theta$ side of the 314 reflection indicates that the true symmetry may be weakly monoclinic. Although the lattice parametors for this family of compounds are very similar to those reported for $\mathrm{TlBa}_{2} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{8}$ (ref. 3), the crystal structures are quite different. Electron microscope investigations indicate that for some crystals, weak (but sharp) refiections are present which violate the e-centring. Furthermore, these studies show the presence of long-period, long-rangeordered superlattices in the $a-b$ plane, suggesting that a variety of structural distortions and stoichiometru-driven atom-ordering echemés an occur.

    The crystal structure of compounds in this family, determined for a superconducting Nd -based single crystal of approximate stoichiometry $\mathrm{Pb}_{2} \mathrm{Sr}_{2.24} \mathrm{Nd}_{0.76} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$ (determined by structure refinement) is shown in Fig. 1. The crystal employed in the structural determination was twinned, as expected from the pseudo-tetragonal symmetry. The atomic coordinates are reported in the $c$-centred orthorhombic cell to be consistent with the powder data, but a primitive cell with $a$ and $b$ rotated by $45^{\circ}$ and reduced by $\sqrt{2}$ gives an equally good description of the single-crystal data. The very small scattering cross-section of oxygen precludes determination of $\delta$ by refinement. The data are well fitted by the structural model (refinement parameter $R=3.7 \%$ ), but a microscopic explanation of the orthorhombic symmetry is not apparent; if the origin is primarily in the oxygen sublattice we would not be able to detect it in the X-ray structure determination.

    The basis of the structure comprises infinite planes of cornershared $\mathrm{CuO}_{5}$ pyramids.separated by eight-coordinate rare-earth atoms, as are common to all the presently known copper-based superconductors with $T_{\mathrm{c}}>50 \mathrm{~K}$. The four in-plane copperoxygen distances are $\sim 1.9 \AA$, and the distance to the apical oxygen is $-2.3 \AA$, both of which are very similar to those observed in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$. The structural components unique to the new class of materials are the $\mathrm{PbO}-\mathrm{CuO}_{3}-\mathrm{PbO}$ planes shown in the centre of the Fig. 1. For $\delta=0$, Pt has a distorted flattened square pyramid coordination (sharing: edges with adjacent pyramids), with the lone pair pointing toward the vacant sixth site of the coordination octahedron. The $\mathrm{PbO}_{3}$ pyramids are separated by a single copper layer; which, for $\delta=0$, is oxygenfree, and displays an $0-\mathrm{Cu}-\mathrm{O}$ coprdination characteristic of $\mathrm{Cu}^{1+}(\mathrm{Cu}-\mathrm{O}$ distance $\sim 1.8 \cdot \AA)$, as is observed in non-superconducting $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6}$. During the ow-temperature oxidation process, oxygen is apparently accommodated in this copper layer, resulting in a large expansion of the $c$ axis. The $\mathrm{PbO}_{5}$ and $\mathrm{CuO}_{5}$ pyramidal planes are joined by the common oxygens at their apices. The Sr atoms an ordinated.to nine oxygens, as in (La,
    

    Fig. 2 Magnetization data (d.c. field-cooled at 25 Oe ) for $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{0.5} \mathrm{Ca}_{0.5} \mathrm{Cl}_{3} \mathrm{O}_{8}$.
    $\mathrm{Sr}) \mathrm{CuO}_{4}$, and the Ln site is eight-coordinate, as in the $\mathrm{LnBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ family, sandwiched between the $\mathrm{CuO}_{5}$ pyramidal planes. In the superconducting compound $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{1-x} \mathrm{Ca}_{x} \mathrm{Cu}_{3} \mathrm{O}_{8+d}$, Ca partially substitutes for Y in the eight-coordinate site.
    The crystal.structures of all the known copper-oxide-based superconductors are generally described as many-layered perovskites. The similarities and differences among them are most easily illustrated in terms of the stacking. sequences of rocksaltlike ( AO ) and perovskite-like $\left(\mathrm{BO}_{2}\right)$ layers ${ }^{2}$. Taking, for example, representatives from the superconductor families that have double $\mathrm{CuO}_{5}$ pyramidal layers, the stacking sequences are:
    $\mathrm{Pb}_{2} \mathrm{Sr}_{2}(\mathrm{Y}, \mathrm{Ca}) \mathrm{Cu}_{3} \mathrm{O}_{8+\mathrm{a}}$
    $-(\mathrm{Y}, \mathrm{Ca})-\mathrm{CuO}_{2}-\mathrm{SrO}-\mathrm{PbO}-\mathrm{CuO}_{5}-\mathrm{PbO}-\mathrm{SrO}-\mathrm{CuO}_{2}-(\mathrm{Y}, \mathrm{Ca})-$
    $\mathrm{T}_{2} \mathrm{Ba}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8}$
    $-\mathrm{Ca}-\mathrm{CuO}_{2}-\mathrm{BaO}-\mathrm{TlO}-\mathrm{T1O}-\mathrm{BaO}-\mathrm{CuO}_{2}-\mathrm{Ca}-$
    $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6+8}$
    $-\mathrm{Y}-\mathrm{CuO}_{2}-\mathrm{BaO}-\mathrm{CuO}_{8}-\mathrm{BaO}-\mathrm{CuO}_{2}-\mathrm{Y}-$

    Table 1 Characteristic X-ray powder diffraction pattern for
    $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{3}$

    | hkl | ${ }^{d}$ | $I / I_{0}$ | hkl. | $d$ | I/Io |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 001 | 15.74 | 7 | 116 | 2.164 | 11 |
    | 002 | 7.87 | 3 | 025 | 2.057 | 12 |
    | 003 | 5.25 | 2 | 205 | 2.050 | 10 |
    | 004 | 3.94 | 10 | 008 | 1.967 | 7 |
    | $\cdots$ | 3.831 | 11 | 220 | . 1.915 | 25 |
    | - 111 | 3.722 | 24 | 118,009 | 1.750 | 2 |
    | 112 | 3.444 | 1 | 027, 207 | 1.730 | 1 |
    | 005 | 3.148 | 11. | 224 | 1.722 | 2 |
    | 113 | 3.094 | 11 | 130 | 1.717 | 2 |
    | 114 | 2.745 | 100 | 310, 131 | 1.708 | 3 |
    | 020 | 2.717 | 43 | 311 | 1.699 | 2 |
    | 200 | 2.701 | 43 | 225 | 1.636 | 3 |
    | 021 | 2.677 | 7 | 133 | 1.632 | 3 |
    | 201 | 2.662 | 7 | 313 | 1.625 | 1 |
    | 006 | 2.623 | 6 | 028 | 1.593 | 11 |
    | 023 | 2.412 |  | 208,119 | 1.591 | 11 |
    | 203 | 2.401 |  | . 134 | 1.574 | 18 |
    | 024 | 2.236 |  | 314 | 1,568 | 14. |
    | - 204 | 2.227 |  |  |  |  |

    Cu Ka radiation, 0-60 $2 \theta$ c-centred orthorhombic call, preliminary indexing, true symmetry may be weakly monoclinic. Lattice parameters $a=5.4019(15), b=5.4333(15), c=15.73881^{\circ}$

    The new superconductors, then, can be seen to be intimately related in structure to those previously described. They can be considered as related to $\mathrm{T}_{2} \mathrm{Ba}_{2} \mathrm{CaCu}_{3} \mathrm{O}_{8}$ by insertion of a single $\mathrm{CuO}_{8}$ layer between adjacent polarizable AO layers, or related to $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6+8}$ by sandwiching of the $\mathrm{CuO}_{5}$ 'chain' layer by two PbO layers. We believe that it is the electronic screening of thie $\mathrm{CuO}_{2}$ planes from the $\mathrm{CuO}_{5}$ layers by the PbO layers that makes the new superconductors of considerable interest. Furthermore, we expect these materials to be even more anisotropic in their physical properties than those previously known, as the double pyramidal $\mathrm{CuO}_{2}-\mathrm{A}-\mathrm{CuO}_{2}$ layers are widely separated.

    ## Superconducting properties

    We have studied the composition dependence of the superconducting properties of compounds in the series $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{1-x} \mathrm{Ca}_{x} \mathrm{Cu}_{3} \mathrm{O}_{8}$ for $0 \leq x \leq 0.75$, by estimating the flux expulsion measured on cooling in a field of 25 Oe in a d.c. SQUID magnetometer (S.H.E. model 905). The greatest flux expulsion occurs for $x=0.5$, and is $-20 \%$ of the ideal value (see Fig. 2). Because flux becomes trapped in the pores of these low-density ceramics, this is an underestimate of the true volume fraction of superconductivity; For $x \geq 0.5$, the materials were not entirely single-phase, with one or more impurity peaks having a maximum intensity of $5 \%$ of the strongest peak in the powder X-ray pattern. This, coupled with the estimate of the volume fraction of superconductivity, suggests that the optimal superconducting composition may have $x$ somewhat greater than 0.5. This could be achieved if different synthetic methods can be found that allow a larger range of solid solution to be attained. We have measured the normal-state susceptibility (in a $20-\mathrm{kOe}$ field) for temperatures below 400 K of apparently single-phase samples (no unindexed X-ray lines to $0.5 \%$ maximum intensity) of the non-superconducting endmember $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{8}$ and superconducting $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{0.525} \mathrm{Ca}_{0.375} \mathrm{Cu}_{3} \mathrm{O}_{8}$. The susceptibility of the superconductor $(X)$ is essentially temperature independent ( $X \underset{\sim}{\mp} \times 10^{-4}$ e.m.u. per mole formula unit), with only a slight decrease at low temperatures. This temperature dependence is similar to that of high-quality $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$, and is characterized by the absence of a CurieWeiss contribution. Furthermore, this supports our conclusion that the copper atoms between the PbO layers are $\mathrm{Cu}^{1+}$. Postoxidation at $500^{\circ} \mathrm{C}$ results in oxidation of this copper to magnetic $\mathrm{Cu}^{2+}$. $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}_{3} \mathrm{O}_{8}$ appears to be magnetic ( $-0.5 \mu \mathrm{~B}$ per Cu atom), but further studies are necessary to clarify whether this is intrinsic or is due to the presence of highly magnetic impurity phases that are undetectable by X-ray diffraction.

    Figure 3 shows the temperature dependence of the resistivity for a single crystal of $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Dy}_{1-x} \mathrm{Ca}_{x} \mathrm{Cu}_{3} \mathrm{O}_{8+8}$. The midpoint of the superconducting transition is at 51.5 K (indicated by an arrow in Fig. 3), although there is a small foot which gives a zero-resistance $T_{c}$ of 46 K . Above $T_{c}$ the temperature

    | Alom | Position | $x$ | $y$ | 2 | $B_{\text {too }}\left[\AA^{2}\right]$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Pb | 41 | 1/2 | 0 | 0.38858 (4) | 1.09 (2) |
    | Sr | 4k | 0 | 0 | 0.22184 (9) | 0.74 (4) |
    | Nd, Sr* | 2 a | 0 | 0 | 0 | 0.69 (3) |
    | Cul | 2 d | 0 | 0 | -1/2 | 0.86 (9) |
    | Cu 2 | 41 | 1/2 | 0 | 0.11074 (13) | 0.46 (S) |
    | 01 | 41 | 1/2 | 0 | 0.02546 (8) | 1.5 (5) |
    | 02 | 4 k | 0 | 0 | 0.384 (3) | 13 (5) |
    | 03 | 8 m | 1/4 | 1/4 | 0.0995 (5) | 0.9 (3) |

    Orthorhombic ceil (pseudotetragonal substructure); $a=5.435(1) \AA$; $b=5.463(1) \AA, c=15.817(3) \AA$; space group Cmmm, $i=2$; observed reflections 707, $R_{w}=0.037$.

    * Mixed occupancy site:
    (1) $\mathrm{Sr}, 0.76(1) \mathrm{Nd}$.
    
    dependence is fairly linear，but near $T_{c}$ there is a region of positive curvature which，along with the resistivity foot，we attribute to small inhomogeneities in the metal and／or oxygen distribution．The scale of the resistivity is a factor of ten greater than for previous oxide superconductors．It is not yet clear whether this is an intrinsic property．

    A typical resistivity curve for a ceramics sample is shown in the inset to Fig．3，illustrating the typically broad transitions observed．The transition in this sample begins at 79 K （arrow） but zero resistance is achieved（within instrumental accuracy） as 32 K ．Note that the resistivity scale is again quite high．We attribute the breadth of the transition and the negative normal－ state temperature coefficient to inhomogeneity in the metal and／or oxygen distribution，rather than to exogenous phases at the grain boundaries．The behaviour of this system seems to be very similar to that of $(\mathrm{La}, \mathrm{Sr})_{2} \mathrm{CuO}_{4}(\mathrm{ref} 4$.$) ．$

    ## Electronic aspects

    Given that the average formal copper valence of previously known superconductors has always been greater than +2 ，the new superconduictors are unique and，at first sight，anomalous． For the series $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{1-x} \mathrm{Ca}_{2} \mathrm{Cu}_{3} \mathrm{O}_{8}$ ，the average formal copper valence increases from 1.67 in the non－superconducting $x=0$ member to $\sim 1.92$ at the maximum Ca concentration studied． At our current estimate of the optimal superconducting composi－ tion（ $x=0.5$ ），the average formal valence is 1.83 ．The linear coordination of the copper atom sandwiched between the P6O sheets，characteristic of $\mathrm{Cu}^{1+}$ ，and the probable electronic isola－ tion of this layer from the conducting CuO pyramidal planes， imply．that the formal charge formulation becomes $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{YCu}^{1+} \mathrm{Cu}_{2}^{2+} \mathrm{O}_{8}$ in the non－superconducting compound． When Ca is substituted for Y ，we propose that holes are accommodated only in the $\mathrm{CuO}_{s}$ planes；and at the $\mathrm{x}=0.5$ stoichiometry the formal charge formulation becomes ． $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{Y}_{0.5} \mathrm{Ca}_{0}, \mathrm{Cu}^{1+} \mathrm{Cu}_{2}^{225+} \mathrm{O}_{8}$ ，which is consistent with the cur－

    Mig． 3 Resistivity in the $a-b$ plane as a function of temperature for a single crystal of $\mathrm{Pb}_{2} \mathrm{Sr}_{2}(\mathrm{Dy}, \mathrm{Ca}) \mathrm{Cu}_{3} \mathrm{O}_{8+5}$ ．Inset，typical tem－ perature－dependent resistivity for a polycrystalline sample of $\mathrm{Pt}_{2} \mathrm{Sr}_{2}(\mathrm{Y}, \mathrm{Ca}) \mathrm{Cu}_{3} \mathrm{O}_{\mathbf{3}}$.
    rent assumption for previously known high－$T_{c}$ materials that holes are present in the $\mathrm{CuO}_{s}$ pyramidal planes．
    For $\mathrm{Pb}_{2} \mathrm{Sr}_{2} \mathrm{ACu}_{3} \mathrm{O}_{8+8}$ compounds with $\delta>0$ ，excess oxygen must be accommodated near the $\mathrm{Cu}^{1+}$ planes，and a more complex hole－doping scheme may be operating．We expect that in that case the compound does not respond in a simple fashion to the change in charge through doping of a rigid band；the oxygen inserted in the bonding neighbourhood of the reduced Cu and Pb ions may create the electronic states in which the charge is partly or fully accommodated．

    This new family of compounds has a unique crystal structure． yet it also reflects a concept common to all copper－oxide－based superconductors．By now it is well established that superconduc－ tivity is associated with layers of Cu－O octahedra，pyramids and squares．The remaining structural building blocks are seen as the electron acceptors which induce the boles necessary for superconductivity in the $\mathrm{Cu}-\mathrm{O}$ layers．For $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6+8}$ ．for example，we have shown in detail how the $\mathrm{CuO}_{8}$ chains act as charge reservoirs，and how superconductivity depends on charge transfer between chains and planes ${ }^{5}$ ．

    To illustrate the concept of local charge distribution，one may rewrite the formulae of the high－$T_{\varepsilon}$ copper－oxide superconduc－ tors as follows： $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6}\left[\mathrm{CuO}_{3}\right] ; \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{6}\left[\mathrm{Bi}_{2} \mathrm{O}_{2}\right.$ ］： $\mathrm{Ba}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{6}\left[\mathrm{~T}_{2} \mathrm{O}_{2}\right] ; \mathrm{Sr}_{2}(\mathrm{Y}, \mathrm{Ca}) \mathrm{Cu}_{2} \mathrm{O}_{6}\left[\mathrm{~Pb}_{2} \mathrm{CuO}_{2+8}\right]$ ；where the structural components in square brackets act as reservoirs which control the charge on the superconducting $\mathrm{Cu}-\mathrm{O}$ planes．The $\mathrm{PbO}-\mathrm{CuO}_{8}-\mathrm{PbO}$ reservoir layer is likely to be exceptionally fiexible in accommodation of charge，and we therefore expect that a relationship between $T_{c}$ and oxygen stoichiometry as unusual as that for $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6+8}$ will eventually be observied． The wide ranges of metal－atom and oxygen－atom stoichiometries in this new family of superconductors are of considerable inver－ est，and warrant further study with the aim of understanding and optimizing the superconducting properties．

    We thank D．W．Murphy and K．Rabe for helpful discussions．

    Recefved 21 October，seceepled 28 October 1988.

    1．Bedporiz X．G．\＆Myller，K．A．z Phys B6i．189－193（1986）．
    2．Santori，AM．Beech，P，Marezio，M．\＆Cava，R．J．Phyatom C（to the press）．
    


    ## BRIEF ATTACHMENT N

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT N

    ## LANDOLT-BÖRNSTEIN

    ## Numerical Data and Functional Relationships in Science and Technology

    New Series<br>Editor in Chief: K.-H. Hellwege

    Group III: Crystal and Solid State Physics

    Volume 4<br>Magnetic and Other Properties of Oxides and Related Compounds<br>Part a

    J.B. Goodenough • W. Gräper • F. Holtzberg • D.L. Huber R.A.Lefever • J.M.Longo - T.R.Mc Guire • S. Methfessel

    Editors: K.-H. Hellwege and A.M. Hellwege
    

    Springer-Verlag Berlin $\cdot$ Heidelberg. New York 1970

    Zahlenwerte und Funktionen aus Naturwissenschaften und Technik

    ## Neue Serie

    Gesamtherausgabe: K.-H. Hellwege

    Gruppe III: Kristall- und Festkörperphysik

    # Band 4 <br> Magnetische und andere Eigenschaften von Oxiden und verwandten Verbindungen 

    Teil a
    J.B. Goodenough • W.Gräper • F. Holtzberg • D. L. Huber R.A.Lefever • J. M. Longo • T.R.Mc Guire - S. Methfessel

    Herausgeber: K.-H. Hellwege und A. M. Hellwege
    

    # 3 Crystallographic and magnetic properties of perovskite and perovskite-related compounds*) 

    ### 3.0 Introduction - Einleitung

    ### 3.0.1 General remarks - Allgemeines

    The perovskites form a family of compounds having a crystal structure similar to that of the mineral perovskite, $\mathrm{CaTiO}_{3}$. There are two classes of materials crystallizing with this general structure type: primarily ionic materials having the ideal chemical formula $A B X_{3},(A=$ larger cation, $B=$ smaller cation, $\mathrm{X}=$ anion), and alloys having the ideal formula $\mathrm{M}^{\mathrm{c}} \mathrm{XM}_{3}^{\mathrm{f}},\left(\mathrm{X}=\right.$ interstitial atom, $\mathrm{M}^{\mathrm{c}}$ and $\mathrm{M}^{\mathrm{f}}$ are metal atoms). Of these two classes, the former is much larger and the more important.

    The stability of the $\mathrm{ABX}_{3}$ perovskite structure is primarily derived from the electrostatic (Madelung) energy achieved if cations occupy cornershared octahedra. Thus the first prerequisite for a stable $A B X_{3}$ perovskite is the existence of stable, polar octahedral-site building blocks. This, in turn, requires that the $B$ cation have a preference for octahedral coordination and that there be an effective charge on the B cation. Since any A cation must occupy the relatively large anionic interstice created by corner-shared octahedra, a second prerequisite is an appropriate size for the A cation. Where it is too large, the B-X bond length cannot be optimized, and hexagonal stacking with faceshared octahedra becomes competitive. Where the A cation is too small, A-X bonding stabilizes structures having a smaller anionic coordination about the A cation. Thus $\mathrm{ABX}_{3}$ perovskites are commonly found in fluorides and oxides having $B$ cations with a preference energy for octahedral coordination. By contrast, the chlorides and sulfides, having larger anions, not only require the largest A cations, but also form layer structures, where the A cations are missing, because they have anionic $d$ orbitals energetically available for orbital hybridization.

    There are many perovskite-related structures, and these have been included in these tables. For example, the structure can tolerate mixed systems such as $\mathrm{A}_{1-x} \mathrm{~A}_{x}^{\prime} \mathrm{BX}_{3}$ and $\mathrm{AB}_{1-x} \mathrm{~B}_{x}^{\prime} \mathrm{X}_{3}$, A-cationic vacancies $\square$ as in $\square_{1-x} A_{x} B X_{3}$, and cationic ordering as in $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$. Although anion-deficient perovskites have been reported many times, the anion vacancies $\oplus$ are probably not distributed randomly. In compounds containing $\mathrm{Fe}^{\mathbf{s}+}$ ions, for example, they appear to condense in pairs at individual $B$-site octahedra to convert the local anion interstice from an octahedron to a tetrahedron. In

    Die Perowskite sind eine Gruppe von Verbindungen mit der gleichen Kristallstruktur wie das Mineral Perowskit, $\mathrm{CaTiO}_{3}$. Man unterscheidet zwei Klassen von Substanzen, die in diesem allgemeinen Strukturtyp kristallisieren: in erster Linie Ionenverbindungen mit der idealen chemischen Formel $\mathrm{ABX}_{3}(\mathrm{~A}=$ größeres Kation, $\mathrm{B}=$ kleineres Kation, $\mathrm{X}=$ Anion) und Legierungen mit der idealen Formel $\mathrm{M}^{\mathrm{c}} \mathrm{XM}_{3}^{\mathrm{f}}$ ( $\mathrm{X}=$ Zwischengitteratom, $\mathrm{M}^{\mathrm{c}}$ und $\mathrm{M}^{\mathrm{f}}=$ Metallatome). Von diesen beiden Klassen ist die erstere wesentlich umfangreicher und wichtiger.

    Die Stabilität der $\mathrm{ABX}_{3}$-Perowskitstruktur beruht in erster Linie auf der elektrostatischen (Made-lung-) Energie, die dann zustande kommt, wenn Kationen Oktaeder mit gemeinsamen Ecken besetzen. So ist die Existenz von stabilen, polaren Oktaeder-Bausteinen die erste Vorbedingung für ein stabiles $\mathrm{ABX}_{3}$-Perowskit. Dies wiederum erfordert, daß das B-Kation die Oktaeder-Koordination bevorzugt und daß beim B-Kation eine effektive Ladung existiert. Da ein jedes A-Kation die relativ große Anionen-Lücke besetzen muß, die zwischen Oktaedern mit gemeinsamen Ecken entsteht, ist die passende Größe des A-Kations die zweite Vorbedingung. Wenn das A-Kation zu groB ist, läßt sich der optimale B-X-Bindungsabstand nicht erreichen, und eine hexagonale Packung von Oktaedern mit gemeinsamen Flächen kann ebenso auftreten. Wenn das A-Kation zu klein ist, ergibt die A-X-Bindung Strukturen mit einer kleineren Anionen-Koordination um das A-Kation. Daher sind $\mathrm{ABX}_{3}$-Perowskite gewöhnlich unter den Fluoriden und Oxiden zu finden, in denen die B-Kationen Oktaeder-Koordination energetisch bevorzugen. Dagegen erfordern Chloride und Sulfide, die größere Anionen haben, nicht nur die größten A-Kationen, sondern sie bilden, weil sie anionische $d$-Elektronenbahnen mit der richtigen Energie fuir eine Bahn-Hybridisierung haben, auch Schichtstrukturen, bei denen die A-Kationen ganz fehlen.

    Es gibt viele dem Perowskit verwandte Strukturen, die in diese Tabellen aufgenommen wurden. Zum Beispiel kōnnen gemischte Systeme wie $\mathrm{A}_{1-x} \mathrm{~A}_{x}^{\prime} \mathrm{BX}_{3}$ und $\mathrm{AB}_{1-x} \mathrm{~B}_{x}^{\prime} \mathrm{X}_{3}$ mit dieser Struktur auftreten, weiter A-Kationenlücken $\square$ wie in $\square_{1}-x_{x} A_{x} X_{3}$ und geordnete Kationen wie in $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$. Uber Perowskite mit Anionenlücken ist schon häufig berichtet worden, vermutlich sind die Anionenleerstellen $\oplus$ nicht willkürlich verteilt. In Verbindungen, die $\mathrm{Fe}^{3+}$-Ionen enthalten, scheinen sie z. B. paarweise im Oktaeder eines einzelnen $B$-Platzes zusammenzutreffen und die


    compounds containing $\mathrm{Ti}^{4+}$ ions, on the other hand, it is more probable that local rearrangements of the anions form trigonal bipyramidal sites. Aniondeficient, ionic materials in which there are no $A$ cations, such as $\square \mathrm{WO}_{3-x}$, have been shown to contain $\square \mathrm{BX}_{3}$ blocks connected by "shear" planes across which the occupied octahedra share common edges (Fig. 22). On the other hand, anion deficiencies may occur randomly in the $M^{c} X_{1-x} M_{3}^{f}$ alloys. B-cation defects cannot occur, because the B-occupied octahedra form the basis of the $\mathrm{ABX}_{3}-$ perovskite structure. Where there are apparent $B$ cation vacancies, as in $A_{m} B_{m-1} X_{3 m}$, there is either an interleaving of perovskite layers with $\mathrm{A}_{2} \mathrm{X}_{2}$ layers (Fig. 23) or an interleaving of cubic (perovskite) stacking of $\mathrm{AO}_{3}$ layers with regularly spaced hexagonal stackings at which are located the B-ion vacancies (Fig. 24). Similarly, the series of compounds $(\mathrm{AX})_{m}\left(\mathrm{ABX}_{3}\right)_{n}$ crystallize with an interleaving of rocksalt layers (Fig. 25). Interleaving of cubicstacked $\mathrm{AO}_{3}$ layers and hexagonal-stacked layers also occurs in $\mathrm{ABX}_{3}$ compounds having too large an A cation to be accommodated by the perovskite structure (Fig. 3). Finally, there are a few alloys with interesting magnetic properties that can be classified as $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$ compounds if the symbols B and $B^{\prime}$ are allowed to represent atomic clusters rather than single cations. These are illustrated, for example, by the alloy $\mathrm{Al}_{2}\left(\mathrm{AlCo}_{12}\right)\left(\mathrm{Co}_{8}\right) \mathrm{B}_{6}$ (Fig. 18). Sections 3.1 and 3.2 are devoted to descriptions of the perovskite and perovskite-related structures.

    The $\mathrm{ABX}_{3}$ perovskites exhibit several interesting physical properties such as ferroelectricity (as in $\mathrm{BaTiO}_{3}$ ), ferromagnetism (as in $\mathrm{SrRuO}_{8}$ ), weak ferromagnetism (as in $\mathrm{LaFeO}_{3}$ or $\mathrm{HoFeO}_{3}$ ), superconductivity (as in $\mathrm{SrTiO}_{3-x}$ ), a large thermal conductivity due to exciton transport ( $\mathrm{LaCoO}_{3}$ ), insu-lator-to-metallic transitions of interest for thermistor applications (as in $\mathrm{LaCoO}_{3}$ ), fluorescence compatible with laser action (as in $\mathrm{LaAlO}_{3}: \mathrm{Nd}$ ), and transport properties of interest for high-temperature thermoelectric power (as in $\mathrm{La}_{2} \mathrm{CuO}_{4}$ ). A few $\mathrm{ABX}_{3}$ perovskites have been found that are simultaneously antiferromagnetic and ferroelectric [Sm 16, Mi7, Sm9]. The simultaneous occurrence of ferroelectricity and ferromagnetism has been reported for systems like $\mathrm{Sr}_{0.25} \mathrm{La}_{0.75} \mathrm{MnO}_{3}-\mathrm{ATiO}_{3}(\mathrm{~A}=$ $\mathrm{Ba}, \mathrm{Pb}, \mathrm{Bi}_{0.5} \mathrm{~K}_{0.5}$ ) [T03, To6]. Many of the $\mathrm{M}^{c} \mathrm{XM}_{3}^{\mathrm{f}}$ perovskite alloys are ferromagnetic or ferrimagnetic, and a few exhibit first-order ferrimagnetic-to-ferromagnetic transitions. Nevertheless, the significance of the entire perovskite family for the field of magnetism*) lies not yet in their technological applications, but in their provision of an isostructural series of compounds having outer $d$ electrons that are localized and spontaneously magnetic in


    dortige Anionenlücke von einem Oktaeder in einen Tetraeder umzuwandeln. Bei Verbindungen, dic Ti4+-Ionen enthalten, ist es dagegen wahrscheinlicher, daB die lokale Anordnung der Anionen trigonale Doppelpyramiden-Plätze bildet. Für Ionenverbindungen mit Anionenlücken, die keine $A$ Kationen haben, wie $\square \mathrm{WO}_{3-x}$, ist gezeigt worden, daß sie $\square \mathrm{BX}_{3}$-Blöcke enthalten, die durch ,,Gleit"'ebenen verbunden sind, in denen die besetzten Oktaeder gemeinsame Kanten innehaben (Fig. 22). In $M^{c} \mathbf{X}_{1-x} \mathbf{M}_{3}$-Legierungen können jedoch Anionenlücken auch beliebig auftreten. B-Kationenlücken können nicht vorkommen, weil die von $B$ besetzten Oktaeder die Basis der $\mathrm{ABX}_{3}$-Perowskitstruktur bilden. Wo scheinbare B-Kationenleerstellen auftreten, wie in $A_{m} B_{m-1} X_{3 m}$, sind entweder $A_{2} X_{2^{-}}$ Schichten zwischen Perowskitschichten eingeschoben (Fig. 23), oder kubische (Perowskit-) Anordnungen von $\mathrm{AO}_{3}$-Schichten wechseln mit regelmäßig verteilten hexagonalen Anordnungen, in denen die B-Ionenlücken auftreten, ab (Fig. 24). Ähnlich kristallisieren die Verbindungen der Reihe $(\mathrm{AX})_{m}\left(\mathrm{ABX}_{3}\right)_{n}$ mit einer Einschiebung von Steinsalzschichten (Fig. 25). Einschiebungen von kubisch gepackten $\mathrm{AO}_{3}$-Schichten und hexagonal gepackten Schichten treten auch in solchen $\mathrm{ABX}_{3}$ Verbindungen auf, deren A-Kation für die Perows-kit-Struktur zu groß ist (Fig. 3). Schließlich gibt es einige wenige Legierungen mit interessanten magnetischen Eigenschaften, die als $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$ Verbindungen eingeordnet werden können, wenn man unter den Symbolen B und $B^{\prime}$ Atomgruppen statt einzelner Kationen versteht, Dies gilt z. B. für die Legierung $\mathrm{Al}_{2}\left(\mathrm{AlCo}_{12}\right)\left(\mathrm{Co}_{8}\right) \mathrm{B}_{6}$ (Fig. 18). Die Abschnitte 3.1 und 3.2 sind der Beschreibung der Perowskit- und verwandter Strukturen gewidmet.

    Die $\mathrm{ABX}_{3}$-Perowskite weisen einige interessante physikalische Eigenschaften auf, wie Ferroelektrizität (in $\mathrm{BaTiO}_{3}$ ), Ferromagnetismus (in $\mathrm{SrRuO}_{3}$ ), schwachen Ferromagnetismus (in $\mathrm{LaFeO}_{3}$ oder $\mathrm{HoFeO}_{3}$ ), Supraleitfähigkeit (in $\mathrm{SrTiO}_{3-x}$ ), große Wärmeleitfähigkeit durch Excitonentransport (in $\mathrm{LaCoO}_{3}$ ), für Thermistoren interessante Ubergänge zwischen Nichtleiter und metallischem Leiter (in $\mathrm{LaCoO}_{3}$ ), für Laser-Anwendungen geeignete Fluoreszenz (in $\mathrm{LaAlO}_{3}: \mathrm{Nd}$ ), und Transporteigenschaften, die für Thermospannungen bei hohen Temperaturen von Interesse sind (in $\mathrm{La}_{2} \mathrm{CuO}_{4}$ ). Einige wenige $\mathrm{ABX}_{3}$-Perowskite wurden gefunden, die sowohl ferromagnetisch als auch ferroelektrisch sind [ $\operatorname{Sm1} 16$, Mi7, Sm9]. Das gleichzeitige Auftreten von Ferroelektrizität und Ferromagnetismus wurde bei Systemen wie $\mathrm{Sr}_{0.25} \mathrm{La}_{0.75} \mathrm{MnO}_{3}-\mathrm{ATiO}_{3} \quad(\mathrm{~A}=\mathrm{Ba}$, $\mathrm{Pb}, \mathrm{Bi}_{0.5} \mathrm{~K}_{0.5}$ ) [To3, To6] beschrieben. Viele $\mathrm{M}^{\mathrm{c}} \mathrm{XM}_{3} \mathrm{f}^{\mathbf{3}}-$ Perowskitlegierungen sind ferromagnetisch oder ferrimagnetisch, und einige zeigen Ubergänge erster Ordnung von Ferri- zu Ferromagnetismus. Trotzdem liegt die Bedeutung der gesamten PerowskitFamilie für den Magnetismus*) noch nicht in der technologischen Anwendung, sondern im Vorhandensein einer isostrukturellen Ricihe von Verbin-


    one member, collective and spontaneously magnetic in another, and collective and Pauli paramagnetic in yet another. This permits a systematic experimental investigation of the properties of the $d$ electrons on passing through the transition from a localized character, where crystal-field plus superexchange and/or double-exchange theories apply, to an uncorrelated (except below a superconducting transition temperature) collective-electron character, where the conventional band theory applies. In addition, the simplicity of the perovskite $\mathrm{ABX}_{3}$ structure minimizes competitive magnetic interactions between neighboring magnetic cations. Therefore from a study of magnetic order, as revealed by neutron diffraction, together with detailed structural information, as revealed by x-ray diffraction, it has been possible to test the semiempirical rules for $180^{\circ}$ cation-anion-cation isotropic superexchange interactions between localized electrons, the double-exchange hypothesis, antisymmetric exchange, and predictions of magnetic order and spontaneous atomic moments duc to collective electrons.

    Section 3.3 presents the general phenomenological exchange Hamiltonian for localized electrons and summarizes the microscopic models for isotropic superexchange, double exchange, and antisymmetric exchange. From these models, general rules for the interactions responsible for magnetic order are developed for comparison with the tabulated magnetic data.

    Scction 3.4 presents the fundamental physical concepts needed to construct a qualitative phase diagram for the outer $d$ electrons as a function of the number $n_{l}$ of electrons per relevant orbital, the magnitude of a nearest-neighbor transfer energy $b$, and the temperature $T$. It also summarizes the various characters of several physical properties imparted by outer electrons to show how they can be used to distinguish the electronic phases in different perovskites. Information from the tabulated data is used to show the influence of covalence and intra-atomic exchange, which help determine the parameter $b$, on the character of the electrons. Spontaneous collective-electron magnetism is seen to occur only in a narrow transitional interval of $b$ between localized-electron magnetism and collec-tive-electron Pauli paramagnetism.

    Section 3.5 provides schematic energy diagrams for the alloys $\mathrm{M}^{\mathrm{c}} \mathrm{XM}_{3}^{\mathrm{f}}$. These are shown to be useful guides to predictions of the magnitudes of the itomic moments and the magnetic order.
    dungen mit äußeren $d$-Elektronen, die lokalisiert und spontan magnetisch in der einen Verbindung, kollektiv und spontan magnetisch in einer anderen, und kollektiv und Pauli-paramagnetisch in noch einer weiteren sind. Dies erlaubt systematische experimentelle Untersuchungen der Eigenschaften der $d$-Elektronen, indem man von einem lokalisierten Zustand, in dem Kristallfeld plus Superaustausch- und/oder Doppelaustausch-Theorien gelten, zu einem Zustand unkorrelierter Kollektivelektronen (außer bei Temperaturen unterhalb des Ubergangs zur Supraleitung) übergeht, in dem die konventionelle Bändertheorie anzuwenden ist. Weiterhin führt die Einfachheit der Perowskit-$\mathrm{ABX}_{3}$-Struktur zu minimalen konkurrierenden Wechselwirkungen 2 wischen benachbarten magnetischen Kationen. Aufgrund der Untersuchung der magnetischen Ordnung, die man durch die Neutronenbeugung kennt, und einer genauen Kenntnis der Struktur, wie man sie durch Röntgenbeugung gewonnen hat, war es deshalb möglich, die halbempirischen Gesetze über die isotrope $180^{\circ}$-Kation-Anion-Kation-Superaustausch-Wechselwirkung zwischen lokalisierten Elektronen, die Doppelans-tausch-Hypothese, den antisymmetrischen Austausch und Voraussagen für magnetische Ordnung und spontane Atom-Momente, die von Kollektivelektronen herrühren, zu prüfen.
    ' Der Abschnitt 3.3 enthält den allgemeinen phänomenologischen Hamilton-Austausch-Operator für lokalisierte Elektronen und faßt die mikroskopischen Modelle für den isotropen Superaustausch, den Doppelaustausch und den antisymmetrischen Austausch zusammen. Aus diesen Modellen werden allgemeine Regeln für die Wechselwirkungen, die für die magnetische Ordnung verantwortlich sind, zum Vergleich mit den tabellierten Daten entwickelt.

    Der Abschnitt 3.4 enthält die grundlegenden physikalischen Ideen, die für die Herstellung eines qualitativen Phasendiagramms für die äußeren $d$ Elektronen als Funktion der Elektronenzahl $n_{l}$ pro betreffenden Bahnzustand, der Größe einer Ubertragungsenergie $b$ zwischen nächsten Nachbarn und der Temperatur $T$ notwendig sind. Außerdem werden hier verschiedene Charakteristika einiger durch die äußeren Elektronen gegebenen physikalischen Eigenschaften zusammengestellt, um zu zeigen, wie man mit ihrer Hilfe die elektronischen Phasen verschiedener Perowskite unterscheiden kann. Auf Grund der tabellierten Werte wird der Einfluß von Kovalenz und intra-atomarem Austausch, die den Parameter $b$ mitbestimmen, auf den Charakter der Elektronen gezeigt. Spontane Magnetisierung der Kollektivelektronen tritt, wie man sieht, nur in einem schmalen Ubergangsintervall von $b$ zwischen dem Magnetismus lokalisierter Elektronen und dem Pauli-Paramagnetismus der Kollektivelektronen auf.

    Der Abschnitt 3.5 enthält schematische Energiediagramme für die Legierungen $\mathrm{M}^{\mathrm{c}} \mathrm{XM}_{3}{ }^{\mathrm{f}}$. Es wird gezeigt, daß sie zu brauchbaren Voraussagen über die Größe der Atom-Momente und die magnetische Ordnung führen können.

    In the introductions to the sections $3.2 \cdots 3.5$ we have referenced the principle theoretical contribution discussed, but no attempt was made to do this systematically for the experimental contributions, which are thoroughly referenced in the tables. - In the crystallographic tables, the crystal parameters quoted either represent the most complete analysis, in our judgment, or belong to the most complete set of parameters for a series of similar compounds. They do not necessarily represent the historical reference that established the unit-cell dimensions.

    Literature was considered up to 1969.
    Finally, we would like to thank David Maroney for his willing assistance, the library and publications personnel of Lincoln Laboratory for their efficient support, and Mrs. G. E. Boyd for her help with all the foreign references.

    In den Einleitungen $z u$ den Abschnitten $3.2 \cdots 3.5$ haben wir die grundlegenden theoretischen Beiträge, die diskutiert werden, mit Literaturhinweisen versehen; für die experimentellen Beiträge haben wir dies nicht systematisch durchzuführen versucht, da die entsprechenden Tabellen vollständig mit Literaturhinweisen versehen sind. In den kristallographischen Tabellen stellen die angeführten Kristallparameter entweder die nach unserer Beurteilung vollständigste Analyse dar, oder sie gehören zum vollständigsten Satz von Parametern für eine Reihe ähnlicher Verbindungen. Sie geben nicht notwendigerweise den historischen Literaturhinweis, der die Dimensionen der Einheitszelle festlegte.
    Die Literatur wurde bis 1969 berücksichtigt.
    Schließlich möchten wir David Mahoney für seine bereitwillige Hilfe, den Angestellten der Bibliothek und der Veröffentlichungsabteilung des Lincoln-Laboratoriums für ihre wirksame Unterstützung und Mrs. G. E. Boyd für ihre Hilfe bei der ausländischen Literatur danken.

    ### 3.0.2 Symbols and units used in tables and figures

    symmetry
    $a, b, c[\AA]$
    $\alpha, \beta, \gamma[\mathrm{deg}]$
    $\Theta_{\text {trans }}, \Theta_{\text {ord }}\left[{ }^{\circ} \mathrm{K}\right]$
    $\Theta_{\mathrm{D}}\left[{ }^{\circ} \mathrm{K}\right]$
    $T_{\text {melt }}\left[{ }^{\circ} \mathrm{K}\right]$
    $c_{13}$
    $\varepsilon_{1}$
    $r_{\mathrm{A}, \mathrm{B}, \mathrm{B}^{\prime}}[\AA]$
    $\underset{n_{A}, n^{\mathbf{A}}}{\text { magnetic order }}$
    $n_{\mathrm{A}}, n_{\mathrm{B}}^{\mathrm{A}}$
    $\bar{n}_{\mathrm{m}}$
    $n_{\text {eff }}$
    $\Theta_{\mathrm{c}}\left[{ }^{\circ} \mathrm{K}\right]$
    $\Theta_{\mathrm{N}}\left[{ }^{\circ} \mathrm{K}\right]$
    $\Theta_{\mathrm{r}}\left[{ }^{\circ} \mathrm{K}\right]$
    $\Theta_{\mathrm{p}}\left[{ }^{\circ} \mathrm{K}\right]$
    $\Theta^{0}\left[{ }^{\circ} \mathrm{K}\right]$
    $C_{\mathrm{m}}\left[\mathrm{emu}{ }^{\circ} \mathrm{K} \mathrm{mole}^{-1}\right]$
    $\chi_{g}[\mathrm{emu} / \mathrm{g}],\left[\mathrm{cm}^{3} / \mathrm{g}\right]$
    $\chi_{\mathrm{m}}$ [emu/mole]
    $p_{\mathrm{A}}, p^{\mathbf{A}}\left[\mu_{\mathrm{B}}\right]$
    $p_{m}, p^{(x y)}$
    $p *$
    $J_{\mathrm{nn}} / \mathrm{k}\left[{ }^{\circ} \mathrm{K}\right]$
    ${ }^{d}$
    $\sigma_{W}\left[\mathrm{erg} / \mathrm{cm}^{2}\right]$
    $W_{\mathrm{mn}}$

    ## Crystallographic structure

    symmetry classification for perovskite structures: $\mathrm{C}=$ cubic, $\mathrm{H}=$ hexagonal, $\mathrm{R}=$ rhombohedral, $\quad \mathrm{O}=$ orthorhombic $(a<c / \sqrt{2}), \quad \mathrm{O}^{\prime}=$ orthorhombic $(c / \sqrt{2}<a), \mathrm{T}=$ tetragonal, $\mathrm{M}=$ monoclinic, $\mathrm{Tr}=$ triclinic
    lattice parameters
    angle between crystallographic axes
    crystallographic transition and ordering temperatures
    Debye temperature
    melting temperature
    elastic constants
    crystalline strains
    radius of $A, B, B^{\prime}$ cation

    ## Magnetic properties (static measurements)

    see magnetic structure type from Fig. 26
    atomic moment and component of atomic moment parallel to net ferromagnetic moment in numbers of Bohr magnetons: $p_{\mathrm{A}}=n_{\mathrm{A}} \mu_{\mathrm{B}}$
    net magnetization per molecule in numbers of Bohr magneton: $p_{m}=\bar{n}_{\mathrm{m}} \mu_{\mathrm{B}}$
    $n_{\text {eff }}=\sqrt{8 C_{\mathrm{m}}}$ is the effective paramagnetic moment: $p_{\text {eff }}=n_{\text {eff }} \mu_{\mathrm{B}}$
    Curie temperature
    Néel temperature; extrapolated Néel temperature
    temperature for spin reorientation
    paramagnetic Curie temperature ( $\Theta_{p}<0$ if antiferromagnetic coupling) temperature below which parasitic $\boldsymbol{n}_{\mathbf{1}}^{\mathbf{A}}$ deviates appreciably from 0.05 molar Curie constant determined from Curie-Weiss law $\chi_{\mathrm{m}}=C_{\mathrm{m}} /\left(T-\Theta_{\mathrm{p}}\right)$ specific paramagnetic susceptibility
    molar paramagnetic susceptibility
    atomic moment, atomic moment of element $A$
    molecular moment (of molecule $x y$ )
    effective paramagnetic moment: $p^{*}=\sqrt{\chi_{\mathrm{m}} T}$
    isotropic exchange constant of Eq. (16) for near-neighbor interactions $\mathrm{Ln}-\mathrm{Fe}$ interaction parameter defined by
    $\mathrm{M}(t)=\sigma_{0}(0) \mathrm{B}(t)[1+(d / t)]$, where $t=T / \Theta_{\mathrm{C}}$ and $\mathrm{B}(t)$ is the Brillouin function domain wall energy density
    net near-neighbor Weiss molecular field constant: $H_{\mathrm{wi}}=\sum_{\mathrm{j}}^{\mathrm{L}} \mathrm{L}, W_{\mathrm{j}} M_{\mathrm{j}}$

    | $\sigma\left\{\begin{array}{l} {\left[\text { Gauss } \mathrm{cm}^{3} / \mathrm{g}\right]} \\ {[\mathrm{emu} / \mathrm{g}]} \end{array}\right.$ | magnetic moment per gram = specific magnetization |
    | :---: | :---: |
    | $\sigma_{0}$ [ $\left.\mathrm{emu} / \mathrm{g}\right]$ | specific parasitic (weak) magnetization as obtained from $\sigma=\sigma_{0}+\chi_{\mathbf{E}} H_{\mathrm{a}}$ |
    | $\sigma_{\text {sp }}$ | spontaneous specific magnetization |
    | $\mathrm{Ha}_{\mathrm{a}}$ [Oe] | externally applied field |
    | $H_{\text {crit }}[\mathrm{Oc}]$ | critical applied field for antiferromagnctic-ferromagnetic transition or for spinflop transition |
    | $H_{\text {c }}$ | cocrcivity |
    |  | cant angle |
    | $b_{1}, b_{2}\left[\mathrm{dyn} / \mathrm{cm}^{2}\right]$ | magnetoelectric coefficients [10] direction - |
    | $\lambda_{100}$ | magnetostriction constant for [100] direction: $\lambda_{100}=-4 b_{1} / 3\left(c_{11}-c_{12}\right)$ |
    | $C_{\text {ijk }}$ | components of the tensor describing the quadratic dependence of magnetization on applied field: Eq. (36) |
    | $\stackrel{\mu_{\mathrm{B}}}{T[\mathrm{crg} / \mathrm{g}]}$ | the Bohr magneton $=5585 \mathrm{cmu} / \mathrm{g}$ |
    |  | torque: $T=\sigma \times H_{\text {a }}$ |
    |  | Magnetic properties (resonance measurements) |
    | $H_{\text {A }}$ | effective crystalline-anisotropy field |
    | $H_{\text {ex }}$ | exchange field |
    | $H_{\text {d }}$ | spin-canting field (Dzialoshinskii field) |
    | $H_{\text {tint }}$ | internal magnetic field at the nucleus |
    | $H_{n}$ | axial hyperfine field arising from nuclear polarization |
    | $H_{\text {hyp }}$ | hyperfine field I•A•S, where $\boldsymbol{I}=$ nuclear spin, $\boldsymbol{S}=$ net atomic spin, and the components of the interaction tensor are $A_{s}, A_{n s}, A_{\sigma}, A_{\pi}, A_{2 p}$. |
    | $f_{\mathrm{B}}^{\mathrm{A}}, f_{\pi}^{\mathbf{A}}, f_{\pi}^{\mathbf{A}}$ | fraction of unpaired $s, p_{0}$ or $p_{\pi}$ electron spins involved in covalent bonding: $f_{\mathrm{s}}^{\mathrm{A}}=2 \mathrm{SA}_{\mathrm{s}} / \mathrm{A}_{\mathrm{ns}}=\frac{1}{3} \mathrm{~N}_{\mathrm{e}}^{2} \lambda_{\mathrm{i}}^{2}, f_{a}^{\mathrm{A}}=2 \mathrm{SA}_{\sigma} / \mathrm{A}_{2 \mathrm{p}}=\frac{1}{3} \mathrm{~N}_{6}^{2} \lambda_{\sigma}^{2}, f_{n}^{\mathrm{A}}=2 \mathrm{SA}_{\pi} / \mathrm{A}_{2 \mathrm{p}}=\frac{1}{2} \mathrm{~N}_{\mathbf{t}}^{2} \lambda_{\pi}^{2}$. See Eq. (4) for $\mathrm{N}_{\mathrm{e}}, \mathrm{N}_{\mathrm{t}}, \lambda_{\mathrm{s}}, \lambda_{\sigma}, \lambda_{\pi}$. |
    | $\varepsilon, \Delta E$ | nuclear quadrupole coupling constant and quadrupole splitting |
    | $F_{i j}, G_{i j}$ | dipolar and quadrupolar magnetoelastic coefficients: $\delta g_{i}=\sum_{j=1} F_{i j} f_{j}$ and $d_{i}=\sum_{j=1}^{6} G_{11} \varepsilon_{j}$, where $\mathscr{H}_{\text {spin-lattice }}=\mu_{\mathrm{B}} \boldsymbol{H}_{\mathrm{a}} \cdot \delta \mathbf{g} \cdot \mathbf{S}+\boldsymbol{S} \cdot \mathbf{d} \cdot \mathbf{S}$ |
    | $\nu_{\mathrm{R}}[\mathrm{Hz}]$ | resonance frequency for NMR |
    | $\Delta \nu[\mathrm{Hz}]$ | half-line width |
    | $T_{1}$ [ sec$]$ | nuclear spin-lattice relaxation time |
    | $T_{2}[\mathrm{sec}]$ | nuclear spin-spin relaxation time |
    | $T_{\text {le }}[\mathrm{sec}]$ | nuclear spin-lattice relaxation time during a locking pulse |
    |  | Optical measurements |
    | $n$ | index of refraction |
    |  | low-frequency dieiectric constant |
    | $\varrho[\% / \mathrm{cm}]$ | Faraday rotation |
    | $\boldsymbol{i}_{\text {TO }}$, $\nu_{\text {LO }}[\mathrm{Hz}]$ | frequency of transverse and longitudinal optical modes |
    |  | Transport measurements |
    | $\Theta_{\text {cs }}$ | superconducting critical temperature |
    | $E_{F}$ | Fermi energy |
    | $E_{\mathrm{a}}$ | activation energy for a small-polaron hop |
    | $\varrho[\Omega \mathrm{cm}]$ | electrical resistivity |
    | $S\left[\mu \mathrm{~V} /{ }^{\circ} \mathrm{K}\right]$ | Seebeck coefficient |
    | $e$ [ esu ] | magnitude of the electronic charge |
    | c, $n_{\mathrm{i}}, n_{ \pm}\left[\mathrm{cm}^{-3}\right]$ | charge-carrier density |
    | $\mu\left[\mathrm{cm}^{2} / \mathrm{Vsec}\right]$ | charge-carrier mobility |
    | $\boldsymbol{r}$ [ sec ] | charge-carrier collision time |
    | $m^{*}[\mathrm{~g}]$ | charge-carrier effective mass |
    | $D_{0}\left[\mathrm{~cm}^{2} / \mathrm{sec}\right]$ | charge-carrier diffusion coefficient at $E_{\mathrm{a}}=0$ density of unoccupied states: $2\left(2 \pi m_{ \pm}^{*} \mathrm{k} T / h^{2}\right)^{3 / 2}$ |
    | $N_{ \pm}$ | density of unoccupied states: $2\left(2 \pi m_{ \pm}^{*} \mathrm{k} T / h^{2}\right)^{3 / 2}$ |
    | General properties |  |
    | $T$ [ $\left.{ }^{\circ} \mathrm{K}\right]$ | temperature |
    | $p$ | pressure |
    | $c_{p}$ | specific heat at constant pressure |


    | AFMR |
    | :--- |
    | APR |
    | BPW |
    | C, cub |
    | DS |
    | DTA |
    | ESR |
    | f.c. |
    | FMR |
    | $F_{R}$ |
    | H, hex, hex (nL) |
    | I.R. |
    | Ln |
    | MF |
    | M, mon |
    | NAR |
    | NMR |
    | ncub |
    | O, O', orth |
    | P\&S |
    | Prep. |
    | Prop. |
    | pscub |
    | psmon |
    | R, rh |
    | RW |
    | S. G. |
    | S.S. |
    | T, tetr |
    | Tr, tr |

    ## Abbreviations for text and indices

    antiferromagnetic resonance acoustic paramagnetic resonance
    Bethe-Peierls-Weiss method
    cubic
    Danielson-Stevens method
    differential thermal analysis
    electron spin resonance $=$ paramagnetic resonance
    face-centered permutation
    ferromagnetic resonance
    ferromagnetic with reduced $\boldsymbol{n}_{\mathbf{A}}$
    hexagonal, hexagonal $n$-layer structure
    infrared
    Lanthanon = any of the rare-earth elements
    molecular field approximation
    monoclinic
    nuclear acoustic resonance
    nuclear magnetic resonance
    noncubic
    orthorhombic ( $\mathrm{O}: a<c / \sqrt{2} ; \mathrm{O}^{\prime}: c / \sqrt{2}<a$ )
    reference to preparation and structural information
    reference to material preparation
    reference to material properties
    pseudocubic
    pseudomonoclinic
    rhombohedral
    Rushbrooke-Wood method
    space group
    solid solution
    tetragonal
    triclinic

    ### 3.1 Descriptions of stoichiometric $\mathbf{A B X}_{3}$ and $\mathbf{M}^{\circ} \mathbf{X M}_{3}^{\mathrm{f}}$ structures

    ### 3.1.1 The ideal perovskite structure

    The ideal perovskite structure has the cubic unit cell of Fig. 1 with space group Pm3m. Fig. 1 (a) shows the corner-sharing octahedral units ( $\mathrm{BX}_{3}$ array in $\mathrm{ABX}_{3}$ and $\mathrm{XM}_{3}^{\mathrm{f}}$ array in $\mathrm{M}^{c} \mathrm{XM}_{3}^{\mathrm{f}}$ ), which form the stable skeleton of the structure. The A cation (or $\mathbf{M}^{\mathrm{c}}$ atom) occupies the body-center position. Fig. 1 (b) shows the unit cell with the A cation (or $\mathrm{M}^{\mathrm{C}}$ atom) at the origin, or corner position. This shows the face-centered-cubic character (with $\mathrm{Cu}_{3} \mathrm{Au}$-type order) of the $A X_{3}$ or $\mathrm{M}^{c} \mathrm{M}_{8}^{\ell}$ subarrays. Fig. 1 (c) shows the cubic perovskite on an hexagonal basis, with the $c$ axis along the cubic [111] direction. The alternate $A X_{3}$ and $B$ ionic layers each have cubic stacking. Also indicated is the ordering of $B$ and $B^{\prime}$ layers in the ordered $A\left(B_{2 / 3}^{\prime} B_{1 / 3}\right) X_{3}$ structures.
    

    Fig. 1. ABX ${ }_{3}, \mathrm{Mc}^{\mathrm{C}} \mathrm{M}_{\mathbf{2}}^{\text {f. }}$ Ideal perovskite structure: a) B cation (or X atom) at origin. b) $\mathrm{M}^{\mathrm{c}}$ atom (or A cation) at origin. c) A cation at origin in hexagonal basis [Ga10].

    The alloys $\mathrm{M}^{c} \mathrm{XM}_{3}^{\mathrm{f}}$ are stabilized by covalent $\mathrm{M}-\mathrm{X}$ bonding and by metallic $\mathrm{M}-\mathrm{M}$ bonding, so that they are generally cubic. Only in phases exhibiting complex magnetic order are there distortions to lower symmetry. On the other hand, the $\mathrm{ABX}_{3}$ perovskites, which are primarily stabilized by the Madelung energy, are rarely cubic at normal temperatures. Madelung energy calculations are available [Ro15a, Sa2b, Mit].

    Although cubic at high temperatures, most $\mathrm{ABX}_{3}$ compounds exhibit distortions to lower symmetry below some temperature $\theta_{\text {trans }}$ as a result of atomic displacements. Such displacive transitions can be described by a finite set of normal vibrational modes that become soft, their vibrational frequency increasing with $T>\Theta_{\text {trans }}$. From Landau's [La2] theory of phase transitions, it may be argued [Ha1, Co2] that at a second-order displacive transition, the frequency of one normal mode becomes zero. Thus the occurrence of ferroelectricity in perovskite-type crystals such as $\mathrm{BaTiO}_{3}$ has been correlated both theoretically and experimentally [An2, Co1, Ba17, Co28, Ne8, Sh26] with the existence of a transverse optic mode of lattice vibration having wave number $k \approx 0$ and a temperature-dependent frequency $\omega \sim\left(T=\Theta_{\text {trans }}\right)^{1 / 2}$.

    Similarly, in the case of $\mathrm{LaAlO}_{3}$ softening of a single normal mode can produce the $\mathrm{R} \overline{3} \mathrm{c}$-to-cubic transition, and this transition is probably second-order. Investigation [Ha1] of the atomic displacements involved in other distortions from cubic symmetry, on the other hand, has shown that several normal modes are involved, and these displacive transitions are first-order.
    $\mathrm{SrTiO}_{3}$ exhibits a tetragonal ( $\mathrm{D}_{4 \mathrm{~h}}^{18}$ with $c / a=1.00056$ ) to cubic transition at $\Theta_{\text {trans }}=110^{\circ} \mathrm{K}[L y 2, R i 5]$ that appears to illustrate the softening of a triply degenerate phonon at the $R$ point of the Brillouin zone in the cubic phase. For $T<\Theta_{\text {trans }}$, it splits into two zone-center phonons having a frequency dependence $\omega \sim\left(\Theta_{\text {trans }}-T\right)^{0.31}$ [Fl2]. In the presence of an external electric field $E_{\mathrm{a}}$ the symmetry is further reduced to $\mathrm{C}_{4 \mathrm{v}}$ if $E_{\mathrm{a}} \| c$-axis, or $\mathrm{C}_{2 \mathrm{v}}$ if $E_{\mathrm{a}} \perp c$-axis, and the critical modes have the same symmetry as the ferroelectric TO modes. "Anticrossing" of the modes occurs for $E_{\mathrm{a}}=1.5 \mathrm{kV} / \mathrm{cm}$ and $15 \mathrm{kV} / \mathrm{cm} \mathrm{[Ne7}$, Wo19]. Thus the observed [ He 5 ] maximum in the electric susceptibility of $\mathrm{SrTiO}_{3}$ at very low temperatures does not appear to be associated with a ferroelectric transition.

    Theoretical interest in the analytic description of these phase transitions continues [Go1a, Mu4a, Ta14a, Th3].

    The physical origins of the various crystallographic distortions may be separated into three parts: relative ionic sizes, electron ordering among localized clectrons, and clectron ordering among collective electrons.

    ### 3.1.2 The influence of relative ionic sizes

    ### 3.1.2.1 Tolerance factor

    The first prerequisite for a stable perovskite structure is the existence of a stable $\mathrm{BX}_{3}$ skeletal subarray. If the B -cation radius is $\boldsymbol{\gamma}_{\mathrm{B}}<0.51 \AA$ in oxides, for example, the B cation does not achieve its optimum B-O separation in an octahedral site and therefore stabilizes a structure with a smaller anion coordination. The $\mathrm{Al}^{3+}$ ion is borderline, being stable in four, five or six coordination. However, $\mathrm{Ga}^{3+}, \mathrm{Ge}^{4+}$ and $\mathrm{V}^{5+}$ ions are definitely more stable in tetrahedral sites at ambient pressures.

    Given the $\mathrm{BX}_{3}$ skeletal subarray, additional stabilization is achieved by accommodating a large A cation within this skeleton. Because there is an optimum $A-X$ bond length, the presence of an $A$ atom generally distorts the $\mathrm{BX}_{3}$ array so as to optimize the A-X bonding. However, if this distortion is too large, then other space groups become competitive. Goldschmidt [Go2] defined the tolerable limits on the size of the A cation via a tolerance factor

    $$
    \begin{equation*}
    t=\left(r_{\mathrm{A}}+r_{\mathrm{X}}\right) / \sqrt{2}\left(r_{\mathrm{B}}+r_{\mathrm{X}}\right) \tag{1}
    \end{equation*}
    $$

    where $r_{A}, r_{B}, r_{X}$ are empirical radii of the respective ions. By geometry, the ideal cubic structure should have $t=1$. The perovskite structure occurs only within the range $0.75<t<1.00$. However, this is not a sufficient condition, since the $A$ and $B$ cations must, in themselves, be stable in twelvefold ( 12 or $8+4$ or $6+6)$ and sixfold coordinations. This sets lower bounds for the cationic radii. In oxides these bounds are $r_{A}>0.90 \AA$ and $r_{B}>0.51 \AA$. In addition, MEGAW [Me5] noted that, if $0.75<t<0.9$, a cooperative buckling of the corner-shared octahedra to optimize the A-X bond lengths enlarges the unit cell; on the other hand, if $0.9<t<1$, such buckling may not be found, although small distortions to rhombohedral symmetry occur. These structures are to be distinguished from perovskites that exhibit additional distortions as a result of electron ordering. The cubic phase is found at high temperatures or where the A-X bond is more ionic (especially if $t \approx 1$ ).

    Where the A cation is too small $\left(r_{\Lambda}<0.9 A\right)$ to accommodate twelve nearest neighbors, a structure in which the A and B cations are both six-coordinated becomes competitive. From the phase diagram of Fig. 2 for the oxides $\mathrm{A}^{3}+\mathrm{B}^{3}+\mathrm{O}_{3}$, which has been adapted from Schneider, Roth, and Waring [Sc13], the initial competition is the $\mathrm{C}-\mathrm{M}_{2} \mathrm{O}_{3}$ structure, which contains two unusual types of corner-shared, sixcoordinated sites. The $\mathrm{C}-\mathrm{M}_{2} \mathrm{O}_{3}$ structure consists of a face-centered-cubic array of cations with anions occupying $\frac{3}{4}$ of the tetrahedral interstices in an ordered manner. Thus each cation has six out of eight near-neighbor anions at the corners of a circumscribing cube: $\frac{1}{4}$ of the cations have two anions missing at the ends of a body diagonal and $\frac{5}{4}$ of the cations have two anions missing at the end of a face diagonal of the circumscribing cube. This arrangement minimizes the electrostatic repulsive forces between the cations.
    

    Given smaller A cations, however, electrostatic screening between face-shared octahedra can be achieved by displacements of the cations away from the shared face, and the structure competitive with perovskite is generally built from an hexagonal-close-packed anion array, which has octahedral holes sharing common faces along the $c$-axis. With one octahedral hole per anion and a cation/anion ratio $2 / 3$, the cations are ordered among these holes so as to minimize the electrostatic energy. If the A and B cations carry the same charge, as in $\mathrm{A}^{3}+\mathrm{B}^{3}+\mathrm{O}_{3}$, only pairs of cations share common octahedral-site faces and there is no ordering of A and B within the cationic array. This allows the electrostatic force between two cations sharing a common octahedral face to be reduced by displacements of the cations away from each other, thus distorting the octahedra. The result is the corundum structure of $\mathrm{Al}_{2} \mathrm{O}_{3}$. If the cations A and B carry
     (111) planes of the rhombohedral corundum structure to form the ilmenite structure. However, where there is a large difference in the cationic charges, as in $\mathbf{L i}+\mathbf{S b}^{5}+\mathbf{O}_{3}$ and $\mathbf{L i}+\mathbf{N b}^{5}+\mathbf{O}_{3}$, two other alternatives become competitive: (1) The $A^{+}$ions order in strings of face-shared octahedra so as to permit the $\mathrm{B}^{5+}$-ion octahedra to share only edges with near-neighbor occupied octahedra. This structure is illustrated by $\mathrm{LiSbO}_{3}[E d 1]$. (2) After ordering $\mathrm{B}^{5+}$ and $\mathrm{Li}^{+}$ions whithin each cationic (111) plane of the corundum structure in such a way that $\mathrm{B}^{5+}$ and $\mathrm{Li}^{+}$ions share common octahedral-site faces, each $\mathrm{A}^{+}$cation is then displaced into the far face of its octahedron, where it is equally spaced from $\mathrm{B}^{5+}$ cations above and below so long as the $\mathrm{B}^{5+}$ cations remain in the centers of their octahedra. This is the structure of paraelectric $\mathrm{LiNbO}_{3}$ and $\mathrm{LiTaO}_{3}[\mathrm{Ab3}]$.

    Where the $A$ cation is too large ( $t>1.0$ ), the close-packed $\mathrm{AX}_{3}$ layers of Fig. 1 (c) tend to change their stacking sequence from cubic to hexagonal. However, the change from the all-cubic stacking of the rhombohedral perovskite structure to the all-hexagonal stacking of the hexagonal (hex. 2 L ) $\mathrm{CsNiCl}_{3}$ structure goes via the three intermediate steps shown in Fig. 3 [Lo1]. The first step is the hexagonal $\mathrm{BaTiO}_{3}$ structure of Fig .3 (c). It is a six-layer structure with stacking sequence $a-b-c-a-c-b-a$, corresponding to one hexagonal stacking out of three. In this structure (hex. 6L), two-out-of-three $B$ cations form pairs sharing a common octahedral-site face, and one-out-of-three B cation shares only common octahedral-site corners as in the perovskite structure. Many ordered compounds $\mathrm{A}_{8} \mathrm{~B}_{2} \mathrm{~B}^{\prime} \mathrm{O}_{9}$ are known to have this structure. IThe second step, illustrated by the hexagonal $\mathrm{BaMnO}_{3}$ structure of Fig .3 (d), alternates hexagonal and cubic stackings with the sequence $a-b-c-b-a$. This four-layer structure (hex. 4L), contains only B-cation pairs sharing common octahedral-site faces. The electrostatic forces between paired B-cations in Figs. 3 (c), (d) displace the paired cations from one another along the $c$ axis, exactly as in the corundum
     hexagonal $\mathrm{Ba}^{\prime} \mathrm{TiO}_{3}$ structure, d) four-layer hexagonal $\mathrm{BaMnO}_{2}$ structure, e) nine-layer hexagonal $\mathrm{BaRuO}_{3}$ structure. [Adapted from Ca2].
    structure. The third step is the nine-layer (hex. 9 L ) structure of $\mathrm{BaRuO}_{3}$, which has two hexagonal stackings out of three in the sequence $a-b-c-b-c-a-c-a-b-a$. Here the $B$ cations form strings of three sharing common octahedral-site faces along the $c$-axis. Electrostatic forces displace the two end-member B cations away from the center B cation of each string, as shown in Fig. 3 (e). Because cubic stacking is stabilized by hydrostatic pressure, it is possible to convert under pressure and high temperature the hexagonal structures to the perovskite structure through the successive sequence of steps. This is well illustrated by the $\mathrm{Ba}_{1-x} \mathrm{Sr}_{x} \mathrm{RuO}_{3}$ system as shown in Fig. 4 (a). These particular intermediate structures appear to be stabilized by the cation displacements, but at the cost of alternating the stacking sequence. The (hex. 4L) structure, which has the maximum alternation of stacking, is not always found, and the intermediate structures tend to be stabilized by smaller B cations, as illustrated in Fig. 4 (b).
    
    

    Fig. 4. a) $\mathrm{Ba}_{1-x} \mathrm{Sr}_{x} \mathrm{RuO}_{2} \cdot p-x$ phase diagram where $p$ is hydrostatic pressure [Lo1], b) structural phase diagram of CsBFs compounds [Lolb].

    ### 3.1.2.2 O-orthorhombic structure

    Cooperative buckling of corner-shared octahedra, although indexed on a monoclinic pseudocell in earlier work, may produce the orthorhombic primitive cell of Fig. 5 containing four formula units. It was first identified in single crystals of $\mathrm{GdFeO}_{3}$ [Ge1] and later confirmed [Co21]. Powder photographs taken with $\mathrm{CrK}_{\alpha}$ radiation could be indexed on the monoclinic pseudocell containing a single $\mathrm{GdFeO}_{3}$ molecule, which is the origin of the earlier classification. The pseudocell dimensions of $\mathrm{GdFeO}_{3}$ are $a=c=3.87 \AA$, $b=3.83 \AA, \beta=92.8^{\circ}$, where $2 b_{\text {pseadocell }}=c_{\text {true cell. }}$. The true orthorhombic cell is referred to in the tables as O -orthorhombic and is distinguished from the $\mathrm{O}^{\prime}$-orthorhombic structure by a lattice-parameter ratio
    OX 盾 | A B
    OX 盾 | A B

    Fig. 5. $\mathrm{GdFeO}_{3}$. O-orthorhombic structure
    $\phi_{a b}=\Varangle \mathrm{B}_{1} \mathrm{X}_{\mathrm{II}} \mathrm{B}_{2}, \phi_{c}=\Varangle \mathrm{B}_{2} \mathrm{X}_{\mathrm{I}} \mathrm{B}_{\mathbf{3}}$.
    Fig. from [ Ve 12 ], structure [ Gef ], coordinates[Co2t].

    |  |  | coordinates |  |  |
    | :--- | :---: | :---: | :---: | :---: |
    | ion | position | $x$ | $y$ | $s$ |
    | $\mathrm{Gd}^{3+}$ | $4(\mathrm{c})$ | -0.018 | 0.060 | $\lambda$ |
    | $\mathrm{Fe}^{3+}$ | $i$ | $4(\mathrm{~b})$ | $\frac{1}{2}$ | 0 |
    | $\mathrm{O}_{\mathrm{I}}^{2-}$ | $4(\mathrm{c})$ | 0.05 | 0.470 | 0 |
    | $\mathrm{O}_{\mathrm{II}}^{1 \mathrm{I}}$ | $8(\mathrm{~d})$ | -0.29 | 0.275 | 0.05 |

    $c / a>\sqrt{2}$, where $a<b$. The $O^{\prime}$-orthorhombic structure, which has $c / a<\sqrt{2}$, is the result of a superposed Jahn-Teller (with or without spin-orbit coupling) distortion. It is also to be distinguished from ferroelectric $\mathrm{O}_{\mathrm{B}}^{*}$-orthorhombic and $\mathrm{O}_{\mathrm{B}}^{\mathrm{F}}$-orthorhombic distortions in which each B cation is removed from the center of symmetry of its interstice. Other orthorhombic distortions have been reported for $\mathrm{NdGaO}_{3}$ [ Br 26 ] and $\mathrm{NaCoF}_{3}\left[\mathrm{OR}_{5}\right]$.

    The O-orthorhombic unit cell has the probable space group Pbnm with A cations in positions 4 (c): $\pm\left(x, y, \frac{1}{4} ; \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{4}\right)$, the B cations in $4(\mathrm{~b}):\left(\frac{1}{2}, 0,0 ; \frac{1}{2}, 0, \frac{1}{2} ; 0, \frac{1}{2}, 0 ; 0, \frac{1}{2}, \frac{1}{2}\right)$, eight anions $\mathrm{X}_{\text {II }}$ in 8 (d): $\pm\left(x, y, z ; \frac{1}{\frac{1}{2}}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \bar{x}, \bar{y}, \frac{1}{\frac{1}{2}}+z ; \frac{1}{2}+x, \frac{1}{\frac{1}{2}}-y, \bar{z}\right)$, and the remaining four anions $\mathrm{X}_{\mathrm{I}}$ in 4 (c). Coordinates for the ions in $\mathrm{GdFeO}_{3}$ are also given in Fig. 5.

    The buckling of the corner-shared octahedra decreases the cation-anion-cation angle $\Phi$ from $180^{\circ}$. If the B cations and the anions are distinguished as $\mathrm{B}_{1}\left(\frac{1}{2}, 0,0\right), \mathrm{B}_{2}\left(0, \frac{1}{2}, 0\right), \mathrm{B}_{3}\left(\frac{1}{2}, 0, \frac{1}{2}\right), \mathrm{X}_{\text {II }}\left(\frac{1}{2}+x, \frac{1}{2}-y, \bar{z}\right)$, and $\mathrm{X}_{\mathrm{I}}\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{4}\right)$, then the two representative angles are $\Phi_{\mathrm{ab}}=\left(\mathrm{B}_{1}-\mathrm{X}_{\mathrm{II}}-\mathrm{B}_{2}\right)$ and $\Phi_{\mathrm{c}}=$ $\left(\mathrm{B}_{2}-\mathrm{X}_{\mathrm{I}}-\mathrm{B}_{3}\right)$. Gilleo [Gi4] has estimated that in $\mathrm{La}\left(\mathrm{Co}_{0.2} \mathrm{Mn}_{0.8}\right) \mathrm{O}_{3}$ these angles are $\Phi_{\mathrm{ab}}=150^{\circ} \pm 3^{\circ}$ and $\Phi_{c}=177^{\circ} \pm 3^{\circ}$ with $\mathrm{B}_{1}-\mathrm{O}_{\mathrm{II}}=1.95 \AA, \mathrm{~B}_{2}-\mathrm{O}_{\mathrm{II}}=2.10 \AA, \mathrm{~B}_{1}-\mathrm{O}_{1}=\mathrm{B}_{3}-\mathrm{O}_{\mathrm{I}}=1.96 \AA$. The angles in $\mathbf{G d F e O}_{3}$ are similar.

    ### 3.1.2.3 Rhombohedral structures

    Where there is no buckling of the octahedra, the perovskites $\mathrm{ABX}_{3}$ may have a sinall deformation from cubic to rhombohedral symmetry. Where this deformation does not enlarge the unit cell, it is possible to index it either on a unit cell containing two formula units, as shown in Fig. 6, or on a unit cell containing one formula unit. The corresponding rhombohedral angles are $\alpha \approx 60^{\circ}$ or $\alpha \approx 90^{\circ}$. In the early literature, detailed anion positions were not known, and it was common to use the smaller cell with $\alpha \approx 90^{\circ}$. However, the anions are generally displaced so as to require the larger unit cell of Fig. 6,
    

    Fig. 6. Rhombohedral $\mathrm{ABX}_{3}$ structures: a) anion shifts for symmetry $\mathrm{R} \overline{3} \mathrm{c}$; b) the simplest ionic displacements, corresponding to symmetry $R \overline{3} m$ for ordered $A_{\mathbf{2}} \mathrm{BB}^{\prime} \mathrm{X}_{\mathbf{4}}$ structures having $\boldsymbol{r}_{\mathrm{B}^{\prime}}>\boldsymbol{r}_{\mathrm{B}}$ [Ra3].

    Anion displacements from their ideal positions may be of three different types: (1) $\mathrm{AX}_{3}$ (111) planes remain equidistant from neighboring B-cation (111) planes, leaving all the B-cations equivalent. Within these planes, three $A-X$ distances are reduced and three are enlarged via cooperative rotations of the B-cation octahedra, as shown in Fig. 6(a). (2) The anions may move within pseudocubic \{110\} planes including the B-B axes so as to create two distinguishable B positions: B positions having a shorter B-X separation and $B^{\prime}$ positions having a larger $B^{\prime}-X$ separation. This gives the symmetry $R \overline{3} \mathrm{~m}$, which allows the $A$ cations to be displaced along the [111] axis so as to make the separations $B-A \neq B^{\prime}-A$. (3) In the most general case, the anion displacements may be decomposed into $R \overline{3} c$ and $R \overline{3} \mathrm{~m}$ components. The resulting symmetry $R \overline{3}$ also gives distinguishable $B$ and $B^{\prime}$ positions via its $R \overline{3} m$ component.

    Although the distinction between these possibilities has been determined in only a few cases, it appears that R3c can be anticipated unless there is a physical reason for creating two distinguishable positions $B$ and $\mathrm{B}^{\prime}$. This conclusion is based on the fact that $\mathrm{LaAlO}_{3}$ has been shown to have the symmetry $\mathrm{R} \overline{3} \mathrm{c}$ by neutron diffraction, [De14] nuclear quadrupole resonance [Mu5], electron-spin resonance, [Ki3] and x-ray techniques [Ge 4b, De17]. It is strongly supported by the observation [Ra3] that $\mathrm{LaCoO}_{3}$ has the symmetry $\mathrm{R} \frac{\mathrm{B}}{\mathrm{c}} \mathrm{c}$ at low temperatures, where all of the trivalent cobalt are in their low-spin state, but has the symmetry $R \overline{3}$ at higher temperatures where thermal activation creates a nearly equal population of high-spin and low-spin cobalt ions. These are crystallographically distinguishable, via different ionic radii, as B and B'.

    ### 3.1.3 The influence of localized-electron ordering

    ### 3.1.3.1 Crystal-field theory

    Crystal-field theory rests on the assumption that the outer electrons to be described are localized at discrete atomic positions. This assumption is valid for outer $f$ electrons; it is valid for $d$ electrons in fluorides and in many oxides. Given this assumption, the Schroedinger equation $\mathscr{H} \psi=E \psi$ that describes the localized orbitals and their energies contains the Hamiltonian

    $$
    \begin{equation*}
    \mathscr{H}=\mathscr{H}_{0}+V_{\mathrm{el}}+V_{\mathrm{cab}}+\left(V_{L S}+V_{\mathrm{ncab}}+V_{\lambda}+\sum_{\mathrm{j}} V_{\mathrm{ij}}\right) \tag{2}
    \end{equation*}
    $$

    where $\mathscr{H}_{0}$ is the Hamiltonian for a hydrogen-like, spherical potential, $V_{\text {el }}$ is the atomic correction for spherical symmetry that enters if there is more than one outer $d$ electron, and $V_{\text {cab }}$ is the energy correction due to the cubic component of the crystalline fields. For outer $d$ electrons, $V_{\text {el }}$ and $V_{\text {cab }}$ are generally $\approx 1 \mathrm{eV}$, and the ion is in a high-spin or a low-spin state depending upon the relative magnitudes of these two terms. In the case of $3 d$ electrons, the perturbations listed within the parentheses are all $<0.1 \mathrm{eV}$, and they must be considered simultaneously. $V_{L S}=\lambda L \cdot S$ is the spin-orbit coupling energy, and covalent mixing reduces slightly the parameter $\lambda$ from its free-atom value. $V_{n \text { cab }}$ is the noncubic component of the crystalline field, $V_{\lambda}$ is the elastic coupling energy associated with cooperative local distortions, and $V_{i j}$ is the magnetic exchange energy coupling localized atomic moments on neighboring cations.

    Solution of the zero-order equation $\mathscr{H}_{0} \psi=E \psi$ gives hydrogenic wave functions $f_{l \mathrm{~m}}=R_{l}(r) Y_{l}^{\mathrm{m}}(\theta, \phi)$. From the spherical harmonics $Y_{l}^{m}(\theta, \phi)$, the $d$ electrons $(l=2)$ have the following angular dependence and azimuthal-angular-momentum quantum number $m$ derived from $L_{z} f=-i \hbar \partial f / \partial \phi=m \hbar f$ :

    $$
    \begin{array}{rlrl}
    f_{\mathrm{A}} & \sim\left(3 z^{2}-r^{2}\right) / r^{2} & & =\left(3 \cos ^{2} \theta-1\right) ; \\
    & & m=0  \tag{3}\\
    \left(f_{\mathrm{D}} \pm i f_{\mathrm{E}}\right) & \sim 2(z x \pm i y z) / r^{2} & & =\sin 2 \theta \exp ( \pm i \phi) ; \\
    \left(f_{\mathrm{B}} \pm i f_{\mathrm{C}}\right) & \sim\left(x^{2}-y^{2} \pm i 2 x y\right) / r^{2} & =\sin ^{2} \theta \exp ( \pm i 2 \phi) ; & \\
    m= \pm 1 \\
    m= \pm 2
    \end{array}
    $$

    where $\theta, \phi$ are conventional spherical coordinates. The perturbation $V_{\text {ef }}$ reflects the fact that outer electrons of parallel spin are excluded from one another and therefore screen each other less from the positive atomic nucleus than do those of antiparallel spin. This correction is responsible for Hund's highest-multiplicity rule for the free atoms. It influences the radial part of the wave function, and hence the relative energies of states of different spin, but not the angular part.

    Given the cartesian axes at a $B$ cation formed by the principal axes of its octahedral interstice, the five $d$ orbitals of Eq. (3) are separated into two symmetry groups; $f_{\mathrm{A}}$ and $f_{\mathrm{B}}$, which are directed along the cartesian axes toward near-neighbor anions, have $E_{\mathrm{g}}$ symmetry and are referred to as $e_{\mathrm{g}}$ orbitals; $f_{\mathrm{C}}, f_{\mathrm{D}}$, and $f_{\mathrm{E}}$, which are more stable because they are directed away from the near-neighbor anions, have $T_{8 \varepsilon}$ symmetry and are referred to as $t_{\mathbf{2 g}}$ orbitals. The principal contribution to the cubic-field splitting 10 Dq of $T_{2 g}$ and $E_{g}$ energies is due to covalent mixing, not to electrostatic energies as calculated on a pointcharge model. If covalent mixing with the near-neighbor anionic and A-cationic orbitals is introduced, then the crystalline localized orbitals of $t_{2 g}$ and $e_{g}$ symmetry become

    $$
    \begin{align*}
    & \psi_{\mathrm{t}}=N_{\mathrm{t}}\left(f_{\mathrm{t}}-\lambda_{\pi} \phi_{\pi}+\lambda_{\mathrm{A}} \phi_{\mathrm{A}}\right)  \tag{4}\\
    & \psi_{\mathrm{e}}=N_{\mathrm{e}}\left(f_{\mathrm{e}}-\lambda_{\mathrm{B}} \phi_{\mathrm{s}}-\lambda_{\sigma} \phi_{\sigma}\right)
    \end{align*}
    $$

    where $f_{\mathrm{t}}$ and $f_{\mathrm{e}}$ are linear combinations of the atomic $f_{\mathrm{C}}, f_{\mathrm{D}}, f_{\mathrm{E}}$ and $f_{\mathrm{A}}, f_{\mathrm{B}}$ orbitals. The symmetrized anionic $p_{\pi}, s$ and $p_{\sigma}$ orbitals are $\phi_{\pi}, \phi_{8}$ and $\phi_{\sigma}$; the symmetrized A-catonic $s, p$ orbitals are $\phi_{A}$. The covalentmixing parameters $\lambda_{\sigma}, \lambda_{\pi}, \lambda_{\mathrm{A}}, \lambda_{\mathrm{B}}$ are roughly proportional to the overlap integral for atomic orbitals on neighboring ions and inversely proportional to their energy separation. Initially, the energy separations of cationic $d$ and $\phi_{\sigma}$ or $\phi_{\pi}$ are given by $E_{M}-E_{\mathrm{I}}$, the difference between the Madelung energy and ionization potentials for the "effective" ionic charges, so that by symmetry

    $$
    \begin{equation*}
    10 \mathrm{Dq}=\Delta_{\mathrm{M}}+\left(\lambda_{\sigma}^{2}-\lambda_{\pi}^{2}\right)\left(E_{\mathrm{M}}-E_{\mathrm{I}}\right), \lambda_{\pi}<\lambda_{\sigma} \tag{5}
    \end{equation*}
    $$

    where $\Delta_{M}$ is any electrostatic contribution to 10 Dq . The one-electron crystal-field splitting of the $d$-state manifold is shown in Fig. 7(a). The relationship $\lambda_{\pi}<\lambda_{\sigma}$ has been confirmed by nuclear magnetic resonance studies of $\mathrm{KMnF}_{3}, \mathrm{KNiF}_{3}$ and $\mathbf{K}_{2} \mathrm{NiCrF}_{5}$ [Sh30, $\mathrm{Hu4}$ ]. In these experiments the fractional occupancies by unpaired spins of the $2 s, 2 p_{\sigma}$, and $2 p_{\pi}$ orbitals are:

    $$
    f x_{\mathrm{s}} \equiv 2 S A_{\mathrm{s}} / A_{2 \mathrm{~s}} \sim N_{\mathrm{\theta}}^{2} \lambda_{\mathrm{B}}^{2}, \quad f x_{\sigma}=2 S A_{\sigma} / A_{2 \mathrm{p}} \sim N_{\mathrm{\theta}}^{2} \lambda_{\sigma}^{2}, \quad f x_{\pi}=2 S A_{\pi} / A_{2 \mathrm{p}} \sim N_{\mathrm{t}}^{2} \lambda_{\pi}^{2}
    $$

    where $A_{\Delta}$ is the isotropic component and $A_{\sigma}, A_{\pi}$ the anisotropic components of the hyperfine interaction tensor $A_{i j}$ entering the nuclear spin-electron spin coupling energy $\Sigma_{j} \boldsymbol{I}_{i} \cdot \mathbf{A}_{j]} \cdot \boldsymbol{S}_{j}$. Interpretation of the phenomenological parameters $\lambda_{\pi}, \lambda_{\sigma}$ and 10 Dq has been discussed extensively [Hu4].

    With more than one outer $d$ electron or $d$ hole, it is necessary to introduce $V_{\mathrm{el}}$, which is responsible for Hund's highest multiplicity rule (highest net $S$ and $L$ ) for the free atoms. For four outer electrons, the atomic ground term is therefore ${ }^{5} \mathrm{D}$. In a crystal, this rule may break down as a result of the crystalline
    fields. Schematically, the Hund splitting $\Delta_{\mathrm{ex}}$ for states of different spin and the one-electron splitting 10 Dq may be represented on the same energy diagram, as shown in Fig. 7(b). It follows from this figure that with four to eight outer $d$ electrons, the magnitude of the net ground-state spin depends upon whether $\left(\Delta_{\mathrm{ex}}-10 \mathrm{Dq}\right)$ is positive or negative. If $\Delta_{\mathrm{ex}}>10 \mathrm{Dq}$, the ion is in a high-spin state; if $\Delta_{\mathrm{ex}}<10 \mathrm{Dq}$,
    

    Fig. 7. One-electron crystal-field splitting of the $d$-state manifold of a transition-metal B cation in a cubic perovskite: a) $\Delta_{\mathrm{ex}}=0$ and b) schematically for $\Delta_{\mathrm{ex}} \neq 0$, corresponding to more than one outer $d$ electron.

    Hund's rule breaks down and the ion is in a low-spin state. Since $\Delta_{\text {ex }}$ decreases with larger radial extension of the crystalline wave functions, it decreases with increasing covalent-mixing parameters $\lambda_{\sigma}, \lambda_{\pi}$. Simultaneously, from Eq. (5) it follows that 10 Dq increases with increasing covalency. Therefore there is a critical amount of covalent bonding beyond which Hund's rule breaks down. Covalency with a particular anionic sublattice increases with cationic charge and on going to the right through any long period of the periodic table. In oxides with the perovskite structure, only divalent and trivalent ions of the first long period are high-spin. Of these, trivalent nickel is low-spin and trivalent cobalt exhibits a variable high-spin to low-spin population as a function of temperature.

    In general, it is necessary to use a multi-electron notation for the outer $d$ electrons. Whereas atomic $D$ states are split by the crystalline fields as shown in Fig. 7, atomic $F$ states are split as shown in Fig. 8.
    

    Fig. 8. Octahedral-site splitting of atomic $F$ states: a) two-electron ${ }^{3} F$ states and b) two-hole ${ }^{2} F$ states.
    Because the operator $L_{\mathrm{z}}=-i \hbar \partial / \partial \phi$ is imaginary, the crystal-field splitting of $f_{\mathrm{B}}$ and $f_{\mathrm{C}}$ quenches the orbital angular momentum associated with these orbitals, so that the $e_{\mathrm{g}}$ orbitals have $m=0,0$ and the $t_{2 g}$ orbitals have $m=0, \pm 1$. An isomorphism between $f_{C}, f_{D}, f_{E}$ and atomic $P$ orbitals simplifies calculation of $V_{L S}$. It is possible to treat the $t_{2 g}$ orbitals as atomic $P$ orbitals if the sign of the spin-orbit-coupling
    parameter $\lambda$ is reversed [Gr9]. Therefore ground states having an orbital degeneracy and $m \neq 0$ are split by $V_{L S}$ into $(2 J+1)$ multiplet states corresponding to states of different $J=L+S$. However, the order of the levels is inverted (largest $J$ lowest for less than five $d$ electrons, smallest $J$ lowest for more than five $d$ electrons) because of the change in sign of $\lambda$. According to the Landé interval rule, the separation between states $J$ and $J+1$ is $|\lambda|(J+1)$. The first-order multiplet splittings, which do not include mixing of higher states of similar symmetry, are shown in Fig. 9 for $\mathrm{Fe}^{2+}$ and $\mathrm{Co}^{2+}$ ions. Note that the term is now identified by its symmetry character $T_{2 \mathbb{q}}$ or $T_{1 g}$ rather than by its atomic orbital-momentum character $D$ or $F$. Tab. 1 summarizes the various symmetry notations for different spin states.
    

    Fig. 9. Schematic spin-orbit plus trigonal-fich, or tetragonal-field, splittings of cubic-field levels as a function of the ratio $\delta /(-\lambda)$ for a) ${ }^{5} T_{2 g}$ level of $\mathrm{Fe}^{2+}$ and b) ${ }^{4} T_{1 \mathrm{~g}}$ level of $\mathrm{Co}^{2+}$.

    Spin-orbit coupling introduces an axial symmetry to the charge distribution, where the spin (or atomic-moment) defines the axis. Therefore, if there is a noncubic component to the crystalline field ( $V_{\mathrm{ncub}} \neq 0$ ), then there is a spin-lattice interaction via the orbital-lattice interaction that introduces a magnetic anisotropy. For localized electrons, this is a local, one-ion anisotropy. Conversely, if the spins are ordered below some transition temperature, then the local interstices have time to relax about the noncubic charge distribution, thereby distorting the octahedral site. Therefore there is an intimate connection between the noncubic symmetry and the magnitude of the multiplet splitting. The noncubic component is usually parametrized as

    $$
    \begin{equation*}
    V_{\mathrm{ncub}}=\delta\left(L_{z}^{2}-\frac{2}{3}\right), \tag{6}
    \end{equation*}
    $$

    and lig. 9 includes the total perturbation $V_{L S}+V_{\text {ncub }}$ of the onc-electron and two-electron ground states.
    With one or two holes in a half-shell, the one-electron and two-electron energy diagrams are inverted. In these cases $M_{L}=\Sigma_{1} m_{1}=0$, so that $V_{L S}=0$, and there is no multiplet splitting.

    Tab. 1 also displays the general ground-state wave functions for a magnetically ordered phase having collinear spins. The coefficients $a_{1}, a_{2}, a_{3}$ of the Kramers' doublets and $b_{1}, b_{2}$ of the singlets all depend upon the relative magnitudes of the five perturbation terms $V_{L S}+V_{\mathrm{ncub}}+V_{\lambda}+\mathscr{H}_{Z}$ where $\mathscr{H}_{Z}$ is the Zeeman energy due to the internal molecular field resulting from magnetic order. The molecularfield approximation is used for the first-order, isotropic magnetic-coupling energy $\mathscr{H}_{\text {ex }}$, which is the dominant term in $\sum_{j} V_{\mathrm{ij}}$ [see discussion of Eq. (13)]. This gives

    $$
    \begin{equation*}
    \mathscr{H}_{\mathrm{z}} \approx 2 J_{\mathrm{p}}\langle S\rangle S_{\mathrm{z}} \tag{7}
    \end{equation*}
    $$

    where $J_{p}$, the sum of all near-neighbor exchange parameters, can be determined from the temperature dependence of the magnetic susceptibility and $z$ is along the axis of the average spin $\langle S\rangle$ on the neighboring cations. This term contributes to the spectroscopic-splitting factor $g$, and hence to the net atomic moment, if $V_{L S} \neq 0$. In Tab. 1, the components of the wave functions are designated by the notation $\mid M_{L}, M_{S}>$, where $M_{L}, M_{S}$ are the azimuthal quantum numbers for the net orbital and spin momenta.

    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline n \& Ion \& $t^{6} e^{n}$ \& $V_{\text {el }}$ \& $V_{\text {cub }} V_{\text {ch }}$ \& $V_{L S}+V_{\mathrm{ncub}}(\delta<0)+\mathscr{H}_{z}$ \& $V_{L S}+V_{\text {ncub }}(\delta>0)+\mathscr{H}_{z}$ <br>
    \hline 1
    2
    3
    4
    5

    6
    7

    8

    9 \& \[
    $$
    \begin{aligned}
    & \mathrm{Ti}^{8+}, \mathrm{V}^{4+}, \mathrm{W}^{5+}, \mathrm{Re}^{6+} \\
    & \mathrm{V}^{8+}, \mathrm{Cr}^{4+}, \mathrm{Mo}^{4+} \\
    & \mathrm{V}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{4+}, \mathrm{Mo}^{3+} \\
    & \mathrm{Cr}^{2+}, \mathrm{Mn}^{8+} \\
    & \mathrm{Fe}^{\mathrm{IV}}, \mathrm{Ru}^{\mathrm{IV}}, \mathrm{Os}^{\mathrm{IV}} \\
    & \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+} \\
    & \mathrm{Ir}^{\mathrm{IV}} \\
    & \mathrm{Fe}^{2+}, \mathrm{Co}^{3+} \\
    & \mathrm{Co}^{\mathrm{III}}, \mathrm{Rh}^{\mathrm{II}}, \mathrm{Pt}^{\mathrm{IV}} \\
    & \mathrm{Co}^{2+} \\
    & \mathrm{Ni}^{I I} \\
    & \mathrm{Ni}^{2+}, \mathrm{Pd}^{2-} \\
    & \mathrm{Cu}^{2+}
    \end{aligned}
    $$

    \] \& | $t^{1} e^{0}$ |
    | :--- |
    | $t^{2} e^{0}$ |
    | $t^{8} e^{0}$ |
    | $t^{3} e^{1}$ |
    | $t^{4} e^{0}$ |
    | $t^{3} e^{2}$ |
    | $t^{5} e^{0}$ |
    | $t^{4} e^{2}$ |
    | $t^{6} e^{0}$ |
    | $t^{5} e^{2}$ |
    | $t^{6} e^{1}$ |
    | $t^{8} e^{2}$ |
    | $t^{6} e^{3}$ | \& | ${ }^{2} \mathrm{D}$ |
    | :--- |
    | ${ }^{9} \mathrm{~F}$ |
    | ${ }^{4} \mathrm{~F}$ |
    | ${ }^{8} \mathrm{D}$ |
    | ${ }^{6} \mathrm{~S}$ |
    | ${ }^{5} \mathrm{D}$ |
    | ${ }^{4} \mathrm{~F}$ |
    | ${ }^{3} \mathrm{~F}$ |
    | ${ }^{2} \mathrm{D}$ | \&  \& \[

    $$
    \begin{gathered}
    \mid+1,+\frac{1}{2}> \\
    \mid+1,+1> \\
    \mid 0,+\frac{3}{2}> \\
    { }^{5} B_{1 g} \mid 0,+2> \\
    b_{1} \mid+1,-1> \\
    +b_{2}\left|0,0>+b_{1}\right|-1,+1> \\
    \mid 0,+\frac{5}{2}> \\
    a_{1}\left|0,+\frac{1}{2}>+a_{2}\right|+1,-\frac{1}{2}> \\
    a_{1} \mid-1,+2> \\
    +a_{2}\left|0,+1>+a_{3}\right|+1,0> \\
    a_{1} \mid-1,+\frac{3}{2}> \\
    a_{1}\left|-a_{2}\right| 0, \left.+\frac{1}{2}>+a_{3} \right\rvert\,+1,-\frac{1}{2}> \\
    { }^{2} B_{1 g} \mid 0,+\frac{1}{2}> \\
    \mid 0,+1> \\
    { }^{2} B_{1 g} \mid 0,+\frac{1}{2}>
    \end{gathered}
    $$

    \] \& \[

    $$
    \begin{gathered}
    a_{1}\left|0,+\frac{1}{2}>+a_{2}\right|+1,-\frac{1}{2}> \\
    b_{1}\left|+1,-1>+b_{2}\right| 0,0>+b_{3} \mid-1,+1> \\
    \mid 0,+\frac{3}{2}> \\
    { }^{5} A_{1 g} \mid 0,+2> \\
    b_{1}^{\prime}\left|+1,-1>+b_{2}^{\prime}\right| 0,0>+b_{1}^{\prime} \mid-1,+1> \\
    \mid 0,+\frac{5}{2}> \\
    a_{1}^{\prime}\left|0,+\frac{1}{2}>+a_{2}^{\prime}\right|+1,-\frac{1}{2}> \\
    b_{1}\left|+1,-1>+b_{2}\right| 0,0>+b_{1} \mid-1,+1> \\
    \mid 0,0> \\
    a_{1}^{\prime}\left|-1,+\frac{8}{2}+a_{2}^{\prime}\right| 0, \left.+\frac{1}{2}>+a_{3}^{\prime} \right\rvert\,+1,-\frac{1}{2}> \\
    { }^{2} A_{1 g} \mid 0,+\frac{1}{2}> \\
    \mid 0,+1> \\
    { }^{2} A_{1 g} \mid 0,+\frac{1}{2}>
    \end{gathered}
    $$
    \] <br>

    \hline
    \end{tabular}

    ## 3．1．3．2 Jahn－Teller distortions

    If the cubic－field ground state of the B cation is an orbitally two－fold－degenerate $E_{\mathbf{q}}$ state，then the $t_{2 g}$ orbitals are either full or half－filled，so that $M_{L}=0$ ，and there is no spin－orbit coupling（ $V_{L S}=0$ ）． Jahn and Teller［Jab］have shown that，if there is no perturbation available to remove a ground－ state orbital degeneracy，then there will be a spontaneous distortion to lower local symmetry below some transition temperature $\Theta_{\text {trans }}<T_{\text {melt }}$ where $T_{\text {melt }}$ is the melting point．Since the energy gained by a local distortion is reduced by the work done against the elastic restoring forces of the crystal，transition tem－ peratures $\Theta_{\text {trans }}$ are small for isolated ions．However，if all of the $B$ cations are similar，then cooperative distortions are possible，and the net energy gained per ion is much greater because of the elastic－coupling energy $V_{\lambda}$ of Eq．（2）．Such a cooperative phenomenon is characterized by thermal hysteresis and a definite （usually first－order）transition temperature．Since they are due to electronic ordering，such transitions are martensitic．

    Van Vleck［Va15］pointed out that the normal vibrational modes that split an $E_{g}$ electronic state are themselves twofold－degenerate with symmetry $E_{\mathbf{q}}$ ．One mode gives the interstice a tetragonal distor－ tion，the other an orthorhombic distortion．It follows that，from first－order theory，there is no static distortion of the interstice，only a dynamic coupling between the electronic charge density and the vibrational modes．Moreover，this dynamic coupling greatly enhances the two $E_{\mathrm{g}}$ vibrational modes and gives a dynamic splitting of the electronic $E_{\mathrm{q}}$ state．This mechanism has important consequences for the acoustic properties and，as discussed in 3.3 ，for the sign of the magnetic superexchange coupling．

    Inclusion in the theory of higher－order coupling terms and anharmonic elastic terms shows that a static，tetragonal（ $c / a>1$ ）distortion of the interstice is stable below some $\Theta_{\text {trans }}$［Ka10］．This sign for the static distortion was first established experimentally through the interpretation［Go15］and further study of cooperative tetragonal－to－cubic transitions in spinel systems．However，application to the perov－ skites requires a solution of the lowest－energy cooperative distortion via inclusion of the elastic－coupling energy $V_{\lambda}$ ．Goodenough［Gob］proposed that individual tetragonal（ $c / a>1$ ）octahedra order their long axes alternately along［100］and［010］axes of the pseudocubic cell．Kanamori［Ka10］generalized this solution to include an orthorhombic component to the local－octahedron distortions．This gives B－B separations within（001）planes having a long（1）and a short（s）B－X separation and along the［001］axis two intermediate（ m ）B－X separations where $\mathrm{s}<\mathrm{m}<(\mathrm{l}+\mathrm{s}) / 2$ ．This prediction was later verified by Hepworth and Jack［He9］for $\square \mathbf{M n F}_{3}$ and by Okazaki［Oki］for $\mathbf{K C u F}_{3}$（see Fig．10）．Superposition of this distortion on an O－orthorhombic cell stabilizes the unique axis along the orthorhombic $c$－axis，and
    

    $$
    l-2.1 \mathrm{~A}, m-1.9 \mathrm{~A}, s=1.8 \mathrm{~A}, \phi_{c}=774^{\circ}, \phi_{a b}=748^{\circ}
    $$

    

    Fig．10．Cooperative Jahn－Teller distortions in a）$\left[\mathrm{MnF}_{3}\right.$ and b） $\mathrm{KCuF}_{2}$ ．c）Configuration of hole－orbitals at $\mathrm{Cu}^{2+}$ ions of tetragonal $\mathrm{KCuF}_{3}$［ He 9，Okt］．
    the axial ratios of the O-orthorhombic cell are transformed from $a<c / \sqrt{2}$ to $c / \sqrt{2}<a$. To signal the fact that a Jahn-Teller distortion (with or without spin-orbit coupling) has been superposed on a distortion due to relative ionic sizes, the notation O'-orthorhombic is used in Tab. 2 wherever $c / \sqrt{2}<a$.

    The important $B$ cations that exhibit dynamic and static Jahn-Teller stabilizations in the absence
     als are used for the valence state of a low-spin cation. Tab. 2 shows that $\mathrm{O}^{\prime}$-orthorhombic symmetry above a magnetic-ordering temperature is associated with these ions, provided the $d$ electrons are localized, and only with these ions, with the exception of $\mathrm{LaVO}_{3}$ and $\mathrm{CeVO}_{3}$, where sharply enhanced distortions appear abruptly below $\Theta_{\mathrm{N}}[R o 3 ; G o 10]$. The cubic ${ }^{3} T_{1 g}$ state of $\mathrm{V}^{3+}$ is orbitally threefold-degenerate, so that it may induce small distortions above $\Theta_{\mathrm{N}}$, larger distortions below $\Theta_{\mathrm{N}}$ (see discussionGo14). $\mathrm{LaNiO}_{3}$ remains $\mathrm{R} \overline{3} \mathrm{c}$ because the $e_{\mathrm{g}}$ electrons are collective. In $\mathrm{La}_{2} \mathrm{Li}_{0.5} \mathrm{Ni}_{0.5} \mathrm{O}_{4}$ crystals, on the other hand, the ordered $\mathrm{Ni}^{\mathrm{III}}$ ions have localized $e_{\mathrm{p}}$ electrons, and there is a tetragonal $(c / a>1$ ) distortion. The sign of this distortion is manifest by the large $c / a$ ratio. Strictly speaking, this is not a Jahn-Teller distortion, since the $\mathrm{K}_{2} \mathrm{NiF}_{4}$ structure is tetragonal, but ordering of the localized electron of unpaired spin in the tetragonal field distorts the $\mathrm{Ni}^{\mathrm{III}}$ octahedra to tetragonal symmetry with axes parallel to the unique axis. Pure Jahn-Teller distortions can be distinguished from distortions associated with spin-orbit coupling because they are independent of magnetic order and generally occur at a $\Theta_{\text {trans }}$ above the magnetic-ordering temperature.

    ### 3.1.3.3 Spin-orbit coupling

    B cations having cubic-field ground-state terms $T_{2 g}$ or $T_{1 g}$ are orbitally threefold-degenerate with $M_{L}=0, \pm 1$, so that $V_{L S} \neq 0$. The combined perturbations $V_{L S}+V_{\mathrm{ncub}}$ separate into secular equations for different $M_{J}$, as shown in Fig. 9. With a single outer electron, the ${ }^{2} T_{\mathrm{gg}}$ cubic-field term is split in two, the energies for different $M_{J}$ shifting by

    $$
    \begin{align*}
    & E_{3 / 2}=\frac{1}{3} \delta-\frac{1}{2} \lambda \\
    & E_{1 / 2}^{ \pm}=-\frac{1}{8} \delta+\frac{1}{4} \lambda \pm \frac{1}{2}\left\{\delta^{2}+\lambda \delta+\left(\frac{3}{2} \lambda\right)^{2}\right\}^{1 / 2}  \tag{8}\\
    & E_{3 / 2}=E_{1 / 2}^{-}=E_{1 / 2}^{+}-\frac{3}{2} \lambda \tag{9}
    \end{align*}
    $$

    where $\lambda>0$. In a cubic field
    and spin-orbit coupling leaves an orbitally twofold-degenerate ground state. Therefore it is necessary to consider an additional Jahn-Teller stabilization via $V_{\mathrm{ncmb}}+V_{\lambda}+\mathscr{H}_{\mathrm{Z}}$. Goodenough [Go14] has shown that it is necessary to consider two temperature regions: $T>\Theta_{N}$ and $T<\Theta_{N}$, where $\Theta_{N}$ is the temperature below which the spins order collinearly. In the paramagnetic domain $T>\Theta_{N}$, the molecular fields vanish $\left(\langle S\rangle=0\right.$ ) and, from Eq. (7), $\mathscr{H}_{\mathrm{Z}}=0$. In this case, the ground-state energy varies as $\left(\delta^{2} / \lambda\right)$. Since the work done against elastic restoring forces is $q_{2} \delta^{2}$, there is a spontaneous Jahn-Teller distortion, corresponding to $\delta>0$, at a $\Theta_{\text {trans }}>\Theta_{N}$ only if the product $\lambda q_{2}$ is relatively small. In the magnetically ordered state ( $T<\Theta_{\mathrm{N}}$ ), on the other hand, there is an internal molecular field $H_{\text {int }}$ at each atom, which produces a Zeeman splitting of the orbitals of different spin. The magnitude of this splitting depends upon the spectroscopic splitting factor, which has the components

    $$
    \begin{equation*}
    g_{\mathbb{!}}=2-2 g_{1}(\delta / \lambda) \text { and } g_{\perp}=2+g_{1}(\delta / \lambda) \tag{10}
    \end{equation*}
    $$

    where $g_{1}>0$. Therefore the Zeeman splitting in the molecular fields is maximized by making $\delta<0$ and having the spins parallel to the unique axis defined by $\delta$. Further, this energy is linear in $\delta$, so that a spontaneous distortion should occur at some $\Theta_{\text {trans }}<\Theta_{\mathrm{N}}$. A similar argument holds for the orbitally twofold-degenerate $J=1$ and $J=\frac{1}{2}$ states of octahedral-site $\mathrm{Fe}^{2+}{ }^{5} T_{2 g}$ and $\mathrm{Co}^{2+}{ }^{4} T_{1 \mathrm{~g}}$.

    In summary, if multiplet splitting leaves a ground state with a twofold, accidental orbital degeneracy, then there is a spontaneous Jahn-Teller distortion at some $\Theta_{\text {trans }}$ that removes this degeneracy. If $\Theta_{t r a n s}>\Theta_{N}$, then $\delta>0$. However, this alternative requires special crystallographic conditions that do not appear to be met in perovskites. On the other hand, a $\Theta_{\text {trans }} \leq \Theta_{\mathrm{N}}$ and $\delta<0$ can be generally anticipated wherever the spins order collinearly and the $d$ electrons are localized. Further, from Eqs. (3) and (6), it follows that $T_{g g}$ states (one outer $t_{2 g}$ electron) have $\delta<0$ if the site symmetry is tetragonal ( $c / a>1$ ), whereas $T_{18}$ states (two outer $t_{2 g}$ electrons) have $\delta<0$ if it is tetragonal ( $c / a<1$ ). Alternatively, distortions of the site symmetry may be to trigonal symmetry. A $\delta<0$ corresponds to $\alpha<60^{\circ}$ for $T_{28}$ states, to $\alpha>60^{\circ}$ for $T_{1 g}$ states. These relationships are also summarized in Tab. 1. Experimentally, $\mathrm{Fe}^{2}+{ }^{5} T_{2 g}$ octahedra become trigonal ( $\alpha<60^{\circ}$ ) below $\Theta_{\mathrm{N}}$, as exhibited by $\mathrm{KFeF}_{3}$, whereas $\mathrm{C}^{2+}{ }^{2+} T_{1 g}$ octahedra become tetragonal $(c / a<1)$ below $\Theta_{\mathrm{N}}$, as exhibited by $\mathrm{KCoF}_{8}$. Where $\Theta_{\mathrm{trans}}=\Theta_{\mathrm{N}}$, the magneticordering temperature may be first-order. In addition, the spontaneous distortions introduce large magnetostriction and magnetic anisotropy.

    The cubic-field ground state of $\mathrm{V}^{3+}{ }^{3} T_{1 g}$ is orbitally threefold-degenerate. As a result, any spontaneous distortion must correspond to $\delta<0$, i.e., tetragonal ( $c / a<1$ ) or trigonal ( $\alpha>60^{\circ}$ ). However, as in the other cases:a $\Theta_{\text {trans }} \lesssim \Theta_{\mathrm{N}}$ is to be expected in the perovskite structure. The $\mathrm{V}^{3+}$ ion generally occurs in an O-orthorhombic perovskite, and superposition of a tegragonal ( $c / a<1$ ) distortion with coincident unique axes again results in $\mathrm{O}^{\prime}$-orthorhombic symmetry. The perovskite $\mathrm{LaVO}_{3}$ exhibits an abrupt contraction of the $c$-axis on cooling through $\Theta_{\mathrm{N}}$.

    ### 3.1.4 The influence of collective-electron ordering

    ### 3.1.4.1 Band theory

    Conventional band theory rests on three principal assumptions: (1) A description of the outer electrons may be built up from solutions of a single electron moving in a periodic potential. (2) Multiplet structure on individual atoms may be disregarded. (3) Electron-phonon interactions may be treated as a small perturbation. For an infinite crystal, the unperturbed solution of running waves in a periodic potential gives the Bloch functions and energies

    $$
    \begin{equation*}
    \psi_{k m}=\exp (i k \cdot r) u_{k m}(r) ; E_{k}=E_{0}+\hbar^{2} h^{2} / 2 m^{*} \tag{11}
    \end{equation*}
    $$

    where $\hbar k$ is the momentum of an electron of effective mass $m^{*}$ and $u_{k}(r)$ is a periodic function. In the tight-linding approximation appropriate for narrow bands, the Bloch functions are

    $$
    \left.\psi_{k}(r)=1 / \sqrt{N} \sum_{n=1}^{N} e x_{j}\right)\left(i k \cdot R_{n}\right) w\left(r-R_{n}\right)
    $$

    where $\boldsymbol{w}\left(\boldsymbol{r}-\boldsymbol{R}_{\mathrm{n}}\right)$ is a localized wave function for the atom at $\boldsymbol{R}_{\mathrm{n}}$ defined by

    $$
    w\left(r-R_{\mathrm{n}}\right)=1 / \sqrt{N} \sum_{n} \exp \left[i l_{k} \cdot\left(r-R_{\mathrm{n}}\right)\right] u_{k}(r)
    $$

    and $u_{k}(r)$ is a localized crystalline orbital. At the Brilloin-zone boundries defined by

    $$
    \begin{equation*}
    2 \boldsymbol{k} \cdot \boldsymbol{K}+|\mathrm{K}|^{2}=0, \tag{12}
    \end{equation*}
    $$

    where $K$ is a reciprocal lattice vector, there are energy discontinuities in energy-momentum space. In polar insulators, this introduces an energy gap $E_{g}$ between occupied, primarily anionic states and empty, primarily cationic states. Cooperative displacements $\delta$ of the cationic sublattice relative to the anionic sublattice may increase this gap, thereby stabilizing the total energy of the occupied states by $\varepsilon_{2} \delta^{2}$. Since the resulting elastic-strain energy is $q_{2} \delta^{2}$, there can be a spontaneous displacement only for the exceptional case $q_{2}<\varepsilon_{2}$ and a ground state corresponding to a small distortion parameter $\delta$. In this case vibrational entropy may stabilize the higher symmetry at the higher temperatures. This differs from the usual criterion for spontaneous distortions, where a term linear in $\delta$ is identified. There appear to be two situations occuring in perovskites where the requirement $q_{2}<\varepsilon_{2}$ is met: (1) Where B-cations have cmpty $d$ orbitals, there is a critical range of covalent-mixing parameters through which the site preference changes from octahedral to tetrahedral. In this range $q_{2}$ is very small for B -cation displacements within an octahedron that reduce the coordination number from six towards four. The origin of the small $q_{2}$ is a balance of the electrostatic energy lost and covalent-bond energy gained on going to smaller anion coordination. (2) The high polarizability of the outer core electrons of $\mathrm{Pb}^{2+}$ and $\mathrm{Bi}^{3+}$ ions makes $q_{2}$ relatively small, so that displacements that permit a relatively large $\varepsilon_{2}$ can occur spontaneously.

    What distinguishes these spontaneous distortions from those due to an ordering of kocalized electrons is the displacement of the cations from the centers of symmetry of their interstices. (The Jahn-Teller distortions, with or without spin-orbit coupling, leave the cations in the centers of symmetry of their interstices.). Unlike the structures, such as corundum, where pairs of octahedra share a common face, these cationic displacements from the centers of symmetry of their interstices do not follow from pointcharge electrostatic arguments. In polar insulators, these displacements lead to ferroelectricity or antiferroclectricity, and they often induce displacements of neighboring cations. Further, where the requirement $q_{2} \approx \varepsilon_{2}$ occurs just above $\Theta_{\text {trans, }}$, there must be a strong interaction of the bonding (mostly anionic) electrons with those vibrational modes that anticipate the cooperative ionic displacements below $\theta_{\text {trans }}$. These "soft" vibrational modes impart several anomalous physical properties, including a high electric susceptibility.

    ### 3.1.4.2 Distortions due to B-X bonding

    Transition-metal cations having no outer $d$ electrons have the following site preferences:

    $$
    \begin{array}{lllll}
    \mathrm{Sc}^{3+} & \mathrm{Ti}^{4+} & \mathrm{V}^{5+} & \mathrm{Cr}^{6+} & \mathrm{Mn}^{7+} \\
    \mathrm{Y}^{3+} & \mathrm{Zr}^{4+} & \underline{\mathrm{NB}^{5+}} & \mathrm{Mo}^{6+} & \mathrm{Tc}^{7+} \\
    & \mathrm{H} \mathrm{I}^{4+} & \underline{\mathrm{Ta}^{5+}} & \mathrm{W}^{6+} & \mathrm{Re}^{7+}
    \end{array}
    $$

    where cations at the left of each row have definite octahedral-site (or larger anion coordination) preference and those to the right have definite tetrahedral-site preference. Those underlined by a solid line may be stabilized in the octahedral sites of a perovskite-type structure, but they tend to induce spontaneous ferroelectric or antiferroelectric distortions, the ions moving cooperatively out of the centers of symmetry of their interstices. The ions underlined by dashed lines only occur in ordered perovskites $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{O}_{6}$ and $\mathrm{A}_{3} \mathrm{BB}_{2}^{\prime} \mathrm{O}_{9}$. In general, they are found in tetrahedral sites or in strongly distorted octahedral sites. However, in the ordered perosvkites they are able to strongly polarize the anion near neighbors so as to stabilize the octahedral symmetry.

    It is significant that spontaneous ferroelectric distortions are only induced by B cations if these are transition-metal cations having empty $d$ orbitals. It is also significant that the change from octahedralsite to tetrahedral-site preference is associated with a relative stabilization of the $d$ orbitals (larger atomic number in any long period) as well as with a decrease in ionic size. (The ionic radii decrease in the order $\left.\mathrm{Y}^{3+}, \mathrm{Sc}^{3+}, \mathrm{Hf}^{4+}, \mathrm{Zr}^{4+}, \mathrm{Ta}^{5+}, \mathrm{Nb}^{5+}, \mathrm{Ti}^{4+}, \mathrm{W}^{6+}, \mathrm{Mo}^{6+}, \mathrm{Re}^{7+}, \mathrm{V}^{5+}, \mathrm{Tc}^{7+}, \mathrm{Cr}^{6+}, \mathrm{Mn}^{7+}\right)$. The greater the relative stability of the $d$ orbitals, the larger are the parameters $\lambda_{\sigma}$ and $\lambda_{\pi}$ of Eq. (4), and these are enhanced by any displacement that decreases a B-X separation. Such an enhancement stabilizes the occupied states at the expense of the $d$ states, and a net stabilization can occur if the $d$ states are empty. Also the smaller the cationic size, the smaller the elastic resistance to displacements within an octahedral interstice. (Phenomenological ionic models for the ferroelectric distortions have also been given [Me7, Ha 33 ].)

    There are three B-cation displacements relative to their octahedral interstices that would simultaneously stabilize the occupied anionic $p_{\pi}$ orbitals relative to the unoccupied $t_{2 g}$ orbitals: (1) Tetragonal symmetry. Displacements along an [001] axis that create alternate long and short B-X distances along this axis would stabilize $s, p_{\sigma}$ and the two $p_{\pi}$ orbitals per anion on this axis and strongly polarize the charge density toward the short B-X separation. (2) Orthorhombic symmetry. Displacement along a [110] axis that created two shortest and two longest B-X distances would stabilize the $s, p_{\sigma}$ and the two $p_{n}$ orbitals per anion on two out of the three cartesian axes. (3) Rhombohedral symmetry. Displacement along a [111] axis would stabilize the $s, p_{\sigma}$ and the two $p_{r}$ orbitals per anion on all the anions. These three possibilities are illustrated in Fig. 11.

    Such distortions also induce changes in the A-X separations, and the particular cooperative distortion that is stabilized depends upon the character of the A-X bonding. The covalency contribution to the A-X bond increases with formal A cationic charge; for a fixed charge it decreases with increasing atomic number of the A cation down any column of the periodic table. If A-X covalent bonding is relatively strong and the perovskite is distorted to O-orthorhombic symmetry, all ferroelectric distortions may be quenched because the $p_{\pi}$ orbitals are stabilized by $\sigma$-bonding with the A cations. This appears to be illustrated by $\mathrm{CaTiO}_{3}$, and almost so by $\mathrm{SrTiO}_{3}$. On the other hand, if the A atom is stabilized by a polarization of its outer core electrons ( $\mathrm{Pb}^{2+}$ and $\mathrm{Bi}^{3+}$ as discussed in 3.1.4.3), then a tetragonal, ferroelectric distortion is stabilized so as to allow a cooperative displacement of the $A$ and $B$ cations, the $A$ cation moving along the [001] axis to stabilize two $p_{\pi}$ orbitals per anion not on [001] axes. This is illustrated by the $\mathrm{PbTiO}_{3}$ structure of Fig. 12. If the covalency contribution to the A-X bonding is relatively weak, then the B-X covalency contribution should dominate. For large A cations ( $t>0.9$ ), this would stabilize a ferroelectric, rhombohedral distortion at lowest temperatures, as illustrated by $\mathrm{BaTiO}_{3}$. As the temperature increases, successive distorted structures ( $\mathrm{R}_{\mathbf{B}}^{\mathrm{E}} \rightarrow \mathrm{O}_{\mathrm{B}}^{\mathrm{F}} \rightarrow \mathrm{T}_{\mathrm{B}}^{\mathrm{F}} \rightarrow \mathrm{C}$ ) introduce incremental additions to the entropy. However, a small A cation and weak A-X covalency contribution may lead to a ferroelectric distortion superposed on the O -orthorhombic structure to give the $\mathrm{O}_{\mathrm{B}}^{*}$-orthorhombic structure of $\mathrm{CdTiO}_{3}$ or $\mathrm{NaTaO}_{3}$ shown in Fig. 13. Even more complex distortions are found in $\mathrm{NaNbO}_{3}$ [Vo6]. The room-tem-
    

    Fig. 13. Ionic displacements in a) $\mathrm{CdTiO}_{3}$ and b) $\mathrm{NaTaO}_{3}[\mathrm{Ka22}]$.

    Fig. 12. Tetragonal $\mathrm{PbTiO}_{2}$ : a) environment of Ti and b ) environment of Pb [Sh21].
    perature form has parallel pairs of (001) $\mathrm{NbO}_{2}$ planes coupled antiparallel to give an antiferroelectric phase, as shown in Fig. 14. The Na atoms are also displaced antiparallel to one another.

    ### 3.1.4.3 Distortions due to core polarization: $\mathbf{P b}^{\mathbf{2 +}}$ and $\mathbf{B i}^{\mathbf{3 +}}$

    Lead and bismuth are heavy ions, and the $6 s$ orbitals are sufficiently more stable than the $6 p$ orbitals that $\mathrm{Pb}^{2+}$ and $\mathrm{Bi}^{3+}$ ions are commonly stable. However, the outer $6 s^{2}$ core electrons have a relatively large radial extension, making the ionic radius large, and this reduces the overlap of the $6 p$ orbitals with the orbitals on near-neighbor anions. This reduction in overlap reduces the strength of the A-X bond. However, hybridization of $6 s$ and $6 p$ orbitals, which costs the energy separation of $6 s$ and $6 p$ orbitals, produces a polarization of the outer-core electrons, so that the effective ionic radius is much smaller on one side of the cation than on the other. This permits the formation of a much more stable bond on one side of the cation, and the energy gained in this bonding may be greater than the hybridization energy required to polarize the core. It is for this reason that $\mathrm{Pb}^{2+}$ and $\mathrm{Bi}^{3+}$ ions are stabilized in many crystals with an asymmetric anion coordination.

    There are three possible displacements of the A cations that would stabilize the anion $p_{\pi}$ orbitals (which $\sigma$-bond with the A cations): (1) Tetragonal symmetry. Displacement of the A cations along [001] axes to stabilize the two $p_{n}$ orbitals per anion not on [001] axes, as found for $\mathrm{PbTiO}_{3}$ (see Fig. 12). (2) Orthoshombic symmetry. Displacement of the A cations along [110] axes to stabilize strongly one $p_{\pi}$ orbital per anion on [001] axes and less strongly one $p_{\pi}$ orbital per anion not on [001] axes. The smallest induced distortion of the B-cation octahedra occurs for an antiferroelectric displacement of the type illustrated by $\mathbf{P b Z r O}_{3}$, Fig. 15. (3) Rhombohedral symmetry. Displacement of the A cations along [111] axes to stabilize strongly one $p_{\pi}$ orbital per anion. To be cooperative, such a distortion must be ferroelectric, as in $\mathrm{BiFeO}_{3}$, Fig. 16. Further, since the A cation is moved toward a $B$ cation, there is an electrostatic repulsion between them that displaces the B cation from the center of symmetry of its interstice.

    Given spontaneous distortions due to A-cation displacements, there remains the possibility that electron ordering among localized $d$ electrons on $\mathbf{B}$ cations can superpose an additional distortion. Whether this is the origin of the triclinic symmetry reported for ferromagnetic $\mathrm{BiMnO}_{3}$, where $\mathrm{Mn}^{3+}$ is a JahnTeller ion, is not known.
    

    Fig. 14. Ionic displacements in orthorhombic $\mathrm{NaNbO}_{3}$. The shifts of the anions in $\mathrm{NbO}_{2}$ planes and the small $x$ shifts of the Nb ions have been omitted for clarity [ $V 06$ ].
    
    b
    Fig. 15. a) Pb -ion shifts ( $\approx 0.26 \mathrm{~A}$ ) in a ( 001 ) plane of antiferroelectric $\mathrm{PbZrO}_{2}$. b) Distorted Zr octahedra as a result of simultaneous anion displacements. $\mathrm{Zr}-\mathrm{O}$ distances are given in $[\AA][S a 8, J 05]$.

    ### 3.1.4.4 Competitive phases

    A few compounds have atomic radii compatible with the formation of a perovskite phase and yet are stabilized in other structures at ordinary temperature and pressure. Two important competitive structures of this type are represented by $\mathbf{Y A l O}_{3}$ and $\mathbf{P b R u O}_{3}$. Both of these compounds convert to the perovskite structure under hydrostatic pressure.

    The hexagonal $\mathrm{YAlO}_{3}$ structure of Fig. 17 (a) consists of close-packed layers having the sequence $b-a-b^{\prime}-a-b-c-b^{\prime}-c-b$, where $b$ is an A-cation layer, $b^{\prime}$ is a B-X layer with anions stacked beneath A cations ( $b$ stacking) and B cations in the trigonal bipyramids formed by face-shared tetrahedra in the hexagonal $a-b-a$ or $c-b-c$ anion-stacking sequence. The structure apparently forms because both the $A$ cations and the $B$ cations simultaneously approach the lower limit for cationic size: $r_{B}=0.51 \AA, r_{A}=0.90 \AA$. The small $\mathrm{Al}^{3+}$ ion is relatively stable in the five-fold coordination of the trigonal-bipyramid sites, and the small $\mathrm{Y}^{3+}$ ion is more stable in an eightfold (or $6+2$ ) coordination instead of a twelvefold (or $9+3$ ) coordination. These site preferences reflect an increased stabilization of the bonding, anionic orbitals as a result of closer cation-anion distances.

    The antiferromagnetic, ferroelectric compound $\mathbf{Y M n O}_{3}$ has a similar structure, but with an $a$-axis $\sqrt{3}$ larger than that of $\mathrm{YAlO}_{3}$ to give six molecules per unit cell. The $\mathrm{Mn}^{3+}$ ion can be stabilized in a trigonalbipyramid site because it has four outer $d$ electrons with configuration $e_{\sigma}^{2} e_{\pi}^{2} a_{1}^{0}$, where the empty $a_{1}$ orbital is directed along the $c$-axis to bond covalently with the two collinear oxygen ions. The larger unit cell and the ferroelectricity are reflected in the complex magnetic order shown in Fig. 17(b). Below $\Theta_{\mathrm{N}}$, exchange striction favors antiferromagnetic Mn-O-O-Mn interactions. The ferroelectric transition that occurs above $600^{\circ} \mathrm{C}$ is apparently due to the relatively large size of the $\mathrm{Mn}^{3+}$ ion, which creates a large enough interstice for the $\mathrm{Y}^{3+}$ ion that it is stabilized by a displacement from the center of symmetry of its interstice so as to lower its near-neighbor anion coordination from eight toward seven.
    

    Fig. 16. Structure of $\mathrm{BiFeO}_{3}$ showing displacements in perovskite subcell [MiO].
    
    b

    Fig. 17. a) Comparison of the unit cells of $\mathrm{YAlO}_{3}$ (solid lines) and $\mathrm{YMnO}_{3}$ (dashed lines). b) Magnetic structure of $\mathrm{YMnO}_{3}$ [Be36, Be39].
    $a=3.678 \AA, c=10.52 \AA$ for $\mathrm{YAlO}_{3}$.

    Cubic $\mathrm{PbRuO}_{3}$ gives an x-ray pattern of the pyrochlore structure, corresponding to chemical formula $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$, and therefore may be written as $\mathrm{Pb}_{2} \mathrm{Ru}_{2} \mathrm{O}_{6} \oplus$. This structure is competitive with the perovskite structure in several $\mathrm{PbB}^{4}+\mathrm{O}_{3}$ compounds. It has been shown [ $L 04$ ] that the anion vacancies $\oplus$ are located at the centers of $\mathrm{Pb}^{2+}$-ion tetrahedra sharing common corners and that the electrostatic repulsion between the Pb ions may be counteracted by a transfer of the two outer-core electrons per Pb ion to the $\oplus$ sites, which act as traps for four electrons per vacancy. Thus the outer core electrons at the $\mathrm{Pb}^{2+}$ ions induce a completely new structure rather than a ferroelectric-type displacement of the A-cations within the perovskite structure. This new structure contains B cations in corner-shared octahedra, as in perovskite, but the $\mathrm{B}-\mathrm{X}-\mathrm{B}$ angle is reduced to about $135^{\circ}$. This structure is also stabilized in $\mathrm{AgSbO}_{3}$ [Sc22] presumably because there is a small effective charge on the $\mathrm{Ag}^{+}$ions. The pyrochlore $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}$ structure itself is competitive if attempts are made to force a low valence state on one of the cations.

    ### 3.1.5 Structures encountered with ordered $B, B^{\prime}$ cations

    ### 3.1.5.1 Same $B$ atom

    There are three ways of creating two different cations from the same atom:
    (1) Two A cations of different valence can create two different valence states of the same B atom, and these may order at lower temperature as a result of different cationic charge. The ordering temperature may be quite low, since only electron transfers are required for cationic ordering. This is illustrated by $\left(\mathrm{La}_{0.5} \mathrm{Ca}_{0.5}\right)\left(\mathrm{Mn}_{0}^{3}{ }_{0}^{+} \mathbf{M n}_{0.5}^{+}\right) \mathrm{O}_{3}$, which has the $\mathrm{Mn}^{3+}, \mathrm{Mn}^{4+}$ ordering in a rocksalt-type array. Because $\mathrm{Mn}^{8+}\left(t_{28}^{3} e_{\mathrm{g}}^{1}\right)$ is a Jahn-Teller ion having localized outer $d$ electrons, there is also a cooperative distortion to tetragonal $(c / a>1)$ symmetry of the $\mathrm{Mn}^{3+}$-occupied octahedra, and the ordering of these distortions gives a macroscopic distortion to tetragonal ( $c / a<1$ ) symmetry (see Fig. 26).
    (2) Where the energy difference between the high-spin and low-spin states of the B cation are nearly equal, the populations of the two energy states approach each other at higher temperatures. In $\mathrm{LaCoO}_{3}$, high-spin $\mathrm{C}^{3+}$ and low-spin $\mathrm{Co}^{\text {III }}$ are separated by only $E_{3+}-E_{\mathrm{III}} \approx 0.08 \mathrm{eV}$, and the populations of the two spin states are nearly equal at $400^{\circ} \mathrm{K}$. This temperature is sufficiently low that ordering of the two different spin states occurs above this temperature, and the symmetry changes from $R \overline{3} c$ to $R \overline{3}[R a 3]$. In this case, it is the difference in ionic size and covalent bonding, which results in a difference in the effective ionic charge - not the formal ionic charge - that is the driving force for the ionic ordering.
    (3) Disproportionation of $\mathrm{B}^{\mathrm{m}+}$ cations into $\mathrm{B}^{(\mathrm{m}-1)+}$ and $\mathrm{B}^{(\mathrm{m}+1)+}$ cations may create ions of different size and charge that become ordered. This is illustrated by $\square \mathbf{P d F}_{3}$, which has been shown by magnetic susceptibility measurements to be $\mathrm{Pd}^{2}+\mathrm{Pd}^{I V} \mathrm{~F}_{6}$ [Ba19]. (The A cation is missing.) Such a disproportionation permits the formation of $\left(\mathrm{PdF}_{8}\right)^{2-}$ clusters in which the anionic orbitals are stabilized by strong covalent mixing with the $\sigma$-bonding $4 d$ orbitals of $e_{g}$ symmetry. This is accomplished by a shifting of the F - ions toward the $\mathrm{Pd}^{4+}$ ions and away from the $\mathrm{Pd}^{2+}$ ions. Simultaneously, the anionic shift reduces covalent mixing in the occupied, antibonding $4 d$ orbitals of $e_{\mathrm{g}}$ symmetry at the $\mathrm{Pd}^{2+}$ ions. These orbitals are therefore localized and further stabilized by intra-atomic exchange (Hund splitting), so that each $\mathrm{Pd}^{2+}$ ion carries an atomic moment of $2 \mu_{\mathrm{B}}$. Were there no disproportionation, the single electron per low-spin $\mathrm{Pd}^{I I I}$ ion would occupy antibonding $e_{\mathrm{g}}$ orbitals that were more unstable than the occupied, localized $e_{\mathrm{g}}$ orbitals at the $\mathrm{Pd}^{2+}$ ions. However, the transformation $2 \mathrm{Pd}^{I I I} \rightarrow \mathrm{Pd}^{2+}+\mathrm{Pd}^{\mathrm{IV}}$ costs ionization energy. and this is usually too large (as in $\mathrm{LaNiO}_{3}$ ) for disproportionation to occur.

    ### 3.1.5.2 Different $B$ atoms

    There are many examples of ordered $\mathrm{B}, \mathrm{B}^{\prime}$ structures in compounds having different B atoms: $\mathrm{A}_{2}^{+} \mathrm{B}^{+} \mathrm{B}^{13+} \mathrm{F}_{6} ; \mathrm{A}_{2}^{2}+\mathrm{B}^{3}+\mathrm{B}^{15}+\mathrm{O}_{6}, \mathrm{~A}_{2}^{2+} \mathrm{B}^{2}+\mathrm{B}^{16+} \mathrm{O}_{6}, \mathrm{~A}_{2}^{2+} \mathrm{B}^{+} \mathrm{B}^{\prime 7}+\mathrm{O}_{6} ; \mathrm{A}_{2}^{3+} \mathrm{B}^{2+} \mathrm{B}^{14+} \mathrm{O}_{6}, \mathrm{~A}_{2}^{3+} \mathrm{B}^{+} \mathrm{B}^{15}+\mathrm{O}_{6}$, and $\mathrm{A}_{3}^{2+} \mathrm{B}_{2}^{3+} \mathrm{B}^{16+} \mathrm{O}_{9}$. In the $A_{2} B^{\prime} X_{6}$ group, ordering is on alternate (111) planes of $B$ cations, in the $A_{3} B_{2} B^{\prime} X_{9}$ group the $B^{\prime}$ cations occupy every third B-cation (111) layer, Fig. 1 (c). The probability for an ordered arrangement of the $\mathrm{B}, \mathrm{B}^{\prime}$ cations is determined by the differences between their ionic charges and their ionic radii [Fe22, Fe23, Ga1, Ga10]. To first approximation, the order-disorder transition temperature $\Theta_{o r d}$ induced by the charge difference $\Delta q=\left(q^{\prime}-q\right)$ at cations $\mathrm{B}^{\prime}$ and B is $\Theta_{o r d} \sim(\Delta q)^{2}$. Thus superstructure has been observed in all the known compounds having $(\Delta q)^{2}=36$ and 16, whereas those having $(\Delta q)^{2}=4$ are disordered unless there is a relatively large difference in ionic sizes. The minimum difference in ionic size that results in ordered $A_{2}^{2}+B^{3}+B^{15}+O_{6}$ compounds is $\left|r_{B}-r_{B^{\prime}}\right| / r_{B} \approx 0.09$, and this has been achieved where $\mathrm{B}^{\prime}=\mathrm{Nb}$ or Ta , having empty $d$ orbitals for the formation of stable $\left(\mathrm{B}^{\prime} \mathrm{O}_{6}\right)^{7-}$ clusters, while the $B$ cation has no relatively stable, empty $d$ orbitals.

    Given the formation of ( $\mathrm{B}^{\prime} \mathrm{X}_{6}$ ) octahedra, a confusion arises as to where the structure corresponds to an ordered $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{O}_{6}$ perovskite built up of corner-shared octahedra plus A cations and where it corresponds to the isostructural $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$ structure, which consists of discrete ( $\mathrm{B}^{\prime} \mathrm{X}_{6}$ ) octahedra separated by $A$ and B cations. (The cubic $\mathbf{K}_{2} \mathrm{NaAlF}_{6}$ structure with space group $\mathrm{T}_{\mathrm{h}}^{6}(\mathrm{~Pa} 3)$ is similar to $\left(\mathbf{N H}_{4}\right)_{3} \mathrm{FeF}_{6}$, but has a lower symmetry because there are very small rotations of the ( $\mathrm{B}^{\prime} \mathrm{X}_{6}$ ) octahedra.) Some authors [ Fe 22 ] select as a criterion for the perovskite structure the cationic radius ratio $\boldsymbol{r}_{\mathbf{B}} / \boldsymbol{r}_{\mathbf{A}}<0.8$ where $\boldsymbol{r}_{\mathbf{B}}>\boldsymbol{r}_{\mathbf{B}^{\prime}}$. This decision is based on the observation that a plot of the cubic lattice parameter $a_{0}$ vs. B-cation radius $\gamma_{\mathrm{B}}$ is a straight line for $r_{\mathrm{B}} / r_{\mathrm{A}}<0.8$, but bends over for $\boldsymbol{r}_{\mathrm{B}} / r_{\mathrm{A}}>0.8$. However, this probably reflects the ratio at which electrostatic forces inhibit (or reverse) any A-cation displacements rather than the ratio at which discrete ( $\mathrm{B}^{\prime} \mathrm{X}_{6}$ ) octahedra are formed. For most physical properties this criterion is probably arbitrary.

    Without electron-ordering distortions superposed on the size effects, ordered $A_{2} B B^{\prime} X_{6}$ perovskites can be described by either the O-orthorhombic cell of Fig. 5 or by the rhombohedral R $\overline{3}$ (or $\mathrm{R} \overline{3} \mathrm{~m}$ ) cell of Fig. 6. Where $\alpha=60^{\circ}$, a tetramolecular cubic cell may be chosen provided the A cations are not displaced from their ideal positions. Like cubic $\left(\mathbf{N H}_{4}\right)_{3} \mathrm{FeF}_{6}$, the cubic cell has the space group $\mathrm{O}_{\mathrm{h}}^{5}(\mathrm{Fm} 3 \mathrm{~m})$ with B cations in 4 (b) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$; f.c., A cations in 8 (c) $\pm\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$; f.c., $B^{\prime}$ cations in 4 (a) $(0,0,0)$; f. c., and X-anions in $24(\mathrm{e}) \pm(\mathrm{u}, 0,0 ; 0, \mathrm{u}, 0 ; 0,0, \mathrm{u}) ;$ f.c. with $0.2<\mathrm{u}<0.25$. However, even where $\alpha=60^{\circ}$, motions of the A cations along the [111] axes may occur, thereby destroying the cubic symmetry.

    If an electron－ordering transition superposes a distortion at every other octahedron of Fig．5，either the B or the $\mathrm{B}^{\prime}$ octahedra remaining cubic，cooperative elastic interactions between the distorted octahedra give a further reduction in symmetry．The resulting monoclinic cell［Fi9，Bl8］，which is pseudotriclinic，is not to be confused with the pseudomonoclinic symmetry reported in early work for the O－orthorhombic
    n， re
    jy se structures．The origin of the superposed electron－ordering transition could be either a Jahn－Teller ordering of localized electrons or a ferroelectric－type displacement of the anions about a（ $\mathrm{B}^{\prime} \mathrm{X}_{6}$ ）octahedron．

    Several $\mathrm{Ca}_{2} \mathrm{~B}^{3}+\mathrm{Ta}^{5+} \mathrm{O}_{6}$ and $\mathrm{Sr}_{2} \mathrm{~B}^{3+} \mathrm{Nb}^{5}+\mathrm{O}_{6}$ perovskites having $\mathrm{B}=$ rare－earth atom exhibit the mono－ clinic symmetry of a distorted O－orthorhombic cell［Fi8］．Since the $4 f$ electrons at the rare－earth ions are localized，it is tempting to attribute this to a Jahn－Teller distortion with spin－orbit coupling．Although Fig． 9 shows that the octahedral site splitting of one－electron $4 f$ orbitals gives orbitally threefold－degene－ rate levels having an accidental degeneracy that is not removed by spin－orbit coupling，nevertheless there are two reasons why this explanation cannot be correct：（1）There is no magnetic ordering of the $4 f$ elec－ trons at room temperature and（2） $\mathrm{Sr}_{2} \mathrm{GdNbO}_{6}$ shows the distortion even though $\mathrm{Gd}^{3+}$ has a half－filled $4 f^{7}$ shell，which has no orbital degeneracy associated with the ground state．It is therefore concluded that the additional distortions are due to the potentially ferroelectric cations $\mathrm{Nb}^{5+}$ and $\mathrm{Ta}^{5+}$ ．

    ## 3．1．5．3 Complex alloys $A_{2} B^{\prime} \mathbf{X}_{6}$ ，where $\mathbf{B}=\mathbf{M}_{13}, \mathbf{B}^{\prime}=\mathbf{M}_{8}$

    Several complex interstitial alloys have a formal structural relationship to the ordered perovskite $\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$ as well as interesting magnetic properties．In this group，having space group Fm 3 m ，the B posi－ tion is occupied by a thirteen－atom cluster consisting of a metal atom at position 4 （a）at the center of a cubo－octahedral，twelve－atom cluster of $M$ atoms at positions $48(\mathrm{~h})$ ；the $B^{\prime}$ position is occupied by a simple cube of eight M＇atoms at $32(\mathrm{f})$ ．The three principal axes of each cluster are along the cubic axes of the perovskite cell，as shown schematically in Fig．18，so that each $X$ atom at positions 24 （e）has eight near neighbors．The eight A atoms of the tetra－molecular cell are at the 8 （c）positions．The 4 （b）position at the center of the $\mathrm{M}_{8}^{\prime}$ clusters is empty．Alloys with this structure include the ferromagnetic borides $\mathrm{Al}_{2}\left[\left(\mathrm{AlM}_{12}\right)\left(\mathrm{M}_{8}^{\prime}\right)\right] \mathrm{B}_{6}$ ，where $\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$ ，as well as $\mathrm{Cr}_{23} \mathrm{C}_{6}$ ．
    

    Fig．18．One quadrant of the $A_{3} B^{\prime} X_{8}$ structure showing the atomic positions of the $B=M_{13}$ and $B^{\prime}=M_{8}^{\prime}$ clusters ［We19］．

    ## 3．1．6 First－order magnetic transition in $\mathbf{M}^{c} \mathbf{X M}_{3}^{\mathrm{P}}$ perovskites

    Many perovskites $\mathrm{M}^{c} \mathrm{XM}_{3}^{\mathrm{f}}$ exhibit first－order phase changes at magnetic－ordering transitions．Most of these are reported to be cubic－to－cubic transitions，but in $\mathbf{Z n C M n}_{3}$ it is a tetragonal（ferrimagnetic）－to－ cubic（ferromagnetic）transition．These crystallographic changes are induced by a complex interplay of collective electrons in overlapping bands．Because of the intimate connection with the magnetic proper－ ties and because of the necessarily speculative character of any model at this time，discussion of these compounds is deferred to 3.5 ．
    3.1.7 Data: Crystallographic properties of $A B X_{3}, A_{2} B B B^{\prime} X_{6}, A_{3} B_{2}^{\prime} B X_{9}$ and $A\left(B_{x} B_{v}^{\prime} B_{2}^{\prime \prime}\right) X_{3}$ compounds with perovskite or perovskite-related structure (Tab.2)

    Tab. 2.
    Within any section, the compounds are in general first ordered according to the atomic number of the $B$ cation and then by the basicity of the A cation. For the ordered perovskites of Tab. 2b, c, d, the compounds are further ordered by the atomic number of the other $B$ cation. The order of the sections is as follows:

    Tab. 2a $-\mathrm{ABX}_{3}$

    $$
    \begin{aligned}
    & \mathrm{A}^{2+} \mathrm{LiH}_{3} \\
    & \mathrm{~A}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{Li}_{1 / 3}\right)_{3} ; \mathrm{A}=\mathrm{I}^{-1}, \mathrm{Br}^{-1}
    \end{aligned}
    $$

    $$
    \mathrm{A}^{+} \mathrm{B}^{2}+\mathrm{X}_{3} ; \mathrm{X}=\mathrm{F}^{-1}, \mathrm{Cl}^{-1}, \mathrm{Br}^{-1}
    $$

    $$
    \mathrm{A}+\mathrm{B}^{s+}+\mathrm{O}_{3} ; \mathrm{B}=\mathrm{V}, \mathrm{Nb}, \mathrm{Sb}, \mathrm{Ta}, \mathrm{I}, \mathrm{~Pa}, \mathrm{U}
    $$

    $\mathrm{A}^{2+\mathrm{B}^{4}+\mathrm{O}_{3}} ; \mathrm{B}=\mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Ge}, \mathrm{Zr}, \mathrm{Mo}, \mathrm{Tc}, \mathrm{Ru}, \mathrm{Sn}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Hf}, \mathrm{Re}, \mathrm{Ir}, \mathrm{Pb}, \mathrm{Th}, \mathrm{U}$, $\mathrm{Np}, \mathrm{Pu}$
    $A^{2+} B^{4+} X_{3}$ or $A^{3+} B^{3+} X_{3} ; X=S$ or $\mathrm{Se}, \mathrm{B}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Ta}, \mathrm{In}, \mathrm{Ga}$
    $A^{3+} B^{3+} \mathrm{O}_{3} ; \mathrm{B}=\mathrm{Al}, \mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Ga}, \mathrm{Y}, \mathrm{Nb}, \mathrm{Rh}, \mathrm{In}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$
    Tab. 2b $-\mathrm{A}_{2} \mathrm{BB}^{\prime} \mathrm{X}_{6}$
    $\mathrm{A}_{2} \mathrm{BB}^{3+} \mathrm{X}_{6} ; \mathrm{X}=\mathrm{F}^{-1}, \mathrm{Cl}^{-1}, \mathrm{~B}^{3+}=\mathrm{Al}, \mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Ga}, \mathrm{Ag}, \mathrm{In}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Au}, \mathrm{Tl}$ $\mathrm{A}^{2+} \mathrm{A}^{3+} \mathrm{B}^{3+} \mathrm{B}^{4+} \mathrm{O}_{6} ; \mathrm{B}^{4+}=\mathrm{Ti}, \mathrm{Ir}$
    $\mathrm{A}_{2} \mathrm{BB}^{n+\mathrm{O}_{6}} ; \mathrm{B}^{4+}=\mathrm{Ti}, \mathrm{Mn}, \mathrm{Ge}, \mathrm{Zr}, \mathrm{Ru}, \mathrm{Ir}$
    $\mathrm{B}^{5+}=\mathrm{V}, \mathrm{Nb}, \mathrm{Sb}, \mathrm{Ta}, \mathrm{Bi}, \mathrm{Pa}, \mathrm{Pu}$
    $\mathrm{B}^{6+}=\mathrm{Mo}, \mathrm{Te}, \mathrm{W}, \mathrm{Re}^{6+, 5+}, \mathrm{Os}^{6+, 5+}, \mathrm{U}^{6+, 5+}, \mathrm{Np}^{6+}, \mathrm{Pu}^{6+}$
    $\mathrm{B}^{\mathbf{+}+}=\mathrm{Tc}, \mathrm{Re}, \mathrm{Os}, \mathrm{I}$
    Tab. 2c $-\mathrm{A}_{3} \mathrm{BB}_{2}^{\prime} \mathrm{O}_{9}$

    $$
    \begin{array}{ll}
    \mathrm{A}_{3} \mathrm{BB}_{2}^{5+} \mathrm{O}_{9} ; & \mathrm{B}^{5+}=\mathrm{Nb}, \mathrm{Ru}, \mathrm{Sb}, \mathrm{Ta} \\
    \mathrm{La}_{3} \mathrm{Co}_{2} \mathrm{~B}^{5+} \mathrm{O}_{9} ; & \mathrm{B}^{5+}=\mathrm{Nb}, \mathrm{Sb} \\
    \mathrm{~A}_{3} \mathrm{~B}_{2} \mathrm{~B}^{6+} \mathrm{O}_{9} ; & \mathrm{B}^{6+}=\mathrm{Mo}, \mathrm{~W}, \mathrm{Re}, \mathrm{U}
    \end{array}
    $$

    Tab. 2d $-A^{2+}\left(\mathrm{B}_{x} \mathrm{~B}_{y}^{\prime} \mathrm{B}_{z}^{\prime \prime}\right) \mathrm{O}_{3}$
    $\mathrm{x}_{2}$
    
    [Lit. S. 275

    | Compound | Sym | a | ¢ | $\stackrel{c}{\text { A }}$ | angle | Ref. | Remarks | Magnetic Data |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{A}+\mathrm{B}^{2+} \mathrm{X}_{3} ; \mathrm{X}=\mathrm{F}^{-1}, \mathrm{Cl}^{-1}, \mathrm{Br}^{-1}$ (continued) |  |  |  |  |  |  |  | in 3.3.4, Tab. |
    | $\mathrm{CsVCl}_{3}$ | H | 7.23 | 5.885 | 6.03 | $\beta=87^{\circ} 48^{\prime}$ |  | Hex (2L), P\&S [Ydt] <br> Hex (2L), optical and magnetic properties Hex (2L), P\&S [Ydt] |  |
    | $\mathrm{RbVCl}_{3}$ | H | 7.04 |  | 6.0 |  | Seto |  |  |
    | $\mathrm{KVCl}_{3}$ | H | 6.90 |  | 5.98 |  | Selb |  |  |
    | $\begin{aligned} & \mathrm{RbCrF}_{3} \\ & \mathrm{KCrF}_{3} \end{aligned}$ | T | 6.149 |  | 8.088 |  |  | P\&S [Co27] |  |
    |  | T | 6.04 |  | 8.01 |  | Co1 |  |  |
    |  | C | 4.158 |  |  |  | Co27 | $T=500{ }^{\circ} \mathrm{C}, \mathrm{P} \& \mathrm{~S}[E d 2$, Vo1, Kn3, Yo1, Pe2a] |  |
    | $\mathrm{NaCrF}_{3}$ | T | 8.544 |  | 7.968 |  | Sc1 | Neutron diffraction |  |
    | $\left(\mathrm{NH}_{4}\right) \mathrm{CrF}_{3}$ | T | 5.695 6.232 |  | 7.639 7.954 |  | Vo1 | $a$ and $b$ axis said to double |  |
    | $\mathrm{TlCrF}_{3}$ | T | 6.194 |  | 8.064 |  | Vo1 |  |  |
    | $\mathrm{CsCrCl}_{3}$ | H | 7.249 |  | 6.228 |  | Yd1 |  |  |
    | $\mathrm{RbCrCl}_{3}$ | H | 7.03 |  | 6.08 |  | Se2 | Hex (2L), P\&S [Se2] <br> Hex (2L) pseudohexagonal |  |
    | $\mathrm{CsMnF}_{3}$ | H | 6.213 |  | 15.074 |  | Za1 | Hex (6L), $\Theta_{\mathrm{N}}=54^{\circ} \mathrm{K}, \mathrm{P} \& \mathrm{~S}$ [Si14, Be19], neutron diffraction [Pif], optical properties [St28, St30], NMR [Mi4, We11], AFMR [Wi14], magnetic properties [Le3, Le4, Se1], S.S. with K and Na [Be19a] |  |
    | $\mathrm{RbMnF}_{3}$ | C | 4.328 4.2396 |  |  |  | Lo1b | High pressure phase, P\&S [Sy1] |  |
    |  |  |  |  |  |  | Wa8 | P\&S [Si14, Be19, Co25, Ho17], cubic to $T=20^{\circ} \mathrm{K}$ [Te4], dielectric properties [Ig1, Ch4a], compressibility [St29], I.R. spectra [ $A x 2, P_{e} 5$ ], bibliography [Fr10a] | 6 |
    | $\mathrm{KMnF}_{8}$ - | C | 4.186 |  |  |  | Be3 | P\&S [Be14, Sil4, Cr4, Be2, Be4, Kn3, Ok2, Ok3, Ok4, Be53, OR6, Ho17, Gu1a], S.S. with Co +Ni [Ha28], I.R. spectra [Ax2, Pe5, Yo2], bibliography [Fr10a] | 6 |
    |  | 0 | 5.885 | 5.885 | 8.376 |  | Be3 | $T=95^{\circ} \mathrm{K},(c / a>\sqrt{2}) 184>T>84^{\circ} \mathrm{K}[B e 3, D e 3, O k G]$ |  |
    |  | 0 | 5.900 | 5.900 | 8.330 |  | Be 3 | $T=65^{\circ} \mathrm{K},(c / a<\sqrt{2}) T<84^{\circ} \mathrm{K}[B e 3, D e 3, O \mathrm{Ok}]$ ] |  |
    | $\mathrm{NaMnF}_{3}$ | 0 | 5.568 | 5.760 | 8.000 |  | Si14 | Prep. [Ho17, Be19b], $a$ and $b$ axis doubled [Si14], P\&S [Ma9] | 6 |
    | $\left(\mathrm{NH}_{4}\right) \mathrm{MnF}_{3}$ | C | 4.238 |  |  |  | Si14 | P\&S [Cr4, Ho17, Co25], neutron diffraction [Pit] |  |
    | $\mathrm{TlMnF}_{8}$ | C | 4.250 |  |  |  | Ki9 | P\&S [Cr4, Ho17, Co25], neutron diffraction [Pif] | 6 |
    | $\mathrm{CsMnCl}_{3}{ }_{\text {RbMnCl }}$ | H H | 7.288 7.164 |  | 27.44 17.798 |  | $\mathrm{Ke}^{7}$ | Hex (9L) , $\Theta_{\mathrm{N}}=69^{\circ} \mathrm{K}, \mathrm{AFMR}$ [Ke1, Sh5 $]$ |  |
    | $\mathrm{RbMnCl}_{3}$ | H | 7.164 |  | 17.798 |  | Ke7 | Hex ( 6 L ), $\Theta_{\mathrm{N}}=86^{\circ} \mathrm{K}$, AFMR \& ESR [Ke1, Sh 3 , Sh5] |  |
    | $\mathrm{KMnCl}_{3}$ | T | 10.024 |  | 9.972 |  | Cr6 | Cubic $T>458{ }^{\circ} \mathrm{C}, \mathrm{AFMR} \& \mathrm{ESR}[\mathrm{Ke} 1, \mathrm{Sh} 5]$ | 6 |

    
    [Lit. S. 275
    
    
    
    
    [Lit. S. 275
    
    
    
    [Lit. S. 275
    
    
    [Lit. S. 275

    | Compound | Sym | $\stackrel{a}{\text { A }}$ | b | $\stackrel{c}{\text { A }}$ | angle | Ref. | Remarks | Magnetic Data |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{A}^{2+} \mathrm{B}^{+4} \mathrm{O}_{3}$ (continued) |  |  |  |  |  |  |  | $\begin{gathered} \text { in 3.3.4, } \\ \text { Tab. } \end{gathered}$ |
    | $\mathrm{BaThO}_{3}$ | C | 8.985 |  |  |  | Sm30 | P\&S [Ho2, Na15, Me4, Be24] |  |
    | $\mathrm{SrThO}_{3}$ | C | 8.84 |  |  |  | Na15 | Pseudocubic, S.S. with Ba [Be24] |  |
    | $\mathrm{CaThO}_{3}$ | C | 8.74 |  |  |  | Na15 | Pseudozubic |  |
    | $\mathrm{CdThO}_{3}$ | C | 8.74 |  |  |  | Na15 | Pseudocubic |  |
    | $\mathrm{PbThO}_{3}$ | C | 8.960 4.387 |  |  |  | Na15 | Pseudocubic |  |
    | $\mathrm{BaUO}_{3}$ | C | 4.387 |  |  |  | Las | $\mathrm{P} \& \mathrm{~S}[S a 16, R u 7, \mathrm{Tr} 9]$, S.S. with $\mathrm{BaTiO}_{3}[\mathrm{Va9}]$ |  |
    | $\mathrm{BaNpO}_{3}$ | C | 4.384 4.357 |  |  |  | Ke4 |  |  |
    | $\mathrm{SaPuO}_{3}$ | C | 4.357 4.28 |  |  |  | Ke3 | Pseudocubic |  |
    | $\mathrm{A}^{2+} \mathrm{B}^{4+} \mathrm{X}_{3}$ or $\mathrm{A}^{3+} \mathrm{B}^{3+} \mathrm{X}_{3} ; \mathrm{X}=\mathrm{S}, \mathrm{Se}$ |  |  |  |  |  |  |  |  |
    | $\mathrm{BaTiS}_{8}$ | H | 6.77 |  | 5.74 |  | Cl1 | Hex (2L), P\&S [No9, As3b], orthorhombic and tetragonal modifications [Ha6] |  |
    | $\mathrm{BaTiSe}_{3}$ | H | 7.054 |  | 6.033 |  | As3a | tetragonal modifications [Ha6] |  |
    | $\mathrm{SrTiS}_{3}$ | H | 6.730 |  | 5.829 |  | Hab | Hex (2L), P\&S [No9], orthorhombic and tetra- |  |
    | $\mathrm{PbTiS}_{3}$ | T | 4.16 |  | 11.752 |  | St27 | gonal modifications [HaG] <br> "Layer structure" P\&S [No9] |  |
    | $\mathrm{BaZrS}_{3}$ | O | 7.037 | 9.983 | 7.050 |  | $\mathrm{Cl}^{3}$ | Distorted perovskite, P\&S [Ha6, No9, As3b] |  |
    | $\mathrm{BaZrSe}_{3}$ | H | 7.188 |  | 6.025 |  | As3a | Hex (2L), P\&S [No9] |  |
    | $\mathrm{SrZrS}_{3}$ | $\bigcirc$ | 13.49 | 9.79 | 14.23 |  | Cl1 | Distorted perovskite, P \& S [No9] |  |
    | $\mathrm{CaZrS}_{3}$ | $\bigcirc$ | 13.07 | 9.58 | 14.05 |  | Cl1 | Distorted perovskite |  |
    | $\mathrm{BaTaS}_{3}$ | H | 6.847 |  | 5.742 |  | As 36 | Hex (2L) P\& S [NO9] |  |
    | $\mathrm{BaTaSe}_{3}$ | H | 7.134 |  | 5.987 |  | As3a | Hex (2L) P\&S [No9] |  |
    | $\mathrm{ATaSe}_{3}$ | 0 | 11.0 | 6.8 | 11.9 |  | No9 | $\mathrm{A}=\mathrm{Sr}$ and $\mathrm{Pb}-$ not perovskite |  |
    | $\mathrm{LnInS}_{3}$ | 0 | $\approx 3.95$ | $\approx 11.78$ | 20.98 |  | Ka13 | $\begin{aligned} & \mathrm{Ln}_{n}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd} \text { and } \mathrm{Sm} ; \\ & T_{\text {mell }} \approx 1100^{\circ} \mathrm{C} \end{aligned}$ |  |
    | $\mathrm{LnGaSe}_{3}$ | H | $\approx 10.3$ |  | $\approx 6.2$ |  | Ka12a | $\mathrm{Ln}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm} ; T_{\text {melt }}=1100^{\circ} \mathrm{C}$ |  |
    | $\mathrm{A}^{\mathrm{a}+\mathrm{B}^{3}+\mathrm{O}_{3}}$ |  |  |  |  |  |  |  |  |
    | $\mathrm{LaAlO}_{3}$ | R | 5.357 |  |  | $\alpha=60^{\circ} 6^{\prime}$ | Ge. 5 | P\&S [Be34, Da1, Re5, De14], ESR: Gd, Cr [Ki3, St16a]. Luminescence: Eu [Ya3, Bl13, Bl14], Pr [Ma30,De8]. Cr [Bl15, Bo14];twinning + detwinning [Fa9, Fa10]; nuclear quadrupole resonance [De17]; S.S. with $\mathrm{BaTiO}_{3}$ [Sm15, Is2b]; space group, R3̄c [Ra3, Ge4b], Review [Ge4b] | 6 |
    |  | C | 3.818 |  |  |  | Ge 5 | $T=650{ }^{\circ} \mathrm{C}$; cubic $T>522^{\circ} \mathrm{C}$ [Wo15a, Ge4b, $A \times 3$ ], inelastic neutron scattering [ $A \times 3$ ] |  |
    | $\mathrm{CeAlO}_{3}$ | R | 5.327 |  |  | $\alpha=60^{\circ} 15^{\prime}$ | Kil | $\mathrm{P} \& \mathrm{~S}[B e 34$, Ro16, Sc13, Ke2] |  |
    | $\mathrm{PrAlO}_{3}$ | R | 5.307 |  |  | $\alpha=60^{\circ} 22^{\prime}$ | Ge 5 | P\&S [Be34, Ma27, Yu4, Zo1. Re5, Li2, Ru10, Sc13] |  |

    
    [Lit. S. 275
    
    
    

    ## Berichtigungen zu Band III/4a

    S. 177, letzte Zeile: statt $\mathrm{Ba}_{2} \mathrm{TdPaO}_{6}$ lies $\mathrm{Ba}_{2} \mathrm{TbPaO}_{6}$
    S. 219 , Zeile 16 von unten: statt $\mathrm{KMg}_{1-x} \mathrm{Ni}_{\boldsymbol{x}} \mathrm{Fe}_{3}$ lies $\mathrm{KMg}_{1-x} \mathrm{Ni}_{\boldsymbol{x}} \mathrm{F}_{3}$
    S. 252, Zeile 26 von oben (Uberschrift) : statt $\mathrm{Sr}_{3} \mathrm{Fe}_{3} \mathrm{UO}_{9}$ lies $\mathrm{Sr}_{3} \mathrm{Fe}_{2} \mathrm{UO}_{9}$

    ## Errata in Vol. III/4a

    p. 177 , bottom line: instead of $\mathrm{Ba}_{2} \mathrm{TdPaO}_{6}$ read $\mathrm{Ba}_{2} \mathrm{TbPaO}_{6}$ p. 219, line 16 from the bottom: instead of $\mathrm{KMg}_{1-x} \mathrm{Ni}_{x} \mathrm{Fe}_{3}$ read $\mathrm{KMg}_{1-x} \mathrm{Ni}_{x} \mathrm{~F}_{3}$ p. 252, line 26 from above (headline) : instead of $\mathrm{Sr}_{3} \mathrm{Fe}_{3} \mathrm{UO}_{9}$ read $\mathrm{Sr}_{3} \mathrm{Fe}_{2} \mathrm{UO}_{9}$

    | Compound | Sym | $\begin{aligned} & a \\ & \AA \end{aligned}$ | $\begin{aligned} & b \\ & \AA \end{aligned}$ | $\stackrel{c}{\mathrm{~A}}$ | angle | Ref. | Remarks | Magnetic Data |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{A}^{9}+\mathrm{B}^{+}+\mathrm{O}_{8}$ (continued) |  |  |  |  |  |  |  | Tab. |
    | $\mathrm{YMnO}_{3}$ | $\mathrm{O}^{\prime}$ | 5.26 | 5.84 | 7.35 | $\beta=92^{\circ} 24^{\prime}$ | Wa3 | High pressure phase; S.S. with: Fe, perovskite at $15 \% \mathrm{Fe}$ [Ch6] <br> P\&S [Su10]; S.S. with Ca [Bo6, Bo12, St19], $\mathrm{PbTiO}_{8}$ [Bo6, Bo7], $\mathrm{Sr}[\mathrm{Iv} 1], \mathrm{La}[\mathrm{Iv} 1], \mathrm{BiCrO}_{3}$ [To11a]; crystallographic transformation $T=210^{\circ} \mathrm{C}[$ Tol1a $]$ |  |
    | $\mathrm{BiMnO}_{3}$ | M | 10.93 | 11.31 | 7.98 |  | Bo12 |  | 6 |
    | $\mathrm{PuMnO}_{8}$ | C | 3.86 |  |  |  | Ru13 | Pseudocubic |  |
    | $\mathrm{LaFeO}_{3}^{-1}$ | 0 | 5.556 | 5.565 | 7.862 |  | Ge6 | P\&S [Be33, Fo5, Re5, Wo3, Ke2, Da2, Na14, Ya1], S.S. with Ni, Mn [Be33], S.S. with Al, Co, $\mathrm{Cr}, \mathrm{Sc}[\mathrm{Ka17}, \mathrm{Wo} 3]$, rhombohedral $T>980^{\circ} \mathrm{C}$ [Da1], S.S. with: $\mathrm{PbNb}_{2} \mathrm{O}_{6}$ [Fr11], Pb [Re5a], Bi [Ri5b] | 6 |
    | $\mathrm{CeFeO}_{3}$ | 0 | 5.541 | 5.577 | 7.809 |  | Ro1a | $\mathrm{P} \& \mathrm{~S}$ [Ke2, Be33] | 6 |
    | $\mathrm{PrFeO}_{3}$ | 0 | 5.495 | 5.578 | 7.810 |  | Ge6 | P\&S [Be33, Fo5, Re5]. S.S. with Al, Co, Cr, Sc [Ka17] | 6 |
    | $\mathrm{NdFeO}_{3}$ | 0 | 5.441 | 5.573 | 7.753 |  | Ge6 | $\mathrm{P} \& \mathrm{~S}\left[B e 33, \mathrm{Fo5}^{5}, \operatorname{Re5}\right.$, Wo3], S.S. with $\mathrm{Pb}[\operatorname{Re} 5 a]$, Bi [Re5b] | 6 |
    | $\mathrm{SmFeO}_{3}$ | 0 | 5.394 | 5.592 | 7.711 |  | Ge6 | $\mathrm{P} \& \mathrm{~S}[B e 33, \mathrm{Fo5}, \operatorname{Re5}, W 03], \mathrm{S} . \mathrm{S}$. with $\mathrm{Pb}[\operatorname{Re} 5 a]$, Bi [Re5b] | 6 |
    | $\mathrm{EuFeO}_{3}$ | $\bigcirc$ | 5.371 5.346 | 5.611 5.616 | 7.686 7.668 |  | Ge6 |  | $6$ |
    | $\mathrm{GdFeO}_{3}$ | 0 | 5.346 | 5.616 | 7.668 |  | Ge6 | P\&S [Be33, Re5], crystal structure [Co21], S.S. with $\mathrm{Pb}[R e 5 a], \mathrm{Bi}[R e 5 b]$ | $6$ |
    | $\mathrm{TbFeO}_{3}$ | 0 | 5.326 | 5.602 | 7.635 |  | Ei1 | $\mathrm{P} \& \mathrm{~S}$ [Ko6], S.S. with: $\mathrm{Pb}[\operatorname{Re5a]}, \mathrm{Bi}[\operatorname{Re5b}]$ |  |
    | $\mathrm{DyFeO}_{3}$ | $\bigcirc$ | 5.302 | 5.598 5.591 | 7.623 7.602 |  | Ei1 | $\mathrm{P} \& \mathrm{~S}[\mathrm{Da} 2$ ], S.S. with: Pb [Re5a], Bi [Re5b] $\mathrm{P} \& \mathrm{~S}[K 06], \mathrm{S} . \mathrm{S}$. with: $\mathrm{Pb}[\operatorname{Re} 5 a], \mathrm{Bi}[\operatorname{Re5b}]$. | 6 |
    | $\mathrm{HoFeO}_{3}$ | 0 | 5.278 | 5.591 | 7.602 |  | Ei1 | $\mathrm{P} \& \mathrm{~S}[\mathrm{Ko6}], \mathrm{S} . \mathrm{S}$. with: $\mathrm{Pb}[\operatorname{Re} 5 a], \mathrm{Bi}$ [Re5b], $\mathrm{HoMnO}_{3}$ [Ap1a] | 6 |
    | $\mathrm{ErFeO}_{3}$ | 0 | 5.263 | 5.582 | 7.591 |  | Eit | P\&S [FO5], crystal structure [Wi7], S.S. with: <br> $\mathrm{Pb}[\operatorname{Re} 5 a], \mathrm{Bi}[\operatorname{Re5b}]$ | 6 |
    | $\mathrm{TmFeO}_{3}$ | 0 | 5.251 | 5.576 | 7.584 |  | Ei1 | Crystal structure [Wi8], S.S. with: Pb [Re5a], Bi [Re5b] | 6 |
    | $\mathrm{YbFeO}_{3}$ | 0 | 5.233 | 5.557 | 7.570 |  | Ei1 | P\&S [Ko6, Be1, Ha21], S.S. with: Pb [Re5a], Bi [Re5b] | 6 |
    |  | 0 | 5.213 | 5.547 | 7.565 |  | Ei1 | P\&S [Sa6], S.S. with: $\mathrm{Pb}[$ Re $5 a], \mathrm{Bi}[$ Re5b] | 6 |
    | $\mathrm{YFeO}_{8}$ | 0 | 5.283 | 5.592 | 7.603 |  | Eif | P\&S [Fo5, Ru11, Ko6, Wo3, Ge4, Ma26, Va7, Sh12a], crystal structure [Co21], S.S. with: $\mathrm{Pb}[\operatorname{Re} 5 a], \mathrm{Bi}[\operatorname{Re5b}]$ | 6 |
    | $\mathrm{TIFeO}_{3}$ | 0 | 5.319 | 5.448 | 7.796 |  | Sh9 |  |  |

    Ref.
    

    | Tab. 2b. $\mathrm{A}_{2} \mathrm{~B}^{\prime} \mathrm{BXX}_{8}$ compounds |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Compound | Sym | $\stackrel{a}{\text { A }}$ | $\stackrel{\square}{\text { A }}$ | $\stackrel{c}{\text { A }}$ | angle | Ref. | Remarks | Magnetic Data |
    | $\mathrm{A}_{2}^{+} \mathrm{B}^{+} \mathrm{B}^{9}+\mathrm{X}_{6} ; \mathrm{X}=\mathrm{F}^{-1}, \mathrm{Cl}^{-1} \quad$ in 3.3.4, |  |  |  |  |  |  |  |  |
    | $\mathrm{Cs}_{2} \mathrm{NaAlF}_{8}$ | H | 6.168 |  | 29.76 |  |  |  | Tab. |
    | $\mathrm{Rb}_{2} \mathrm{NaAlF}_{6}$ | C | 8.29 |  | 29.76 |  | Basa | Hex (12 L) |  |
    | $\mathrm{Rb}_{8} \mathrm{LiAlF}_{6}$ | H | 5.802 |  | 28.02 |  | Basa | Hex (12L) |  |
    | $\mathrm{K}_{2}$ LiAlF $_{6}$ | H | 5.574 |  | 13.648 |  | Wi11b | R perovskite |  |
    |  | H | 5.614 |  |  |  | Wi11b | Hex (6L), Prep. $T>470{ }^{\circ} \mathrm{C}$ |  |
    | $\mathrm{K}_{2} \mathrm{NaAlF}_{6}$ $\mathrm{~K}_{\mathbf{2}} \mathrm{KAlF}_{6}$ | C | 8.105 |  |  |  | Me21 |  |  |
    | $\mathrm{Na}_{2} \mathrm{NaAlF}_{6}$ | M | 8.65 5.46 |  |  |  | St33 |  |  |
    | $\left(\mathrm{NH}_{4}\right)_{8}\left(\mathrm{NH}_{4}\right) \mathrm{AlF}_{6}$ | C | 5.46 8.90 | 5.61 | 7.80 | $\beta=90^{\circ} 11^{\prime}$ | Nat 17 Pa9 | P\& S [St33, Me19, Cr5a], S.S. with Fe [Cr5a] |  |
    | $\mathrm{Cs}_{2} \mathrm{CSSCF}_{6}$ |  |  |  |  |  | Pa9 | P\&S [Pa10, Me20] <br> Prep. [BaO] |  |
    | $\mathrm{Cs}_{2} \mathrm{KScF}_{6}$ | C | 9.32 |  |  |  | Ho16a | Prep. $[B a 0]$ |  |
    | $\mathrm{Rb}_{2} \mathrm{RbScF}_{6}$ | C |  |  |  |  | Hot6a | Prep. [ Ba 0 ] |  |
    | $\mathrm{K}_{2} \mathrm{KScF}$ $\mathrm{Na}_{6} \mathrm{NaScF}_{6}$ | C | 17.46 |  |  |  | Bo2 | Prep. [BaO] |  |
    | ${ }_{\left(\mathrm{Na}_{2} \mathrm{NaScF}_{6}\right.}\left(\mathrm{NH}_{6}\right) \mathrm{ScF}_{6}$ | M | 5.60 | 5.81 | 8.12 | $\beta=90^{\circ} 45^{\prime}$ | Th1 | $T<680{ }^{\circ} \mathrm{C}$ |  |
    | $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NH}_{4}\right) \mathrm{ScF}_{6}$ | T | 6.49 |  | 9.45 |  | Bo2 |  |  |
    | $\mathrm{K}_{2} \mathrm{KTiF}_{6} \quad!$ | T | 9.26 8.56 |  |  |  | Bo2 | High temperature form |  |
    |  |  | 8.56 |  | 8.75 |  | Br7 | P\&S [Ba5], magnetic properties, $n_{\text {eff }}=1.70$, |  |
    | $\mathrm{K}_{2} \mathrm{NaTiF}_{6}$ | C | 8.367 |  |  |  | Br7 | Structure determined [Bu4a] |  |
    | $\mathrm{Na}_{2} \mathrm{NaTiF}_{6}$ | M | 5.53 | 5.83 | 7.99 | $\beta \cong 90^{\circ}$ | Br7 | $\mathrm{P} \& \mathrm{~S}\left[B a_{5}\right]$ |  |
    | $\mathrm{Cs}_{2} \mathrm{KVF}_{6}$ | C | 9.04 |  |  |  | Ba5a | P\&S [Baj] |  |
    | $\mathrm{Cs}_{2} \mathrm{NaVF}_{6}$ | H | 6.267 |  | 30.40 |  | Ba5a | Hex (12L) |  |
    | $\mathrm{Rb}_{2} \mathrm{KVF}_{6}$, | C | 8.88 |  |  |  | Ba5a |  |  |
    | $\mathrm{Rb}_{2} \mathrm{NaVF}_{6}$ $\mathrm{Rb}_{2} \mathrm{LVFF}_{6}$ | C | 8.47 |  |  |  | Ba5a |  |  |
    | $\mathrm{Rb}_{2} \mathrm{LiVF}_{6}$ $\mathrm{~K}_{2} \mathrm{KVF}_{6}$ | H | 5.891 |  | 28.77 |  | Ba5a | Hex (12L) |  |
    | $\mathrm{K}_{2} \mathrm{KV} \mathrm{F}_{6}$ |  |  |  |  |  |  | Magnetic properties, $80<T<300^{\circ} \mathrm{K}$, |  |
    | $\mathrm{K}_{2} \mathrm{NaVF}_{6}$ | C | 8.315 |  |  |  |  | $n_{\text {eff }}=2.79, \Theta_{p}=-14^{\circ} \mathrm{K}[F i 4]$ |  |
    | $\left(\mathrm{NH}_{4}\right)_{8}\left(\mathrm{NH}_{4}\right) \mathrm{VF}_{6}$ | C | 9.04 |  |  |  | Paba |  |  |
    | $\mathrm{Cs}_{2} \mathrm{RbCrF}_{6}$ | C | 9.15 |  |  |  | Ba5a |  |  |
    | $\mathrm{Cs}_{2} \mathrm{KCrF}_{6}$ | C | 8.99 |  |  |  | Ba5a |  |  |
    | $\mathrm{Cs}_{2} \mathrm{NaCrF}_{6}$ | H | 6.231 |  | 30.24 |  | Ba5a | Hex (12L) |  |
    | $\mathrm{Rb}_{2} \mathrm{KCrF}_{6}$ | C | 8.81 |  |  |  | Ba5a | Hex (12L) |  |
    | $\mathrm{Rb}_{2} \mathrm{NaCrF}_{6}$ | C | 8.42 |  |  |  | Ba5a |  |  |
    | $\mathrm{Rb}_{2} \mathrm{LiCrF}_{6}$ | H | 5.865 |  | 28.61 |  | Ba5a | Hex (12L) |  |
    | $\mathrm{K}_{2} \mathrm{KCrF}_{6}$ | T | 8.56 |  | 8.62 |  | Kl6 | P\&S [Pe2] |  |
    | $\mathrm{K}_{2} \mathrm{KCrF}_{6}$ | C | 8.54 |  |  |  | Bo2 | High temperature form |  |

    
    Ref.

    $$
    \begin{array}{|c|}
    \hline \begin{array}{c}
    \text { Magnetic } \\
    \text { Data }
    \end{array} \\
    \hline \text { in 3.3.4, } \\
    \text { Tab. }
    \end{array}
    $$

    —．
    $\qquad$
    $\stackrel{\stackrel{\rightharpoonup}{4}}{\stackrel{\rightharpoonup}{4}}$
    $\stackrel{-}{\infty}$
    $-\quad 0$
    -
    $\cdots$
    
    $\qquad$

    | $n$ |
    | :--- |
    | $n$ |

    $\qquad$
    －
    
    
    $\qquad$
    Uム吅O～
    

    $$
    \begin{aligned}
    & \begin{array}{l}
    \text { S.S. with } \mathrm{Sr} \text {, rhombohedral }>30 \% \mathrm{Sr} \\
    \text { Cubic }>700^{\circ} \mathrm{C}
    \end{array}
    \end{aligned}
    $$

    
    
    
    
    
    

    | $\mathrm{Ca}_{2} \mathrm{SmTaO}_{6}$ | 0 | 5.606 | 5.853 | 8.096 | Fi8 | russiviy lower symmetry <br> Possibly lower symmetry |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

    
    

    Ref. p. 275]
    3.1 $\mathrm{ABX}_{3}$ perovskite structure
    
    3.1 $\mathrm{ABX}_{3}$ Perowskit-Struktur
    [Lit. S. 275
    
    
    
    
    

    Kef.
    
    3.1 $\mathrm{ABX}_{3}$ Perowskit-Struktur
    [Lit. S. 275
    
    
    
    

    ### 3.2 Descriptions of perovskite-related structures

    ### 3.2.1 A-cation vacancies

    ### 3.2.1.1 No A cations

    Because a skeleton of shared-corner octahedra is stable, it is possible to remove all the A cations from the perovskite structure without collapsing the $\mathrm{BX}_{3}$ subarray. In the case of $\square \mathrm{ReO}_{3}$ for example, the structure remains cubic. However, a partial or a complete collapse of the skeleton is found in many $\square \mathrm{BX}_{3}$ compounds. The completely collapsed structure has hexagonal-close-packed X layers with one-third of the octahedral sites occupied by B atoms, as indicated in Fig. 19. This results in a simple-cubic array of B cations with corner-shared octahedra having a B-X-B angle of $132^{\circ}$. For comparison, Fig. 19 also shows the corner-shared octahedra across a close-packed $\square \mathrm{X}_{3}$ plane of the cubic $\square \mathrm{ReO}_{3}$ structure, where the $\mathrm{B}-\mathrm{X}-\mathrm{B}$ angle is $180^{\circ}$. It is possible to go from one structure to the other by a simple increase of the B-X-B angle, the $B$ cations forming a simple-cubic array in all structures. In the partially collapsed structure, represented by $\mathrm{CrF}_{3}$, and $\mathrm{B}-\mathrm{X}-\mathrm{B}$ angle is intermediate, $\approx 150^{\circ}$. Trifluorides of the first-row transition metals have the partially collapsed structure, those of the second- and third-row transition metals have the $\mathrm{ReO}_{3}$ structure where the number of outer $d$ electrons per cation is $\leqq 3$, but the completely collapsed structure where it is $\geqq 6$. The B cations of the latter group either have no atomic moment ( $\mathrm{Rh}^{\mathrm{III}}$ and $\mathrm{Ir}^{\mathrm{III}}$ have $t_{2 g}^{6} e_{\mathrm{g}}^{\mathbf{0}}$ ) or disproportionate into magnetic and nonmagnetic ions ( $\mathrm{Pd}^{2+}, t_{2 g}^{6} \varepsilon_{\mathrm{g}}^{2}$ and $\mathrm{Pd}^{\mathrm{Iv}}, t_{\mathrm{tg}}^{\mathrm{k}} e_{\mathrm{g}}^{0}$ ), so that there are no magnetic interactions between neighboring cations. The other trifluorides, on the other hand, are all antiferromagnetic, and coupling between like atoms of the second and third long periods is stronger than that between like atoms of the first long period. Since the $B-X-B$ superexchange interaction is enhanced by a larger $\mathrm{B}-\mathrm{X}-\mathrm{B}$ angle, it is reasonable to assume that the interactions between neighboring B cations stabilizes the $\mathrm{ReO}_{3}$ structure. These interactions may be either weaker interactions between localized electrons, as in the magnetic fluorides, or stronger interactions, as in metallic $\mathbf{R e O} \mathbf{O}_{3}$. In this connection, stabilization of the cubic structure in the tungsten bronzes $\mathrm{A}_{x}^{+m} \mathrm{WO}_{3}$ for $m x>0.3$ is significant. The conduction electrons introduce cation-anion-cation interactions while simultaneously reducing the energy gained by a ferroelectric distortion.

    Electron-ordering distortions may be superposed on the array of corner-shared octahedra. $\mathbf{M n F}_{3}$, for example, exhibits the Jahn-Teller distortions shown in Fig. 10 (a) superposed on the partially collapsed structure. $\mathrm{WO}_{3}$, on the other hand, exhibits several low-temperature phases characteristic of an interplay of antiferroelectric distortions and different degrees of the collapse of the B-X-B angle.

    ### 3.2.1.2 The bronze structures

    Although $\square \mathrm{BX}_{3}$ compounds with the $\mathrm{ReO}_{3}$ structure and cubic $\mathrm{ABX}_{3}$ compounds have the same $\mathrm{BX}_{3}$ array, complete solid solutions $\square_{x} \mathrm{~A}_{1-x} \mathrm{BX}_{3}, 0 \leqq x \leqq 1$, are not possible. Although there is no ordering of the vacancies for larger $x$, except for $\mathrm{Na}_{0.75} \mathrm{WO}_{3}$ [At1], for smaller $x$ there is ordering accompanied by a collapse of the $\mathrm{BX}_{3}$ array within basal planes perpendicular to a unique axis. Such a collapse creates the tetragonal and hexagonal tunnel structures of Fig. 20. The tetragonal structure contains three types of tunnels; one containing cubic, twelve-coordinated $A^{\prime}$ sites, one containing pentagonal-prism, fifteencoordinated $A^{\prime \prime}$ sites, and one small tunnel containing nine-coordinated $A^{\prime \prime \prime}$ sites, which are only occupied by $\mathrm{Li}+$ ions. Without $\mathrm{Li}+$ ions, all these sites are filled at $\mathrm{A}_{0.2}^{\prime} \mathrm{A}_{0.4}^{\prime}{ }^{\prime} \mathrm{BX}_{3}$. This phase, which may occur for a
    
    a
    
    b
    
    a
    

    Fig. 20. Bronze structures found in $A_{x} \square_{1-x} B X_{3}$ systems. a) Tetragonal (II) structure occurring for $x \leqq 0.6$. b) Hexagonal structure occurring for $x \leqq 0.33$ [Wa1]. structures. Triangles in full and dotted lines represent faces of octahedra below or above the B-cation plane. a) Cubic $\square \mathrm{ReO}_{3}$ structure $\mathrm{DO}_{3}$. Arrows indicate cooperative atomic motions that collapse the structure. b) Completely collapsed $\square \mathrm{RhF}_{3}$ structure.
    range of $x \leqq 0.6$, is labelled tetragonal (II) in Tab. 3 to distinguish it from the antiferroelectric tetragonal (I) phase of $\mathrm{WO}_{3}$. The hexagonal structure contains hexagonal-prism, eighteen-coordinated $A$ sites and is restricted to the range of composition $x \leqq 0.33$. An orthorhombic tunnel structure has also been identified for $\mathrm{AB}_{2} \mathrm{O}_{6}$ compounds [Ga15a].

    Tab. 3. Color vs. $x$ for $\mathrm{Na}_{x} \mathrm{WO}_{3}$ and compositional ranges for the bronze structures in the $\mathrm{A}_{\boldsymbol{2}}^{1+} \mathrm{WO}_{3}$ perovskites. Adapted from [Di3]
    
    
    a
    
    O $A$ in plane
    O $A$ of $\pm 7 / 2$
    ○ $B$ of $\pm 7 / 2$

    - B inplane
    a
    b

    Fig. 21. Projections onto (110) planes of a) cubic perovskite and b) brownmillerite structures. Brownmillerite structure is formed by removing alternate [110] strings of oxygen from central row of a) and regrouping remaining oxygen into the tetrahedra shown in b) [Wal].

    ### 3.2.2 Anion-deficient compounds

    ### 3.2.2.1 Compounds $\mathrm{ABX}_{3-x}$

    Several systems $\mathrm{ABX}_{3-x}$, where $0 \leq x \leq 0.5$, have been reported as anion-deficient perovskites. $\mathrm{SrTiO}_{2.5}$ and $\mathrm{SrVO}_{2.5}$, for example, both give simple x-ray powder patterns in qualitative agreement with the assumption of a perovskite structure having one-sixth of the anions missing at random. Further, the homogeneity range of $\mathrm{SrTiO}_{3-x}$ is reported [ Wa 1] to extend over $0 \leq x \leq 0.5$ without any change of lattice parameter. However, if an anion is removed from a close packed structure, the metal atoms to which it was formerly bonded will have highly unsymmetrical coordination, and some local rearrangement of the anion can be expected. The nature of this local rearrangement depends upon the character of the $B$ cation. In order to learn what rearrangements may occur locally, it is necessary to examine those special cases where long-range order occurs, since local changes of cation coordination are difficult to detect by x-ray diffraction and have not been investigated by other methods.

    In the system $\mathrm{SrFe}_{2 x}^{8+} \mathrm{Fe}_{1-2 x}^{4+} \mathrm{O}_{8-x}, 0 \leq x \leq 0.5$, it is known that the $\mathrm{Fe}^{3+}$ ions are stable in either tetrahedral or octahedral coordination. Therefore, it is reasonable to anticipate the creation of fourfould coordination about half of the $\mathrm{Fe}^{3+}$ ions in the system. This is possible because the $d$ electrons of $\mathrm{Fe}^{3+}$ ions are localized, so that $\mathrm{Fe}^{3+}$ and $\mathrm{Fe}^{4+}$ ions are distinguishable, even though the $d$ electrons of the end member $\mathrm{SrFe}^{4+} \mathrm{O}_{3}$ appear to be collective. Support for the creation of tetrahedral sites, as well as a suggestion of how the tetrahedra might be arranged, is given by $\mathrm{Ca}_{2} \mathrm{Fe}_{2} \mathrm{O}_{5}$, which has the brownmillerite structure [Be41] of Fig. 21. Within every other (001) $\mathrm{BX}_{2}$ plane of the cubic perovskite, alternate [110] rows of anions are removed. The remaining anions in these planes are displaced alternately along [110] and [110] directions toward the anion vacancies, the $B$ cations shifting slightly also to maintain equal B-X distances with all four near-neighbor anions. The result is fourfold coordination for all B cations in these (001) BX planes, sixfold coordination for all B cations in the alternate (001) $\mathrm{BX}_{2}$ planes.

    The x-ray pattern of $\mathrm{K}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5}$ has a strong resemblance to that of perovskite. However, $\mathrm{KTiO}_{2.5}$ is not an anion-deficient perovskite, but is completely ordered, each $\mathrm{Ti}^{4+}$ ion having five oxygen near neighbors forming a trigonal bipyramid [ An 3 ]. It has little similarity to perovskite.

    The oxygen-deficient, tetragonal compounds $\left(\mathrm{Ba}_{2 x} \mathrm{Bi}_{1-2 x}\right) \mathrm{BiO}_{3-x}, 0.22<x<0.5$, retain an octahedral grouping for Bi in the $B$ sites, but the A positions have only six oxygen near neighbors, two each at 2.7, 3.1 and $3.6 \AA[A u 1]$.

    These examples indicate that a variety of orderings must occur in anion-deficient perovskites. Further structural work needs to be done.

    ### 3.2.2.2 Alloys $\mathbf{M}^{\boldsymbol{C}} \mathbf{X}_{1-x} \mathbf{M}_{3}^{\mathrm{f}}$

    Since the alloys $M^{c} \mathrm{XM}_{s}^{f}$ are generally considered to represent interstitial X atoms in an ordered, face-centered-cubic $\mathrm{M}^{\mathrm{c}} \mathrm{M}_{3}^{\mathrm{f}}$ alloy, it is not surprising that the phase is stable over a considerable range of anion deficiency. Since these alloys are metallic, it is probable that the X -atom vacancies are randomly distributed.

    ### 3.2.2.3 Shear structures $\square \mathrm{BO}_{3-x}$

    Ranges of composition have been reported for $\mathrm{BO}_{3-x}$, where $\mathrm{B}=\mathrm{Mo}$ or W. Magnéli [Ma14] has shown that these compositional ranges consist of a series of discrete phases having an $x$-ray diffraction pattern dominated by a cubic $\square \mathbf{R e} \mathbf{O}_{3}$-type $\left(\mathrm{DO}_{9}\right)$ subcell, but exhibiting superlattice lines. The superlattice of any discrete phase is not due to an ordering of anion vacancies within this basic structure, but to a regular interruption of the $\mathrm{DO}_{9}$ structure by planes of discontinuity across which octahedra share edges rather than corners. In these structures the oxygen vacancies condense into regularly spaced planes and are then eliminated by a shear displacement of the type shown schematically in Fig. 22. These "shear" planes may be constituted in different ways: For the series of phases $\mathrm{B}_{n} \mathrm{O}_{3 n-2}$, six octahedra in a group share edges, and for the phases $\mathrm{B}_{n} \mathrm{O}_{3 n-1}$ groups of four octahedra share edges. In both cases the discontinuities continue in two dimensions throughout the structure where they separate $\mathrm{DO}_{9}$ blocks $n$ octahedra thick. The $\beta$-WO $\mathbf{W}_{s-x}$ phases, $0.10 \leq x \leq 0.17$, belong to the series $\mathrm{B}_{n} \mathrm{O}_{3 n-2}$ with $12<n \leq 20$. The observed compositional range ( $\mathbf{W}, \mathbf{M o}^{2} \mathrm{O}_{3-x}, 0.07 \leq x \leq 0.12$, contains six discrete $\mathrm{B}_{n} \mathrm{O}_{3 n-1}$ phases corresponding to $n=8,9,10,11,12$, and 14 [Ma17a]. The origin of the shear planes appears to be an interplay between electrostatic and elastic forces: Electrostatic repulsive energies between B cations sharing common octahedral-site edges is minimized by cationic displacements (of ferroelectric type) away from the center of symmetry of the interstice and the shared octahedral edge. These displacements can be cooperative, costing a minimum of elastic energy, if the shared edges are coplanar. The origin of the regular spacing between planes is not established. Presumably it is primarily due to elastic energy, although collective-electron effects [Go11] probably play a contributing role.

    ### 3.2.3 Structures deficient in $\mathbf{B}$ cations

    ### 3.2.3.1 Bismuth compounds

    Bismuth compounds with chemical formula $\left(\mathrm{Bi}_{2} \mathrm{~A}_{m-2}\right) \mathrm{B}_{m-1} \mathrm{O}_{3 m}$ have the structural formula $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)^{2+}\left(\mathrm{A}_{n-1} \mathrm{~B}_{n} \mathrm{O}_{3 n+1}\right)^{2-}, n=m-1$. These compounds consist of a regular intergrowth of the perovskite structure with $\mathrm{Bi}_{2} \mathrm{O}_{2}$ sheets consisting of $\mathrm{BiO}_{4}$ square pyramids sharing edges [ Au 2 ], as indicated in Fig. 23. Between the $\mathrm{Bi}_{2} \mathrm{O}_{2}$ sheets are $n$ layers of corner-shared octahedra and ( $n-1$ ) layers of perovskitetype A cations in the twelve-coordinated interstices. Where $n=1$, the pyramidal sheets alternate with
    

    Fig. 22. Projection onto (001) planes of a) cubic $\square \mathrm{ReO}_{3}$ structure and b) $\mathrm{B}_{n} \mathrm{O}_{5 n-1}$ shear plane. Anions are removed from black octahedra, which then move to adjacent positions to form configuration b) [Wai].
    

    Fig. 23. One half of the pseudo-tetragonal unit cell of $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{\mathbf{1 2}}$ (from $\pm \approx 0.25$ to $s \approx 0.75)$. A denotes the perovskite layer $\left(\mathrm{Bi}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}\right)^{2-}, \mathrm{C}$ the $\left(\mathrm{Bi}_{8} \mathrm{O}_{2}\right)^{2+}$ layers, and B the unit cells of the hypothetical perovskite structure $\mathrm{BiTiO}_{3}\left[\mathrm{~A} \mathrm{u}^{3}\right.$ ].
    single octahedral layers, and no sites are available for A cations. This particular phase has been prepared in a large number of oxides and oxyfluorides, where $\mathrm{B}=\mathrm{Ti}, \mathrm{Nb}, \mathrm{Ta}$ and the $\mathrm{O} / \mathrm{F}$ ratio depends upon the valencies of the A and B cations (see Tab. 4).

    Many of these compounds are reported to exhibit ferroelectric distortions within the perovskite layers, and they will certainly be important for technical applications in the future.

    ### 3.2.3.2 Hexagonal $A_{n} B_{n-1} X_{3 n}$ structures

    As shown in Fig. 1 (c), the cubic perovskite may be indexed on an hexagonal basis. It consists of cubic stacking of close-packed $\mathrm{AX}_{3}$ layers with B cations in the all-anion octahedral interstices. Within a (110) plane, B-cation octahedra share common corners as shown schematically in Fig. 3 (a). In the $\mathrm{Ba}_{5} \mathrm{Ta}_{4} \mathrm{O}_{15}$ structure [Ga5a], the stacking sequence of the $\mathrm{AX}_{3}$ layers is $a-b-c-b-c-a$, as shown in Fig. 24, and the B-cation vacancies are where the stacking is hexagonal. Thus the structure consists of perovskite blocks $n \mathrm{AX}_{3}$ layers and ( $n-1$ ) B layers thick, separated by a stacking fault at a layer of B-cation vacancies. These hexagonal structures appear to be stabilized where the tolerance factor is $t>1$.

    ### 3.2.3.3 AX $\cdot\left(\mathrm{ABX}_{3}\right)_{n}$ structures

    Materials having compositions intermediate between $A B X_{3}$ and $A_{8} \mathrm{BX}_{4}$ may have similar diffraction patterns. However, this compositional region contains several phases having the structural formula $\mathrm{AX} \cdot\left(\mathrm{ABX}_{3}\right)_{n}$. Each phase contains perovskite sheets $n$ units thick separated by AX (NaCl-type) sheets. The limiting composition $\mathrm{A}_{2} \mathrm{BX}_{4}$, corresponding to $n=1$, is shown in Fig. 25. It is important for the theory of magnetism because, if $A$ is nonmagnetic, then by symmetry there is no net molecular field within an antiferromagnetic layer from cations in adjacent antiferromagnetic layers. This permits the study of two-dimensional antiferromagnetism. The $\mathrm{A}_{8} \mathrm{BX}_{4}$ structure also permits the study of $\mathrm{B}^{2+}$ cations in oxides with a smaller B-X-B separation (hence stronger interaction) than is found in the BO compounds with rocksalt structure. The possible significance of this is illustrated by $\mathrm{La}_{2} \mathrm{NiO}_{\mathbf{4}}$. The $\mathrm{Ni}^{\mathbf{8}+}$ electrons of $e_{\mathbf{g}}$ symmetry appear to be collective in $\mathrm{La}_{2} \mathrm{NiO}_{4}$, localized in $\mathbf{N i O}$.
    

    Fig. 24. Schematic (110) projection of the $\mathrm{Ba}_{5} \mathrm{Ta}_{4} \mathrm{O}_{15}$ structure. Horizontal lines refer to $\mathrm{BaO}_{2}$ close-packed layers with stacking $a, b$, or $c$.
    

    Fig. 25. Comparison of $\mathrm{ABX}_{3}$ and $\mathrm{A}_{\mathbf{2}} \mathrm{BX}_{4}$ structures [ $T \mathrm{r} 1$ ].

    ### 3.2.4 Data: Crystallographic properties of non- $\mathrm{ABX}_{3}$ compounds of composition $\mathrm{A}_{x} \mathrm{BX}_{3}$,

    $\square \mathrm{BX}_{3},(\mathrm{AX})_{n}(\mathrm{ABX})_{m}$ and $\mathrm{Bi}_{2} \mathrm{O}_{2}\left(\mathrm{~A}_{n-1} \mathrm{~B}_{n} \mathrm{O}_{3_{n+1}}\right)$ with perovskite-related structure (Tab. 4) Tab. 4.See Fig. 20(a) for the tetragonal II bronze structure with $a \approx 12.5 \AA, c \approx 4 \AA$ and Fig. $20(\mathrm{~b})$ for the hexagonal bronze structure with $a \approx 7.4 \AA, c \approx 7.5 \AA$.

    Within any section, the compounds are ordered by B-cation atomic number, and the order of the sections is as follows:
    Tab. $4 \mathrm{a}-\mathrm{A}_{\boldsymbol{x}} \mathrm{BX}_{3}$

    $$
    \begin{aligned}
    & \mathrm{A}_{x} \mathrm{BO}_{3} ; \mathrm{B}=\mathrm{Nb}, \mathrm{Mo}, \mathrm{Ta}, \mathrm{~W}, \mathrm{Re} \\
    & \mathrm{~A}_{x} \mathrm{FeF}_{3}
    \end{aligned}
    $$

    Tab. $4 \mathrm{~b}-\square \mathrm{BX}_{3}$
    Tab. $4 \mathrm{c}-\square \mathrm{BB}^{\prime} \mathrm{X}_{6}$
    Tab. $4 \mathrm{~d}-(\mathrm{AX})_{n}\left(\mathrm{ABX}_{3}\right)_{m}$
    $\mathrm{X}=\mathrm{F}^{-1}, \mathrm{Cl}^{-1} ; \mathrm{B}^{2+}=\mathrm{Mg}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}$
    $\mathrm{X}=\mathrm{O}^{-2} ; \mathrm{B}=\mathrm{Al}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Ga}, \mathrm{Ge}, \mathrm{Zr}, \mathrm{Nb}, \mathrm{Mo}, \mathrm{Tc}, \mathrm{Ru}, \mathrm{Rh}, \mathrm{Sn}, \mathrm{Hf}, \mathrm{Ir}, \mathrm{Pb}, \mathrm{U}$ Tab. $4 \mathrm{e}-\mathrm{Bi}_{2} \mathrm{O}_{2}\left(\mathrm{~A}_{n-1} \mathrm{~B}_{n} \mathrm{O}_{3 n+1}\right)$
    $n=1 ; \mathrm{B}=\mathrm{Mo}, \mathrm{W} \quad n=2 ; \mathrm{B}=\mathrm{Nb}, \mathrm{Ta} \quad n=3 ; \mathrm{B}=\mathrm{Nb}, \mathrm{Ti} \quad n=4,5$ and $8 ; \mathrm{B}=\mathrm{Ti}$
    
    
    

    | Compound | Sym | $\begin{aligned} & a \\ & \AA \end{aligned}$ | $b$ $A$ | $\begin{aligned} & c \\ & \AA \end{aligned}$ | angle | Ref. | Remarks | Magnetic Data |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{A}_{x} \mathrm{WO}_{3}$ |  |  |  |  |  |  |  | in 3.3.4, Tab. |
    | $\mathrm{Cs}_{0.32} \mathrm{WO}_{3}$ | H | 7.42 |  | 7.63 |  | Ma17 | Superconducting, $\Theta_{c s}=1.12^{\circ} \mathrm{K}[\mathrm{Sw} 3]$ |  |
    | $\mathrm{Cs}_{0.30} \mathrm{WO}_{3}$ | H | 7.38 |  | 7.59 |  | Ma17 | Thermal expansion to $720^{\circ} \mathrm{C}$ [We15] |  |
    | $\mathrm{Rb}_{0.32} \mathrm{X}^{\prime} \mathrm{O}_{3}$ | H | 7.386 |  | 7.54 |  | Si7 | P\&S [Ma17], metallic conduction and magnetic susceptibility [Si7, Si9], optical properties [Do6] |  |
    | $\mathrm{Rb}_{0.27} \mathrm{WO}_{3}$ | H | 7.394 |  | 7.516 |  | We15 | Superconductivity, $\Theta_{\mathrm{cs}}=1.98^{\circ} \mathrm{K}[S w 3]$, thermal expansion to $970^{\circ} \mathrm{C}$ [We15] |  |
    | $\left(\mathrm{NH}_{4}\right)_{0.33} \mathrm{WO}_{3}$ | H | 7.395 |  | 7.525 |  | Gi1 | Superconductivity $2.2{ }^{\circ} \mathrm{K} \geq \Theta_{\mathrm{cs}}[G \mathrm{Fit}]$ |  |
    | $\left(\mathrm{NH}_{4}\right)_{0.0 \mathrm{ob}} \mathrm{WO}_{3}$ | T | 7.60 |  | $6.36$ |  | Ne8a |  |  |
    | $\mathrm{K}_{0.9} \mathrm{WO}_{8}$ | C | 3.926 |  |  |  | Bi6 | $\begin{aligned} & \text { High pressure preparation (metallic conductivity), } \\ & \mathbf{P \& S}[C h 1 b] \end{aligned}$ |  |
    | $\mathrm{K}_{0.55} \mathrm{WO}_{8}$ | T | 12.326 |  | 3.845 |  | We15 | Magnetic susceptibility ( $x=0.53$ ) [Ku5], electric properties ( $x=0.57$ and 0.63) [St43], thermal expansion to $750{ }^{\circ} \mathrm{C}(x=0.3 \cdots 0.55)$ [We15] |  |
    | $\mathrm{K}_{0.3} \mathrm{WO}_{3}$ | H | 7.385 |  | 7.513 |  | We15 | Electric + magnetic properties [Sh8, Si9, Si7], S.S. with Li [Ba11], S.S. with Na [Br8], P\&S [Ma12, Ma17, De19], review [Di3, Ma15, Ma18, Si9] |  |
    | $\mathrm{K}_{0.18} \mathrm{WO}_{3}$ | H | 7.370 |  | 7.515 |  | Ba11 | Superconductivity, $\Theta_{\mathrm{og}}(\mathrm{Hex})=0.5^{\circ} \mathrm{K}$, <br> $\Theta_{\mathrm{cs}}$ (Tetr.) $=1.5^{\circ} \mathrm{K}[\mathrm{Sw} 3]$, magnetic properties [Ku5, Fu1, Gr8, St43] |  |
    | $\mathrm{Na}_{x} \mathrm{WO}_{3}$ | C | 3.8 |  |  |  | Br22 | $a=(0.0819 x+3.7846) \AA[B r 22, W e 2]$; cubic, $0.26<x<1.0$; early preparation [Bo17, Wr1, Ph1, Wo1, Sp1, Sp2, Ka5], P\&S [St37, St38, St39, Va5, De6, Ha5, Br8, Ha4, Bi6. Ch1b]; neutron diffraction ( $0.56<x<0.86$ ) [At1]; electrical properties [Ни8, Ния, Ни10, Миз, Mu4, Br21, Fu1, Ga21], reviews [Di3, Ma15, Ma18, Rif,Si7], optical properties [Di3a] |  |
    | . | T | 12.094 5.248 |  | 3.748 3.895 |  | Ma13 | $x=0.28$, tetragonal II [Rit]. Superconductivity, $\Theta_{c s}<1^{\circ} \mathrm{K}$ [Sw3, Ra12], optical properties [Br22, Da3], NMR [Fr18, Fr19, Na12] |  |
    |  | T | 5.248 7.405 |  | 3.895 |  | Ma16 | $x=0.10$, tetragonal I [Ri1]; thermal properties [Sh7, Fu1, Ge11, Ta2, Ve11], Na diffusion [Sm6], electrostatic energy calculated [ Sm 5 ] |  |
    | $\mathrm{Li}_{\mathbf{0 . 3 0}} \mathrm{WO}_{8}$ | H C | 7.405 3.715 |  | 7.554 |  | Gi1 Si10 | Metallic conductivity, superconducting $\Theta_{0 s}<$ $1: 3{ }^{\circ} \mathrm{K}$ [Git] |  |
    | $\mathrm{Li}_{0.384} \mathrm{WO}_{3}$ | C | 3.715 |  |  |  | Si10 | Magnetic properties, Pauli paramagnetic or diamagnetic [Si10, Co17], metallic conductivity [Co17, Si10, Si7, Sh8], P\&S [Ma19, Ma16, Si40] |  |
    | $\mathrm{Li}_{0.86} \mathrm{WO}_{3}$ | C | 3.718 |  |  |  | Col 7 | Review [Di3] |  |

    [Lit. S. 275
    

    | Compound | Sym | $\begin{aligned} & a \\ & \AA \end{aligned}$ | $\begin{aligned} & b \\ & \AA \end{aligned}$ | c | angle | Ref. | Remarks | Magnetic Data |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{A}_{x} \mathrm{WO}_{3}$ (continued) |  |  |  |  |  |  |  | $\begin{gathered} \text { in 3.3.4, } \\ \text { Tab. } \end{gathered}$ |
    | $\mathrm{Yb}_{0.1} \mathrm{WO}_{3}$ | C | 3.791 |  |  |  |  |  |  |
    | $\mathrm{Lu}_{0.1} \mathrm{WO}_{3}$ | C | 3.788 |  |  |  | Os2 | $n_{\text {eff }}=4.5$ $n_{\text {eff }}=0$ |  |
    | $\mathrm{Y}_{0.09} \mathrm{WO}_{3}$ | C | 3.800 |  |  |  | Br23 | $n_{\text {eff }}=0$ Tetr. $x<0.09$, metallic conductivity [Sh |  |
    | $\mathrm{Al}_{x} \mathrm{WO}_{3}$ | 0 | 7.368 | 7.476 | 3.850 |  | Po10 | Tetr. $x<0.09$, metallic conductivity [Sh 6 ] $x=0.015,0.010<x<0.030$ orthorhombic; |  |
    |  |  |  |  |  |  |  | $0.030<x<0.105$, two phase; studied as function of $T$ [Va4] |  |
    | $\mathrm{Cu}_{0.71} \mathrm{WO}_{3}$ | O | 5.387 3.73 | 5.440 3.88 | 3.784 |  | P010 | $0.105<x \leq 0.135 ; x>0.135$, two phase |  |
    | ${ }^{\mathrm{Cu}_{0.77} \mathrm{Wu}_{0.26} \mathrm{WO}_{3}}$ | ${ }_{\text {Tr }}$ | 3.73 5.85 | 3.88 6.65 | 7.74 4.88 | $\alpha=134^{\circ} 45^{\prime}$ | Col8 | Semiconducting $\approx 0.15 \mathrm{eV}$ |  |
    |  |  |  |  |  | $\beta=91^{\circ} 40^{\prime}$ $\gamma=93^{\circ} 37^{\prime}$ | Col 18 | Magnetic susceptibility $\chi_{\mathrm{m}}=34 \cdot 10^{-6} \mathrm{emu} / \mathrm{mole}$ |  |
    | $\mathrm{Ag}_{0.01} \mathrm{WO}_{3}$ $\mathrm{Cd}_{5} \mathrm{WO}_{3}$ | 0 | 3.73 | 3.85 | 7.35 |  | Si8 | Metallic conductivity, $\mathrm{P} \& \mathrm{~S}\left[P_{0}\right]$ |  |
    | $\mathrm{Cd}_{x} \mathrm{WO}_{3}$ | O | 7.316 5.244 | 7.532 | 3.848 |  | Va3 | Metallic conductivity, P\&S [Po2] $x=0.005,0.005 \leq x<0.02$ orthorhombic |  |
    | $\mathrm{In}_{0.05} \mathrm{WO}_{3}$ | T | 5.244 5.233 |  | 3.867 |  | Va3 | $x=0.020,0.02 \leq x<0.04 \text { tetragonal }$ |  |
    | $\mathrm{In}_{0.30} \mathrm{WO}_{3}$ | H | 7.384 |  | 3.863 7.508 |  | Bo21 | $x=0.01 \cdots 0.05, \mathrm{P} \& \mathrm{~S}(x=0.11)[B i 3]$ |  |
    |  |  |  |  | 㖪 |  | 021 | $x=0.2 \cdots 0.3$, metallic conductivity, weak dia- |  |
    | $\mathrm{In}_{0.38} \mathrm{WO}_{3}$ | ${ }_{\text {H }}$ | 7.50 |  | 7.56 |  |  | magnetism <br> $x=0.26 \cdots 0.33$; metallic conductivity |  |
    | $\mathrm{Tl}_{0.36} \mathrm{WO}_{3}$ | T | 7.31 |  | 12.80 |  | $\begin{aligned} & \text { Sw1 } \\ & \text { Si6 } \end{aligned}$ | $x=0.26 \cdots 0.33$; metallic conductivity <br> Metallic conductivity, $x=0.19 \cdots 0.36$; novel prep- |  |
    | $\mathrm{U}_{0.083} \mathrm{WO}_{3}$ | C | 3.812 |  |  |  | Ko10 |  |  |
    | $\mathrm{U}_{0.125} \mathrm{WO}_{3}$ | C | 3.821 |  |  |  | Ko10 | relationship of $a$ vs. $x$ [We2] <br> P\&S [Sh9] |  |
    | $\mathrm{Cs}_{0.8}\left(\mathrm{Ta}_{0.3} \mathrm{~W}_{0.7}\right) \mathrm{O}_{3}$ | H | 7.450 |  | 7.821 |  | Ga4 |  |  |
    | $\mathrm{Rb}_{0.3}\left(\mathrm{Ta}_{0.8} \mathrm{~W}_{0.7}\right) \mathrm{O}_{3}$ | H | 7.342 |  | 7.715 |  | Ga4 | Thermal expansion and resistivity ( $10^{8} \Omega \mathrm{~cm}$ ) |  |
    | $\mathrm{K}_{0.3}\left(\mathrm{Ta}_{0.8} \mathrm{~W}_{0.7}\right) \mathrm{O}_{3}$ | $\stackrel{\mathrm{H}}{ }$ | 7.333 |  | 7.685 |  | Ga4 | Thermal expansion and resistivity ( $10^{\circ} \Omega \mathrm{cm}$ ) |  |
    | $\mathrm{K}_{0.5}\left(\mathrm{Ta}_{0.5} \mathrm{~W}_{0.8}\right) \mathrm{O}_{8}$ | T | 12.36 |  | 3.90 |  | Ga14 |  |  |
    |  |  |  |  |  |  |  |  |  |
    | $\mathrm{K}_{\text {R } 0.6} \mathrm{ReO}_{3}$ | C | 3.895 |  |  |  |  |  |  |
    | $\mathrm{K}_{\sim \sim 0.3} \mathrm{ReO}_{3}$ | $\xrightarrow{\mathrm{H}}$ | 7.318 3.825 |  | 7.485 |  | Ch1b | High pressure preparation, $\Theta_{\mathrm{cs}}=3.6^{\circ} \mathrm{K}[S l 7 a]$ |  |
    | $\mathrm{Na}_{\sim 0.0} \mathrm{ReO}_{3}$ | T | 3.825 |  | 3.841 |  | Sl7a |  |  |
    | $\mathrm{A}_{\boldsymbol{x}} \mathrm{FeF}_{8} \mathrm{l}$ |  |  |  |  |  |  |  |  |
    | $\mathrm{Rb}_{0.80} \mathrm{FeF}_{3}$ | ${ }^{\mathrm{H}}$ | 7.36 |  | 7.53 |  |  |  |  |
    | $\mathrm{K}_{0.98} \mathrm{FeF}_{8}$ | C | 4.113 |  |  |  | De11 | $(x=0.95 \cdots 1.0) \text { cubic }$ <br> Hex ( $x=0.18 \cdots 0.30$ ); P\&S [De13a] |  |
    | $\mathrm{K}_{0.50} \mathrm{FeF}_{3}$ | ${ }^{\text {T }}$ | 12.60 |  | 3.936 |  | De11 | $(x=0.95 \cdots 1.0)$ cubic $(x=0.40 \cdots 0.60)$ tetr |  |
    | $\mathrm{K}_{0.28} \mathrm{FeF}_{3}$ | H | 7.385 |  | 7.510 |  | Deti | $\begin{aligned} & (x=0.40 \cdots 0.60) \text { tetr } \\ & (x=0.18 \cdots 075) \text { her } \end{aligned}$ |  |
    | $\mathrm{Na}_{0.12} \mathrm{FeF}_{3}$ | R | 5.37 |  |  | $\alpha=59^{\circ}$ | Tr1 | $x=0.0 \cdots 0.16 ; \mathrm{P} \& \mathrm{~S}\left[D_{e} 13 a\right]$ |  |
    | $\mathrm{Tl}_{0.30} \mathrm{FeF}_{3}$ | H | 7.35 |  | 7.52 |  | Tr1 | Hex $(x=0.20 \cdots 0.31)$; P\&S $[D e 13 a]$ |  |

    [Lit. S. 275
    

    \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{2}{*}{Compound} \& \multicolumn{8}{|l|}{Tab. 4c. \(\square \mathrm{BB}^{\prime} \mathrm{X}_{8}\) compounds} \\
    \hline \& Sym \& \[
    \begin{aligned}
    \& a \\
    \& \AA
    \end{aligned}
    \] \& b
    A \& \[
    \begin{gathered}
    c \\
    \AA
    \end{gathered}
    \] \& angle \& Ref. \& Remarks \& Magnetic Data \\
    \hline \begin{tabular}{l}
    \(\mathrm{BB}^{\prime} \mathrm{X}_{\text {e }}\) \\
    \(\mathrm{NaVF}_{6}\) \\
    \(\mathrm{LiVF}_{8}\) \\
    \(\mathrm{CaMnF}_{6}\) \\
    \(\mathrm{MgMnF}_{6}\) \\
    NaNbF 。 \\
    \(\mathrm{LiNbF}_{6}\) \\
    \(\mathrm{NaMoF}_{6}\) \\
    \(\mathrm{LiMoF}_{6}\) \\
    \(\mathrm{NaTcF}{ }_{6}\) \\
    \(\mathrm{NaRuF}_{6}\) \\
    \(\mathrm{LiRuF}_{6}\) \\
    \(\mathrm{GePdF}_{6}\) \\
    PdPdFo \\
    \(\mathrm{SnPdF}_{6}\) \\
    \(\mathrm{PtPdF}_{6}\) \\
    \(\mathrm{NaSbF}_{6}\) \\
    LiSbF \({ }_{8}\) \\
    \(\mathrm{CaHfF}_{6}\) \\
    \(\mathrm{NaTaF}_{6}\) \\
    \(\mathrm{LiTaF}_{6}\) \\
    \(\mathrm{NaWF}_{6}\) \\
    \(\mathrm{LiWF}_{6}\) \\
    NaReF . \\
    \(\mathrm{NaOsF}_{6}\) \\
    \(\mathrm{LiOsF}_{6}\) \\
    \(\mathrm{NaIrF}{ }_{6}\) \\
    \(\mathrm{LiIrF}_{6}\) \\
    \(\mathrm{PdPtF}_{6}\). \\
    \(\mathrm{CaPbF}_{6}\)
    \end{tabular} \& \(R\)
    \(R\)
    \(R\)
    \(R\)
    \(R\)
    \(R\)
    \(R\)
    \(R\)
    \(C\)

    $R$
    $C$ \& 5.63
    5.30
    5.59
    5.26
    8.26
    5.47
    8.194
    5.43
    5.77
    5.80
    5.39
    5.53
    5.52
    5.70
    5.55
    8.184
    5.44
    8.462
    8.28
    5.48
    8.18
    5.45
    8.18
    5.80
    5.43
    5.80
    5.41
    5.55

    8.476 \& \& \& \[
    $$
    \begin{aligned}
    & \alpha=56^{\circ} 30^{\prime} \\
    & \alpha=56^{\circ} 18^{\prime} \\
    & \alpha=55^{\circ} 36^{\prime} \\
    & \alpha=56^{\circ} 54^{\prime} \\
    & \alpha=58^{\circ} 6^{\prime} \\
    & \\
    & \alpha=57^{\circ} 6^{\prime} \\
    & \alpha=55^{\circ} 48^{\prime} \\
    & \alpha=54^{\circ} 30^{\prime} \\
    & \alpha=56^{\circ} 0^{\prime} \\
    & \alpha=54^{\circ} 0^{\prime} \\
    & \alpha=53^{\circ} 54^{\prime} \\
    & \alpha=53^{\circ} 6^{\prime} \\
    & \alpha=54^{\circ} 0^{\prime} \\
    & \alpha=57^{\circ} 0^{\prime} \\
    & \alpha=58^{\circ} 0^{\prime} \\
    & \alpha=57^{\circ} 24^{\prime} \\
    & \alpha=55^{\circ} 12^{\prime} \\
    & \alpha=55^{\circ} 30^{\prime} \\
    & \alpha=55^{\circ} 12^{\prime} \\
    & \alpha=56^{\circ} 0^{\prime} \\
    & \alpha=54^{\circ} 0^{\prime} \\
    &
    \end{aligned}
    $$

    \] \& | Ke11 Ke11 Ho14 Ho14 Ke11 $K e 11$ Ed3 Bo18 |
    | :--- |
    | Ed4 |
    | Bo18 |
    | Bo18 |
    | Ba21 |
    | Ba21 |
    | Ba21 |
    | Ba21 |
    | Te12 |
    | Buб |
    | Ke7 |
    | Ke11 |
    | Ke11 |
    | Ke11 |
    | Ke11 Ke11 |
    | Bo18 |
    | Bo18 |
    | Bo18 |
    | Bo18 |
    | Ba21 |
    | Ho15 | \& | Structural review [Gi2, Ke11, Co29] |
    | :--- |
    | P\&S [Co29] |
    | Magnetic properties $80<T<300^{\circ} \mathrm{K}$, $n_{\text {eff }}=1.66, \Theta_{\mathrm{p}}=-218{ }^{\circ} \mathrm{K}[$ Ha18] |
    | P\&S [Hu7] |
    | Magnetic properties, $n_{\text {eff }}=2.82, \Theta_{p}=31^{\circ} \mathrm{K}$ [Ba21] |
    | P\&S [He11], see PdFs |
    | Magnetic properties, $n_{\text {eff }}=2.98, \Theta_{p}=28^{\circ} \mathrm{K}$ [Ba21] |
    | Magnetic properties, $n_{\text {eff }}=2.72, \Theta_{p}=1.2{ }^{\circ} \mathrm{K}$ [Ba21] |
    | P\&S [Sc22] |
    | Complete structure; P\&S [Ke11] |
    | P\&S [Co29] |
    | Magnetic properties $80<T<300^{\circ} \mathrm{K}$, $n_{\text {eff }}=0.5, \Theta_{\mathrm{p}}=-125[$ Ha18] |
    | $\mathrm{P} \& \mathrm{~S}[\mathrm{Pe} 1]$; magnetic properties $80<T<300^{\circ} \mathrm{K}$, $n_{\text {eff }}=1.57, \Theta_{\mathrm{p}}=-100^{\circ} \mathrm{K}[\mathrm{Ha19}]$ | \& in 3.3.4, Tab. <br>

    \hline
    \end{tabular}

    
    
    
    
    [Lit. S. 275

    | Tab. 4e. $\mathrm{Bi}_{2} \mathrm{O}_{2}\left(\mathrm{~A}_{n-1} \mathrm{~B}_{n} \mathrm{O}_{3 n+1}\right)$ compounds |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Compound | Sym | A | $\begin{aligned} & b \\ & \AA \end{aligned}$ | $\stackrel{c}{\text { A }}$ | angle | Ref. | Remarks | Magnetic Data |
    |  |  |  |  |  |  |  |  |  |
    | $\mathrm{Bi}_{2} \mathrm{MoO}_{6}$ | $\bigcirc$ | 5.49 5.49 | 5.50 | 16.24 |  | Bl10 | $\mathrm{P} \& \mathrm{~S}[Z e 3]$ |  |
    | $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ | $\bigcirc$ | 5.49 5.533 | 5.50 | 16.24 |  | Bl10 |  |  |
    | $\mathrm{BaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ | 0 | 5.533 | 5.533 | 25.55 |  | Au2 | P\&S [Su3], S.S. with Sr and Ca [Sm19] |  |
    | $\mathrm{SrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ | 0 | 5.504 | 5.504 | 25.05 |  | Au2 | P\& S [Sm19; Su3] |  |
    | $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ | O | 5.435 5 | 5.485 | 24.87 |  | Au2 | $\mathrm{P} \& \mathrm{~S}[\operatorname{Sm19} ; \mathrm{Su} 3]$, dielectric properties [ $\left.\mathrm{Is}^{3} 3\right]$ |  |
    | $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ | 0 | 5.492 | 5.503 | 25.53 |  | Au2 | P\&S [Su2; Su3], S.S. with Ba and Sr [Snı19], dielectric properties-[Sm19, Is3] |  |
    |  | T | 5.535 |  | 25.72 |  | Is 3 | $T=520^{\circ} \mathrm{C}$. |  |
    | $\mathrm{K}_{0.5} \mathrm{Bi}_{2.5} \mathrm{Nb}_{2} \mathrm{O}_{0}$ | 0 | 5.506 | 5.506 | 25.26 |  | Au2 |  |  |
    | $\mathrm{Na}_{0.6} \mathrm{Bi}_{2.5} \mathrm{Nb}_{2} \mathrm{O}_{9}$ | O | 5.47 | 5.47 | 26.94 |  | Au2 |  |  |
    | $\mathrm{BaBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}$ | 0 | 5.556 | 5.556 | 25.60 |  | Su4 | P\&S [Sm19; Su3] |  |
    | $\mathrm{SrBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}$ | 0 | 5.509 5 | 5.509 | 25.06 |  | Au2 | P\&S [Sm19; Su3] |  |
    | $\mathrm{CaBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{0}$ | T | 5.435 | 5.468 | 24.97 |  | Is 3 | Dielectric properties |  |
    |  | T | 5.479 |  | 25.085 |  | Is 3 | $T=600^{\circ} \mathrm{C}$ |  |
    | $\mathrm{PbBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{8}$ | 0 | 5.496 | 5.496 | 25.40 |  | Su4 | P\&S [Sm19, Su2, Su3] |  |
    | $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$ $\mathrm{Bi}_{3} \mathrm{TaTiO}$ $\mathrm{Ba}_{9}$ | O | 5.405 5.402 | 5.442 5.436 | 25.11 25.15 |  | Au2 | $\mathrm{P} \& \mathrm{~S}[\mathrm{Su3}, \mathrm{Sm} 19]$, dielectric properties [ [ $\mathrm{s} 11 \mathrm{~b}, \mathrm{Is} 3]$ |  |
    | ${ }^{\mathrm{Bi}_{3} \mathrm{TaTiO}^{\text {a }}}$ | T | 5.402 3.874 | 5.436 | 25.15 33.70 |  | Au2 Su2 | P\&S [Su3], dielectric properties [Is11b] |  |
    | $\mathrm{PbBi}_{8} \mathrm{Ti}_{2} \mathrm{NbO}_{12}$ | T | 3.867 |  | 33.55 |  | Su2 |  |  |
    | $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ | O | 5.410 | 5.448 | 32.84 |  | Au3 | Dielectric properties [Kr1, Su4, Sm19, Va11], S.S. with $\mathrm{BaTiO}_{3}$ [Is6], S.S. with $\mathrm{Pb}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ [Su1], tetragonal at $675{ }^{\circ} \mathrm{C}$ [Su1], Electrooptic properties [Cu2], switching behavior [Cu1], monoclinic symmetry [Cu2] |  |
    | $\begin{aligned} & \mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15} \\ & \mathrm{SrBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{16} \end{aligned}$ | T | 5.461 5.428 |  | 41.85 40.95 |  | Su4 | $\mathrm{P} \& \mathrm{~S}[\mathrm{Su3}, \mathrm{Sm19}$, , $u 4$, Is6, Su2] |  |
    | $\mathrm{SrBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{16}$ $\mathrm{CaBi} \mathrm{Ci}_{4} \mathrm{O}_{15}$ | T | 5.428 5.418 |  | 40.85 40.75 |  | Su4 | P\&S [Su3, Sm19] |  |
    | $\mathrm{PbBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ | T | 5.437 |  | 41.35 |  | Su4 Su4 |  |  |
    | $\mathrm{Bi}_{5} \mathrm{Ti}_{3} \mathrm{GaO}_{15}$ | $T$ | 5.408 |  | 41.05 |  | Su4 | P\&S [Su3] |  |
    | $\mathrm{Bi}_{5} \mathrm{Ti}_{3} \mathrm{FeO}_{15}$ | O | 5.445 | 5.455 | 41.31 |  | Is12 | Tetr. $T>740^{\circ} \mathrm{C}$, Prop. [Is 111 a ] |  |
    | $\mathrm{K}_{0.5} \mathrm{Bi}_{4.5} \mathrm{Ti}_{4} \mathrm{O}_{15}$ | T | 5.440 5.427 |  | 41.15 |  | Su4 | P\&S [Su3] |  |
    | $\mathrm{Na}_{0.5} \mathrm{Bi}_{4} ._{\text {. }} \mathrm{Ti}_{4} \mathrm{O}_{15}$ | T | 5.427 |  | 40.65 |  | Su4 | P\&S [Su3, Ha9], structure determination [Ne9] |  |
    |  | O | 5.514 | 5.526 | 50.37 |  | 1s6 | $\mathrm{P} \& \mathrm{~S}$ [Su3], tetr. at $310^{\circ} \mathrm{C}$ [Is6] |  |
    | $\mathrm{Ba}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{Fe}_{2} \mathrm{O}_{18}$ $\mathrm{Sr}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$ | O | 5.490 | 5.500 | 50.185 |  | Is 12 |  |  |
    | $\mathrm{Sr}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$ $\mathrm{~Pb}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{6} \mathrm{O}_{18}$ | T | 5.461 |  | 48.80 |  | Su4 | Probably orthorhombic |  |
    | $\mathrm{Pb}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{6} \mathrm{O}_{18}$ $\mathrm{Ba}_{5} \mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{Fe}_{5} \mathrm{O}_{27}$ | T | 5.461 5.491 |  | $\begin{aligned} & 49.70 \\ & 76.20 \end{aligned}$ |  | Su4 | P\& S [Su3] |  |
    | $\mathrm{Ba}_{5} \mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{Fe}_{5} \mathrm{O}_{27}$ | 0 | 5.491 | 5.502 | 76.20 |  | Is12 |  |  |

    III Figuren $871 . . .877$
    

    Fig. 871. $\mathrm{CaBi}_{2} \mathrm{Nb}_{4} \mathrm{O}_{0}$ (ceramics). $x$ vs. $T$ [61S11].
    

    Fig. 873. $\mathrm{SrBi}_{\mathrm{i}_{2}} \mathrm{Nb}_{3} \mathrm{O}_{8}$ (ceramies). $x$ vs. $T$ [62S17].
    

    Fig. 875. $\mathrm{BaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{4}$ (ceramics). $x$ vs. $T$ [62SI7].
    

    Fig. 876. $\mathrm{BaBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{0}$ (ceramics). $*$ vs. $T$ [62Sif].
    

    Fig. 872. $\mathrm{CaBl}_{2} \mathrm{Ta}_{2} \mathrm{O}_{0}$ (cerarnics). $x$ vs. $T[61 \mathrm{~S} 11$ ].
    

    Fig. 874. $\mathrm{SrBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{2}$ (ceramies). $\approx$ vs. $T$ [6251才].
    

    Fig. 877. $\mathrm{Pb}_{\mathrm{b}}^{3} \mathrm{Nb}_{2} \mathrm{O}_{3}$. Schematic drawing of crystal ture. One ball of the pseudotetragonal unit cell fromstal structo $8 \sim 0.75$ is given. A denotes the perovskite laym $z \approx 0.25$ $B$ denotes a unit of hypothetical perovskite styer $\mathrm{PbNb}_{2} \mathrm{O}_{5}^{-}$, and $C$ denotes $\left(\mathrm{Bi}_{2} \mathrm{O}_{3}\right)^{8+}$ layers $[62 \mathrm{~S} / 5$ ].

    III Figures $878 \cdots 883$
    

    Fig. 879. $\mathrm{PbBi}_{\mathrm{B}} \mathrm{Nb}_{\mathbf{1}} \mathrm{O}$, (ceramics). $x$ vs. T [62S17].

    Fig. 878. $\mathrm{PbBi}_{\mathbf{2}} \mathrm{Nb}_{\mathbf{8}} \mathrm{O}_{\mathbf{8}}$ (ceramics). Lattice parameters vs. T [601 ].
    

    Fig. 880. $\mathrm{PbBi}_{1} \mathrm{Ta}_{9} \mathrm{O}_{8}$ (ceramics). $x$ vs. $T[625 / 7]$.
    
    $\leftarrow$
    

    Fig. 881. $\mathrm{Bi}_{\mathbf{4}} \mathrm{Ti}_{3} \mathrm{O}_{\mathbf{t z}}$ - Relationship between the throe sets of erystallographic axes [ $67 C 6$ ].
    

    Fig. 883. $\mathrm{Bi}_{4} \mathrm{Ti}_{2} \mathrm{O}_{15}$ Lattice parameters vs. T [61S16].

    Fig. 882. $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$. Schematic drawing of crystal structure. One half of the pseudotetragonal unit cell from $z \approx 0.25$ to $\approx \approx 0.75$ is given. $A$ denotes the perovskite layer $\mathrm{Bi}_{2} \mathrm{Ti}_{3} \mathrm{O}_{\mathrm{i}}{ }^{\circ}$, $B$ denotes a unit of bypothetical perovskite structure $\mathrm{BiTiO}_{3}$ and $C$ denotes $\left(\mathrm{Bi}_{4} \mathrm{O}_{8}\right)^{3+}$ layers [ 62515 ].
    

    Fig. 890. $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{\mathbf{1}}$. Schematic drawing of crystal structure. One half of the pseudotetragonal unit cell from $x=0.25$ to $\varepsilon \approx 0.75$ is given. $A$ denotes the perovskite layer $\mathrm{BaBi}_{2} \mathrm{Ti}_{4} \mathrm{O}_{12}^{2}, \boldsymbol{B}$ denotes a unit of hypothetical perovskite structure $\left(\mathrm{Ba}, \mathrm{Bi}^{2} \mathrm{TiO}_{2}, \mathrm{C}\right.$ denotes $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)^{2+}$ layers $[62 \mathrm{~S} 15]$.
    

    Fig. 891. $\mathrm{BaBi}_{4} \mathrm{Ti}_{6} \mathrm{O}_{2 s}$ (ceramics). $x$ vs. $T[61515]$.
    

    Fig. 893. $\mathrm{PbBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{26}$ (ceramics). $x$ vs. $T$ [61S15].
    

    Fig. 894. $\mathrm{SrBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{\mathbf{4}}$ (ceramics). $\times$ vs. $\mathrm{T}[62 \mathrm{~S} / \mathrm{I}]$.
    

    Fig. 895. $\mathrm{CaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{2 s}$ (ceramics). $x$ vs. $T$ [61S1才].

    Fig. 892. $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{31}, \mathrm{Ba}_{2} \mathrm{Bi}_{6} \mathrm{Ti}_{6} \mathrm{O}_{12}, \mathrm{Bi}_{6} \mathrm{Ti}_{3} \mathrm{O}_{12}$. $\mathrm{B}_{2}$ vs. $1 / E$. [62F1]. $t_{8}$ : switching time.

    III Figuren $896 \cdots 901$
    

    Fig. 896. $\mathrm{Ba}_{8} \mathrm{Bi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{12}$. Schematic drawing of the crystal structure. One half of the tetragonal unit cell from $x=0.25$ to $x=0.75$ is given. A denotes the perovskitic layer of $\mathrm{Ba}_{1} \mathrm{Bi}_{3} \mathrm{Ti}_{8} \mathrm{O}_{10}^{2-}, B$ denotes a unit cell of the bypothetical perovskite structure $(\mathrm{Ba}, \mathrm{Bi}) \mathrm{TiO}_{2}$, and C denotes the layers of $\left(\mathrm{Bi}_{4} \mathrm{O}_{2}\right)^{2+}[62 \mathrm{~A} 5]$.
    

    Fig. 898. $\mathrm{Ba}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{6} \mathrm{O}_{24} \cdot x^{\prime}$ and $x^{\prime \prime}$ vs. $T$ [62A5].
    

    Fig. 900. $\mathrm{Sr}_{8} \mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{30}$ (ceramics). $x$ vs. T [62517].
    

    Fig. 897. $\mathrm{Ba}_{8} \mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{\mathbf{t}}$. Latice parameters vs. $T$ [6315].
    

    Fig. 899. $\mathrm{Pb}_{3} \mathrm{Bi}_{4} \mathrm{Ti}_{2} \mathrm{O}_{41}$ (ceramics). $x$ vs. $T$ [62S17].
    

    - Bi
    

    Fig. 901. $\mathrm{Bi}_{\mathbf{a}} \mathrm{Ti}_{4} \mathrm{O}_{13}$. Schematic projection of structure on (010) $(6554$ ].

    ## BRIEF ATTACHMENT 0

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT O

    

    TWO vOLuMES WON BE PAGES
    (4)
    $\therefore$ 为
    
    

    ## LANGENSCHEIDT'S GERMAN-ENGLISH ENGLISH-GERMAN DICTIONARY

    A Washington Square Press edition
    1st printing.
    . January, 1953
    37th printing.................................................. 1969
    New Revised and Enlarged Edition
    1st printing.
    . January, 1970
    This Washington Squarr Press edition is published by arrangement with Langenscheidt KG, Publishers, Berlin and. Munich, Germany, and is printed from brand-new plates made from newly set, clear, easy-to-read type.
    $\therefore .3$
    

    Published by Washington Square Press, a division of Simon \& Schuster, Inc., 630 Fifth Avenue, New York, N.Y.

    Washingion Squarí Press editions are distributed in the U.S: by Simon \& Schuster, Inc., 630 Fifth Avenue, New York, N.Y. 10020 and in Canada by Simon \& Schuster of Canada, Ltd., Richmond Hill, Ontario, Canada.

    Standard Book Number: 671-47825-7.
    Copyright, ©, 1952, 1969, 1970, by Langenscheidt KG, Berlin and Munich, Germany. All rights reserved. Published on the same day in Canada by Simon \& Schuster of Canada, Ltd. Printed in the U.S.A. This Washington Square Press edition may not be sold in Germany, Switzerland, and Austria. A hard-bound edition of this book is available in the U.S. from McGraw-Hill Book Company.
    

    ## BRIEF ATTACHMENT P

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT P

    # LANDOLT-BÖRNSTEIN 

    in Science and TechnologyNew Series

    Editor in Chief: K.-H. Hellwege

    Group III: Crystal and Solid State Physics

    Volume 3<br>Ferro- and Antiferroelectric Substances<br>by Toshio Mitsui and<br>R. Abe . Y. Furuhata . K. Gesi • T. Ikeda • K. Kawabe<br>Y. Makita • M. Marutake • E. Nakamura . S. Nomura<br>E. Sawaguchi • Y.Shiozaki • I.Tatsuzaki • K. Toyoda

    Editors: K.-H. Hellwege and A.M. Hellwege
    

    Springer-Verlag Berlin $\cdot$ Heidelberg $\cdot$ New York 1969

    ## II Data <br> Oxides

    ## 1 Perovskite-type oxides

    ## 1A Simple perovskite-type oxides

    Nr. 1A-1 $\mathbf{N a N b O}_{3}$, Sodium niobate
    Tab. 1. $\mathrm{NaNbO}_{8}$. Fractional coordinates $x, y, z$ of atoms in unit cell at RT. [61W2]

    |  | $x$ | $y$ | $z$ |
    | :--- | :---: | :---: | :---: |
    | $\mathrm{Na}(1)$ | $\frac{z}{2}$ | 0.250 | 0 |
    | $\mathrm{Na}(2)$ | 0.769 | 0.251 | $\vdots$ |
    | Nb | 0.261 | 0.257 | 0.125 |
    | $\mathrm{O}(1)$ | $\frac{\downarrow}{4}$ | 0.208 | 0 |
    | $\mathrm{O}(2)$ | 0.271 | 0.290 | $\frac{1}{4}$ |
    | $\mathrm{O}(3)$ | 0.010 | 0.532 | 0.121 |
    | $\mathrm{O}(4)$ | 0.446 | 0.972 | 0.126 |

    According to Ismailzade phase III consists of 4 phases (see Fig. 3). [63I4]
    Transitions exhibit large temperature hysteresis, and the transition temperatures measured with decreasing temperature are given here.

    Tab. 2. $\mathrm{NaNbO}_{3}$. Lattice parameters at various temperatures.
    
    3. Lattice parameters of the subcell at various

    | $T\left[{ }^{\circ} \mathrm{C}\right]$ | Subcell parameters |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | pseudomonoclinic $\mathrm{I}\left(a^{\prime}=c^{\prime}>b^{\prime}, \beta^{\prime}>90^{\circ}\right)$ |  |  |  |  |
    |  |  |  |  |  |  |
    | $18 \cdots 20$ |  |  | $\rho-90^{\circ}$ | $a^{\prime} / b^{\prime}$ | $V\left[\AA^{3}\right]$ |
    | 100 150 | $3.917^{7}$ |  | $40^{\prime}$ 37 |  |  |
    | 150 200 | $3.919^{6}$ 3.922 | $3.893{ }^{6}$ 3.898 3.98 | 37 33 | $1.0060^{5}$ | 59.53 59.74 |
    | 250 | 3.922 3.924 | $3.902{ }^{\text {3 }}$ | 29 | 1.0055 1.0050 | 59.9 |
    | 300 | 3.924 ${ }^{3}$ | $3.907_{5}$ 3.914 | 26 | 1.0050 1.0040 | $60.0{ }_{5}$ |
    | 340 | 3.925 ${ }^{6}$ | 3.914 3.917 3 | 22 | 1.0030 | 60.17 60.3 |
    | 350 | 3.9263 | 3.9175 3.919 | 18 | 1.0025 | 60.3 60.4 |
    |  |  |  | 17 | $1.0020_{2}$ | 60.42 |

    

    | tetragonal I |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :--- |
    | $T\left[{ }^{\circ} \mathrm{C}\right]$ | $c[\AA]$ | $a=b[\AA]$ | $c / a$ | $V\left[\AA^{3}\right]$ |  |
    | 520 | $3.936_{8}$ | $3.929_{5}$ | $1.0015_{\mathrm{s}}$ | 60.80 |  |
    | 540 | 3.938 | $3.930_{0}$ | $1.0020^{\circ}$ | 60.85 |  |
    | 560 | $3.939_{8}$ | $3.931_{\mathrm{s}}$ | $1.0020_{\mathrm{s}}$ | 60.90 |  |


    | 580 | 3.941 tetragonal II |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | 600 | $3.94{ }^{3}$ | $3.934^{2}$ | 1.0020 | 61.00 |
    | 620 | $3.945{ }_{8}$ | ${ }_{3} 3.9378$ | 1.0015 | 61.15 |
    | 630 | $3.945{ }^{\text {b }}$ | $\begin{array}{r}3.942 \\ \\ \hline\end{array}$ | 1.0010 $\approx 1.0000$ | 61.30 |

    cubic

    | $T\left[{ }^{\circ} \mathrm{C}\right]$ | $a_{0}[\AA]$ | $V\left[\AA^{3}\right]$ | $T\left[{ }^{\circ} \mathrm{C}\right]$ | $a_{0}[\AA]$ | $V\left[\AA^{2}\right]$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 640 | $3.947_{2}$ | 61.50 | 700 | $3.949_{7}$ | $61.6_{8}$ |
    | 650 | $3.947_{6}$ | $61.5_{2}$ | 720 | $3.950_{6}$ | $61.6_{7}$ |
    | 680 | $3.949^{\circ}$ | $61.5_{7}$ |  |  |  |

    Furuhata/Marutake

    ## Nr. 1A-2 $\mathrm{KNbO}_{3}$, Potassium niobate

    

    Tab. 4. $\mathrm{KNbO}_{3}$. Atomic positions in fractional coordinates at RT in phase III. [67K4]

    | Nb | $0,0,0$ |
    | :--- | :--- |
    | K | $0, \frac{1}{2}, \frac{1}{2}+z_{\mathrm{K}}$ |
    | $\mathrm{O}(1)$ | $0, \frac{1}{\frac{1}{2}} z_{1}$ |
    | $\mathrm{O}(2)$ | $\frac{1}{4}+x_{2}, 0,1+z_{2}$ |
    | $z_{\mathrm{K}}$ | +0.017 |
    | $z_{1}$ | +0.021 |
    | $z_{2}$ | +0.035 |
    | $x_{2}$ | +0.004 |

    Tab. 5. $\mathrm{KNbO}_{3}$. Interatomic distances and bond angles at RT. [67K4]

    |  | * | distance A | ** | * | $\underset{0}{\text { angle }}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{Nb}-\mathrm{O}(1)$ | (2) | $1.991 \pm 0.001$ | $\mathrm{O}(2)(s)-\mathrm{Nb}-\mathrm{O}(2)(s)$ | (1) | $97.4 \pm 1.2$ |
    | $\mathrm{Nb}-\mathrm{O}(2)$ | (2) | $1.863 \pm 0.007$ | $\mathrm{O}(2)$ (l)-Nb-O(2) $(\mathrm{l})$ | (1) | $83.4 \pm 1.0$ |
    | $\mathrm{Nb}-\mathrm{O}(2)$ | (2) | $2.180 \pm 0.009$ | $\mathrm{O}(2)(\mathrm{s})-\mathrm{Nb}-\mathrm{O}(2)(l)$ | (2) | $89.7 \pm 0.5$ |
    | $\mathrm{K}-\mathrm{O}(1)$ $\mathrm{K}-\mathrm{O}(1)$ | (1) | $2.837 \pm 0.014$ $2.848 \pm 0.001$ | $\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)(s)$ $\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)(l)$ | (4) | $92.3 \pm 0.6$ |
    | $\mathrm{K}-\mathrm{O}(1)$ $\mathrm{K}-\mathrm{O}(1)$ | (2) | $2.848 \pm$$\pm$ <br> 2.883 0.00140.014 | $\mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2)(l)$ $\mathrm{Nb}-\mathrm{O}(1)-\mathrm{Nb}$ | (4) (1) | $87.5 \pm 0.6$ $172.8 \pm 0.7$ |
    | K-O(2) | (4) | $2.792 \pm 0.008$ | $\mathrm{Nb}-\mathrm{O}(2)-\mathrm{Nb}$ | (2) | 168.6 $\pm 0.6$ |
    | K-O(2) | (4) | $2.873 \pm 0.010$ |  |  |  |
    | $\mathrm{O}(1)-\mathrm{O}(2)$ | (4) | $2.780 \pm 0.012$ |  |  |  |
    | $\mathrm{O}(1)-\mathrm{O}(2)$ | (4) | $2.884 \pm 0.012$ |  |  |  |
    | $\mathrm{O}(2)-\mathrm{O}(2)$ | (1) | $2.802 \pm 0.024$ |  |  |  |
    | $\mathrm{O}(2)-\mathrm{O}(2)$ | (1) | $2.894 \pm 0.024$ |  |  |  |

    * Numbers in this column indicate numbers of equal bonds or angles per formula unit.

    For the $\mathrm{O}-\mathrm{Nb}-\mathrm{O}$ angles, the letter $s$ or $l$ indicates whether the $\mathrm{Nb}-\mathrm{O}(2)$ bond involved is short or long.

    II 1 Oxide des Perowskit-Typs
    Tab. 6. $\mathrm{KNbO}_{3}$. Lattice constants and volume of unit cell at various temperatures. [54S3]. $a^{\prime}, c^{\prime}$ : lattice parameters of pseudotetragonal cel

    | T <br> ${ }^{\circ} \mathrm{C}$ <br> 25 | $a^{\prime}{ }^{\prime}=c^{\prime}$ | $\stackrel{\text { b }}{ }$ | $b / a$ | $\beta$ | $\stackrel{V}{A^{3}}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 25 125 | 4.0375 4.0374 | 3.9711 | 1.0167 | $90^{\circ} 15^{\prime}$ |  |
    | 185 | 4.0374 4.0363 | 3.9797 3.9830 | 1.0145 | ${ }^{90} 0^{\circ} 15^{\prime}$ | 64.73 64.87 |
    | 205 | 4.0369 | 3.9830 3.9839 | 1.0134 | $90^{\circ} 13^{\prime}$ | 64.87 64.89 |
    |  | $a=b$ | 3.9839 | 1.0133 | $90^{\circ} 14^{\prime}$ | 64.93 |
    | 220 | 3.9972 | 4.0636 | c/a |  |  |
    | 230 | 3.9978 | 4.0636 4.0640 | 1.0166 |  | 64.92 |
    | 270 | 3.9992 | 4.0640 4.0647 | 1.0166 |  | 64.95 |
    | 320 375 | 4.0023 | 4.0639 | 1.0164 1.0154 |  | 65.01 |
    | 375 | 4.0048 | 4.0620 | 1.0154 |  | 65.10 |
    | 410 425 | 4.0080 4.0214 | 4.0567 | 1.0122 |  | 65.15 65.18 |
    | 450 | 4.0225 |  |  |  | 65.03 |
    | 510 | 4.0252 |  |  |  | 65.09 |

    Tab. 7. $\mathrm{KNbO}_{3}$. Transition heat and transition entropy per mole. [54S1]

    | Transition | $\Delta Q_{\mathrm{m}}$ <br> $\mathrm{cal}_{\mathrm{mol}}-1$ | $\Delta S_{\mathrm{m}}$ <br> cal $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ |
    | :--- | :---: | :---: |
    | IV $\rightarrow$ III | 32 | 0.12 |
    | III $\rightarrow$ II | 85 <br> II | 190 |

    Tab. 8. $\mathrm{KNbO}_{3}$. NOR spectrum
    intersect the calculated ratios in a straight [5ine The measured frequency ratios $\eta=$ asymmetry parameter

    | $\qquad$ | $\stackrel{f}{\mathrm{MH}_{\mathrm{L}}}$ | Measured ratio | $\begin{gathered} \text { Calculated } \\ \text { ratio } \\ (\eta=0.806) \end{gathered}$ | Identification | $\begin{aligned} & e^{2} q Q / h \\ & \mathrm{MHz} \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | orthorhombic$\left(20^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & \hline 3.648 \\ & 3.030 \\ & 2.527 \\ & 2.085 \end{aligned}$ | $\begin{aligned} & 1.204 \\ & 1.198 \\ & 1.214 \end{aligned}$ | $\begin{aligned} & 1.204 \\ & 1.196 \\ & 1.213 \end{aligned}$ |  |  |
    |  |  |  |  | (9/2, 7/2) | $23.120 \pm 0.05$ |
    |  |  |  |  | (3/2, 1/2) |  |
    |  |  |  |  | (7/2, 5/2) |  |
    |  |  |  |  | $(5 / 2,3 / 2)$ |  |
    | rhombohedral$\left(-196^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & 2.674 \\ & 2.004 \\ & 1.335 \end{aligned}$ | 1.3351.503 | $\begin{gathered} (\eta=0.0) \\ 1.333 \\ 1.500 \end{gathered}$ |  | $0 \pm 0.1$ |
    |  |  |  |  | $(9 / 2,7 / 2)$ |  |
    |  |  |  |  |  |  |
    |  |  |  |  | (7/2, 5/2) |  |
    |  |  |  |  | (5/2, 3/2) |  |

    
    49M1
    57K1

    Tab. 9. $\mathrm{NaTaO}_{3}$. Fractional coordinates of atoms in the unit cell.
    [57K1]

    | Na | $\begin{array}{ll}x: & 0-0.01 \\ y: & z+0.03 \\ z: & 0+0.02\end{array}$ | $\begin{aligned} & 0+0.01 \\ & \vdots+0.03 \\ & 0-0.02 \end{aligned}$ | $\begin{aligned} & \frac{1}{2}-0.01 \\ & \frac{1}{4}+0.03 \\ & \frac{1}{2}-0.02 \end{aligned}$ | $\begin{aligned} & \frac{1}{2}+0.01 \\ & \frac{3}{4}+0.03 \\ & \frac{1}{2}+0.02 \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | Ta* | $\left\{\begin{array}{cc}x: & \frac{1}{2} \\ y: & 0 \\ z: & 0\end{array}\right.$ | $\frac{1}{2}$ $\frac{1}{2}$ 0 | $\begin{aligned} & 0 \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & \frac{1}{2} \end{aligned}$ |
    | O(1) | $\left\{\begin{array}{cc}x: & 0-0.02 \\ y: & \frac{z}{2}+0.01 \\ z: & \frac{1}{2}+0.02\end{array}\right.$ | $\begin{aligned} & 0+0.02 \\ & \frac{1}{4}+0.01 \\ & \frac{1}{2}-0.02 \end{aligned}$ | $\begin{aligned} & \frac{1}{2}+0.02 \\ & \frac{3}{4}+0.01 \\ & 0+0.02 \end{aligned}$ | $\begin{aligned} & \frac{1}{2}-0.02 \\ & t+0.01 \\ & 0-0.02 \end{aligned}$ |
    | O(2) | $\left\{\begin{array}{cc}x: & 1+0.04 \\ y: & 0-0.03 \\ z: & 1+0.04\end{array}\right.$ | $\begin{aligned} & 1-0.04 \\ & 0-0.03 \\ & 4+0.04 \end{aligned}$ | $\begin{aligned} & \frac{8}{4}-0.04 \\ & \frac{1}{2}-0.03 \\ & \frac{3}{4}-0.04 \end{aligned}$ | $\begin{aligned} & \frac{3}{4}+0.04 \\ & \frac{1}{2}-0.03 \\ & t-0.04 \end{aligned}$ |
    | O(3) | $\begin{cases}x: & \frac{1}{2}+0.04 \\ y: & \frac{1}{8}+0.06 \\ z: & 1+0.04\end{cases}$ | $1-0.04$ $\frac{1}{2}+0.06$ $\frac{8}{4}+0.04$ | $\begin{aligned} & \frac{3}{2}-0.04 \\ & 0+0.06 \\ & \frac{3}{4}-0.04 \end{aligned}$ | $\begin{aligned} & 4+0.04 \\ & 0+0.06 \\ & 1-0.04 \end{aligned}$ |

    Tab. 10. $\mathrm{NaTaO}_{3}$. Temperature dependence of the pseudo-cell parameters. [62I4]. For the notations, see Fig. 21

    | $T\left[{ }^{\circ} \mathrm{C}\right]$ | 23 | 100 | 200 | 300 | 400 | 450 | 480 | 500 | 550 | 580 | 600 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $a^{\prime}=c^{\prime}[\AA]$ | 3.8895 | 3.893. | 3.8995 | 3.907 | $3.912_{8}$ | 3.916 | 3.918 | 3.920 | 3.923 | 3.9258 | 3.927 |
    | $b^{\prime}\left[\begin{array}{l}\text { d }\end{array}\right]$ | 3.8855 | $3.890_{5}$ | 3.8965 | $3.903_{8}$ | $3.910_{3}$ | 3.9136 | $3.915_{8}$ | 3.918 | 3.923 | $\approx 3.925_{2}$ | $\approx 3.927$ |
    | $\beta-90^{\circ}$ | 22'00" | 16.00" | $9^{\prime} 00{ }^{\prime \prime}$ | 6.00" | 4'00" | 3'30" | 2'00" | ~2'00' | 1'30" | 0'00" | $0^{\prime} 00{ }^{\prime \prime}$ |
    | $a^{\prime} / b^{\prime}$ | 1.0010 | 1.0009 | 1.0009 | 1.0008 | 1.0006 | 1.0006 | 1.0005 | 1.0005 | 1.000 | 1.000 | 1.000 |
    | $V\left[\AA^{\text {a }}\right]$ | 58.80 | 59.0。 | 59.2 | 59.53 | 59.8 | 60.0 | 60.1。 | 60.20 | 60.3 S | 60.45 | 60.55 |
    |  |  |  |  | $T\left[{ }^{\circ} \mathrm{C}\right]$ | 630 | 660 | 680 |  |  |  |  |
    |  |  |  |  | $=a=c$ | 3.929 | 3.931 | 3.932 ${ }^{5}$ |  |  |  |  |
    |  |  |  |  | [ ${ }^{\text {a }}$ ] | 60.65 | 60.75 | 60.80 |  |  |  |  |

    Nr. 1A-4 $\mathrm{KTaO}_{3}$, Potassium tantalate
    12 Ferroelectric activity was first reported by Matthias in 1949; ${ }^{\mathbf{a}}$ ) however, recent studies by Wemple have proved that the ferroelectric transition does not occur, at least above $1.6^{\circ} \mathrm{K} .{ }^{\mathrm{D}}$ )
    b $\quad \mathrm{KTaO}_{3}$ is cubic and its space group is $\mathrm{Pm} 3 \mathrm{~m}-\mathrm{O}_{\mathrm{h}}^{1}$.
    $T_{\text {melt }}=(1357 \pm 3)^{\circ} \mathrm{C}$.
    $\varrho=6.97 \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$
    $a=3.9885 \AA$ at RT.
    Transparent, colorless or pale blue (blue in oxygen-deficient crystals).
    Cleavage: along (100) planes.
    Hardness: nearly the same as quartz.
    2 a Flux method: KF flux, ${ }^{2}$ ) dark small crystals; $\mathrm{K}_{8} \mathrm{CO}_{3}$ flux, ${ }^{\text {D }}$ ) large ( $\approx 10 \mathrm{~mm}$ ) transparent crystals.
    Czochralski-Kyropoulos method : large ( $\approx 10 \mathrm{~mm}$ ) good quality crystals.
    Floating technique: planar single crystals.
    Phase diagram of system $\mathrm{K}_{2} \mathrm{CO}_{8}-\mathrm{Ta}_{2} \mathrm{O}_{5}$ : Fig. 24
    Hydrothermal phase diagram $\mathrm{K}_{8} \mathrm{O}-\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ at $400^{\circ} \mathrm{C}$ :
    -) $49 \mathrm{M1}, 49 \mathrm{M4}$
    D) $64 \mathrm{~W} 2,65 \mathrm{~W} 2$

    | 8) $62 T 5,64 W 2$ |
    | :--- |
    | b) $66 U 1$ |
    | $66 W 2,65 W 2$, |
    | $67 B 7$ |
    | $66 W 8$ |
    | $67 M 2$ |
    | $51 \mathrm{~V} 1,51 \mathrm{~V} 2$ |

    
    $51 \mathrm{~V} 1,51 \mathrm{~V} 2$
    
    K at 1a position; Ta at 1 b position; 30 at 3 c position.

    II 1 Oxide des Perowskit-Typs
    Figuren S. 221 ff.
    

    \begin{tabular}{|c|c|c|}
    \hline 12 a

    $b$ \& | NMR of ${ }^{181} \mathrm{Ta}$ in $\mathrm{KTaO}_{3}$ : spin-lattice relaxation time, $T_{1} \approx 10^{-2} \mathrm{sec}$ at RT ; spin-spin relaxation time, $T_{2}=\approx 10^{-5} \mathrm{sec}$ at RT ; nuclear magnetic moment of ${ }^{181} \mathrm{Ta}$ $(I=7 / 2): p_{n}=(2.340 \pm 0.001) \mu_{n}$ (uncorrected); ( $p_{n}=(2.35 \pm 0.01) \mu_{n}$, after estimated corrections). |
    | :--- |
    | Nuclear magnetic acoustic resonance: the absorption data were given for $\Delta m= \pm 2$ transition of ${ }^{181} \mathrm{Ta}$ as a function of the angle between magnetic field and sound axis [100]. |
    | ESR of $\mathrm{Eu}^{2+}$ and $\mathrm{Gd}^{3+}$ in $\mathrm{KTaO}_{8}$ : Tab. 14. |
    | ESR of $\mathrm{Fe}^{3+}: g=1.99 \pm 0.01 ;\|a\|=(345 \pm 10) \cdot 10^{-2} \mathrm{~m}^{-1}$ at $4.2{ }^{\circ} \mathrm{K}$; |
    | $a=(288 \pm 5)^{8} \cdot 10^{-2} \mathrm{~m}^{-1}$ at RT ( $\mathrm{Fe}^{\mathrm{s+}}$ is on the $\mathrm{Ta}^{5+}$ site). |
    | $a=(30 \pm 1) \cdot 10^{-2} \mathrm{~m}^{-1}$ at RT ( $\mathrm{Fe}^{3+}$ is on the $\mathrm{K}^{1+}$ site). |
    | ESR Stark effect for $\mathrm{Fe}^{3+}: E_{\text {bisa }}$ along [100] induces axial splitting term $D$ ( $D=12 \cdot 10^{-2} \mathrm{~m}^{-1}$ at $E_{\text {bias }}=1.0 \mathrm{MV} \mathrm{m}{ }^{-1}$ at $4.2^{\circ} \mathrm{K} ; D \propto E_{\text {blas }}^{2}$ ). |
    | ESR of $\mathrm{Ni}^{3+}$ located on $\mathrm{Ta}^{5+}$ site (low spin state) and on $\mathrm{K}^{1+}$ site: see |
    | ESR in Mn -doped, Co -doped and Cr -doped $\mathrm{KTaO}_{3}$ : see | \& \[

    $$
    \begin{aligned}
    & 60 \mathrm{~B} 2 \\
    & \\
    & \\
    & 67 \mathrm{M} 4 \\
    & 66 \mathrm{U} 1 \\
    & 64 \mathrm{~W} 2 \\
    & 67 \mathrm{H} 3 \\
    & 67 \mathrm{H} 3 \\
    & 63 \mathrm{~W} 5,64 \mathrm{~W} 2 \\
    & \\
    & 67 \mathrm{H} 3,65 \mathrm{H} 2 \\
    & 64 \mathrm{~W} 2 \\
    & \hline
    \end{aligned}
    $$
    \] <br>

    \hline 13b \& | Phonon dispersion relation for the transverse optical branch: Fig. 52; Tab. 15. Temperature dependence of the ferroelectric soft mode: Fig. 53. |
    | :--- |
    | The square of the phonon energy of the ferroelectric soft mode can be approximated by $(h \nu)^{2}=10^{4} A / \varkappa, 40^{\circ} \mathrm{K}<T<295{ }^{\circ} \mathrm{K}$; where $A=2.825(\mathrm{meV})^{2}, x(T)$ is the dielectric constant. |
    | For the ferroelectric soft mode, see also 1A-4-9a. Phonon energies of the acoustic modes: Fig. 54. | \& 67511

    67511 <br>

    \hline \multirow[t]{3}{*}{17} \& | Etchant: single crystal is slowly etched by dilute HF. |
    | :--- |
    | Band structure and the related properties: see references; also 1A-4-9a, 9b, 9d, 10, and Tab. 12. |
    | Band gap energies determined by various methods: | \& \[

    $$
    \begin{aligned}
    & 64 W 2 \\
    & 67 F 4,67 B 1
    \end{aligned}
    $$
    \] <br>

    \hline \& | Faraday rotation | 3.77 eV | 3.79 eV |
    | :--- | :--- | :--- |
    |  | 3.62 eV | 3.65 eV |
    | Electroreflectance singularities | 3.57 eV |  |
    |  | 3.80 eV |  |
    | Absorption data | 3.75 eV |  |
    | Energy at which $\alpha \approx 10^{6} \mathrm{~m}^{-1}$ | 3.79 eV |  | \& $67 B 1$ <br>

    \hline \& Cyclotron resonance of semiconducting $\mathrm{KTaO}_{3}$ at 70 GHz and $1.4^{\circ} \mathrm{K}$ : microwave skin depth, about $30 \mu \mathrm{~m}$; see reference paper for the microwave absorption vs. magnetic field curves. \& 65513 <br>
    \hline
    \end{tabular}

    Tab. 11. $\mathrm{KTaO}_{3}$. Transverse optical modes at various temperatures [67P4]. The wave number $\widetilde{\nu}_{t 1}$ (ferroelectric soft mode) is temperature dependent.

    | $T\left[{ }^{\circ} \mathrm{K}\right]$ | $\tilde{\boldsymbol{v}}_{\mathbf{i 1}}$ | $\tilde{\boldsymbol{v}}_{\mathbf{t 2}}$ | $\tilde{\nu}_{\mathbf{t 3}}$ |
    | :---: | ---: | :---: | :---: |
    |  | $\cdot 10^{2} \mathrm{~m}^{\mathbf{- 1}}$ |  |  |
    | 12 | 25 | 196 | - |
    | 126 | 58 | 198 | 551 |
    | 232 | 79 | 198 | 551 |
    | 295 | 88 | 199 | 550 |
    | 463 | 106 | 199 | - |

    Tab. 12. $\mathrm{KTaO}_{3}$. ( Ca -doped). Singularities observed in electroreflectance spectra (in eV) [67F4]. See Figs. 40, 41

    |  | $E_{1}$ | $E_{2}$ | $A_{1}$ <br> $[\mathrm{eV}]$ | $A_{1}^{\prime}$ | $A_{2}$ |
    | :--- | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{KTaO}_{3}(100)$ | 3.57 | 3.80 | 4.40 | 4.88 | 5.50 |
    | $\mathrm{KTaO}_{3}(111)$ | $-\overline{r y y}$ | 3.77 | 4.45 | 4.90 | 5.47 |
    | $\mathrm{KTaO}_{3}(110)$ | 3.55 | 3.80 | 4.47 | 4.85 | 5.50 |

    Tab. 13. $\mathrm{KTaO}_{8}$ (reduced). Hall coefficient $R_{\mathrm{H}}$ and Hall mobility $\mu_{\mathrm{H}}$ at $295^{\circ} \mathrm{K}$ and $4.2^{\circ} \mathrm{K}$ for single crystals [ 65 W 2 ]. Carrier concentrations $N$ are calculated from the $4.2^{\circ} \mathrm{K}$ Hall coefficient using $R_{\mathbf{H}}=-1 / \mathrm{Ne}$

    | Sample Nr . | $\begin{gathered} N_{\text {cale }} \\ \mathbf{m}^{-8} \end{gathered}$ | $\begin{gathered} R_{\mathrm{H}} \\ \mathrm{~m}^{3} \mathrm{C}^{-1} \end{gathered}$ |  | $\begin{gathered} \mu_{\mathrm{H}} \\ \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{sec}^{-1} \end{gathered}$ |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\left(295{ }^{\circ} \mathrm{K}\right)$ | (4.2 ${ }^{\circ} \mathrm{K}$ ) | $\left(295{ }^{\circ} \mathrm{K}\right)$ | $\left(4.2{ }^{\circ} \mathrm{K}\right)$ |
    | 1 | $3.5 \cdot 10^{23}$ | $20.3 \cdot 10^{-6}$ | $18 \cdot 10^{-6}$ | $2.7 \cdot 10^{-3}$ | 2.3 |
    | 2 | $6.0 \cdot 10^{23}$ | $12.9 \cdot 10^{-6}$ | $10.4 \cdot 10^{-6}$ | $2.9 \cdot 10^{-3}$ | 1.9 |
    | 3 | $6.6{ }^{\text {- }} 10^{23}$ | $11.5 \cdot 10^{-6}$ | $9.4 \cdot 10^{-6}$ | $3.1 \cdot 10^{-3}$ | 1.9 |
    | 4 | $2.4 \cdot 10^{24}$ | $3.0 \cdot 10^{-6}$ | $2.6 \cdot 10^{-6}$ | $3.0 \cdot 10^{-3}$ | 1.1 |
    | 5 | $7.8 \cdot 10^{24}$ | $1.0 \cdot 10^{-6}$ | $0.80 \cdot 10^{-6}$ | $3.0 \cdot 10^{-3}$ | 0.53 |
    | 6 | $1.3 \cdot 10^{25}$ | $0.62 \cdot 10^{-6}$ | $0.48 \cdot 10^{-6}$ | $3.1 \cdot 10^{-3}$ | 0.34 |

    Figuren S. 227 ff.
    II 1 Oxide des Perowskit-Typs

    Tab. 14. $\mathrm{KTaO}_{3}$. Parameters of ESR spectrum of $\mathrm{Eu}^{2+}$ and $\mathrm{Gd}^{3+}$ ions, doped in single crystals of

    Tab. 15. $\mathrm{KTaO}_{3}$. Phonon energies of the soft ferroelectric mode (transverse optical mode) at various temperatures [67511]. The wave vector $q$ at the zone boundary is $0.788 \AA^{-1}(=\pi / a)$. See Fig. 52

    | $T$ | Phonon energy [meV] <br> for $q\left[\AA^{-1}\right]=$ <br> ${ }^{\circ} \mathrm{K}$ |  |  |
    | ---: | ---: | :---: | :---: |
    |  | 0 | 0.1 | 0.2 |
    | 295 | 10.7 | 11.5 | 13.5 |
    | 230 | 9.7 |  |  |
    | 170 | 8.6 | 10.0 | 12.5 |
    | 120 | 7.3 |  |  |
    | 77 | 5.7 | 7.5 | 10.7 |
    | 40 | 4.2 | 6.0 |  |
    | 28 | 3.6 | 5.9 | 10.5 |
    | 15 | 3.0 | 5.3 |  |
    | 10 | 3.2 | 5.2 |  |
    | 4 | 3.1 | 5.3 | 9.8 |

    1a Specific heat anomaly associated with a phase transition was observed in $\mathrm{CaTiO}_{3}$ at
    about $1260^{\circ} \mathrm{C}$ by NAyLor et al. in 1946 . Gränicher et al. reported that $\mathrm{CaTiO}_{3}$
    becomes cubic above $1260^{\circ} \mathrm{C}$
    Tab. 16. $\mathrm{CaTiO}_{3}$. Ion positions. [57K2]
    4 Ti in $4(\mathrm{a}):$
    4 Ca in $4(\mathrm{c}):$

    4 O in $4(\mathrm{c}):$
    8 O in $8(\mathrm{~d}):$
    $\frac{1}{2}, 0,0 ; 0,0, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}, 0 ; 0, \frac{1}{2}, \frac{1}{2}$.
    $x, \frac{1}{4}, z ; \bar{x}, \frac{3}{\frac{1}{2}}, \vec{z} ; \frac{1}{2}+x, \frac{3}{2}, \frac{1}{2}-z ; \frac{1}{2}-x, \frac{1}{2}, \frac{1}{2}+z$;
    with $x=0, z=0.030$.
    with $x=\frac{1}{2}-0.037 . z=-0.018$.
    $x, y, z ; \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$;
    $\bar{x}, \frac{1}{2}+y, \bar{z} ; \frac{1}{2}+x, \bar{y}, \frac{1}{2}-z ;$
    $\bar{x}, \bar{y}, \bar{z} ; \frac{1}{8}+x, \frac{1}{2}+y, \frac{1}{2}-z ;$
    $x, \frac{1}{2}-y, z ; \frac{1}{2}-x, y, \frac{1}{2}+z$;
    with $x=\frac{1}{4}-0.018, y=-0.026, z=1-0.018$.

    $$
    \mathbf{b}
    $$

    46N1, 54G1
    $T_{\text {melt }}=1960^{\circ} \mathrm{C} \quad 7.6438 \AA, c=5.4439 \AA$ at RT.
    $a=5.3670 \mathrm{~A}, b=7.648$ cubic unit cell becomes pseudo-monoclinic in phase II in the The ideal perovskite cubic unit cell $\beta^{\prime}=90^{\circ} 48^{\prime}$ at RT.
    Transparent, colorless.
    $\mathrm{BaCl}_{2}, \mathrm{CaCl}_{2}+\mathrm{BaCl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{CO}_{3}$
    57K2

    |  | same manner as shansparent, colorless. | 57 K 2 |
    | :---: | :---: | :---: |
    |  | Flux method; flux: $\mathrm{CaCl}_{2}, \mathrm{BaCl}_{2}, \mathrm{CaCl}_{2}+\mathrm{BaCl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{K}_{2} \mathrm{CO}_{3}$. | 58L1, |
    | 2 | Flax method, fusion method: | 57 K 2 |
    | 3 | Crystal structure: $Z=4$ in phase II. Fig. 55; Tab. 16. |  |
    | 4 | Lattice distortion: Fig. 56. | 62 M |
    | 5 a | Dielectric constant: $x=186, \tan \delta=3 \cdot 10$ Fig. 57. | 46N1 |
    | 63 | Specific heat: Fig. 58. <br> Transition heat: $\Delta Q=550 \mathrm{cal} \mathrm{mol}^{-1}$ at $\Theta_{\mathrm{II}-\mathrm{I}}$. | 46 N |

                Transition heat: \(\Delta Q=550 \mathrm{cal} \mathrm{mol}^{-1}\) at \(\Theta_{\text {II-1 }}\).
    II 1 Perovskite-type oxides
    Figures p. 228 ff.
    

    | 9 a | Nr. 1A-5 CaTiO, continued <br> Refractive indices: Fig. 59. <br> Reflection and absorption: Fig. 60, 61. |  |
    | :---: | :--- | :--- |
    | 17 | Hardness: Mohs $6.5 \cdots 7$. Knoop 986 | $62 M^{3}$ |

    Nr. 1A-6 $\mathrm{SrTiO}_{3}$, Strontium titanate

    | $\begin{gathered} 1 \mathrm{a} \\ \mathrm{~b} \end{gathered}$ | Ferroelectric-like behavior of $\mathrm{SrTiO}_{3}$ was first observed by Gränicher in 1956. |  |  | 56G2 <br> $62 R 1$ <br> 63f2, $63 f 2$ 64L4 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | phase | II* | I |  |
    |  | state | (F) | P |  |
    |  | crystal system | tetragonal | cubic** |  |
    |  | space group |  | Pm3m- $\mathrm{O}_{\mathrm{h}}^{1}$ |  |
    |  | $\begin{aligned} & \Theta \\ & T_{\text {melt }} \cong 2000^{\circ} \\ & \varrho=5.11 \cdot 10^{3} 1 \\ & a=3.905 \AA \text { at } \\ & \text { Transparent, } \mathrm{c} \end{aligned}$ |  | ${ }^{\circ} \mathbf{K}$ |  |
    | 23 | Crystal growth: Flux method (flux: KF or $50 \% \mathrm{Na}_{2} \mathrm{CO}_{3}+50 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ ). Flame-fusion (Verneuil) method. <br> Phase diagram of the system $\mathrm{SrO}_{-1 \mathrm{TiO}_{2}}$ is given in Figs. 297 and 289 of [6411]. |  |  | $\begin{aligned} & 57 N 1 \\ & 61 G 1 \\ & 6411 \end{aligned}$ |
    | 3 | Crystal structure: $Z=1$. Fig. 62. |  |  |  |
    | 4 | Thermal expansion: Fig. 63. |  |  |  |
    | 5a | Dielectric constant: Figs. $64 \cdots 76$. <br> Expression of $\kappa$ vs. $T$ curve: <br> Curie-Weiss law: $x=C /\left(T-\Theta_{p}\right), T>70^{\circ} \mathrm{K}$, where $C=7.83 \cdot 10^{\circ}{ }^{\circ} \mathrm{K}, \Theta_{\mathrm{p}}=28{ }^{\circ} \mathrm{K}$ <br> $\kappa=M /\left[\left(T_{1} / 2\right) \operatorname{coth}\left(T_{1} / 2 T\right)-T_{0}\right], T<50^{\circ} \mathrm{K}$, where $T_{0}=38^{\circ} \mathrm{K}, T_{1}=84^{\circ} \mathrm{K}$, |  |  | $\begin{aligned} & 61 \mathrm{M3} \\ & 59 \mathrm{~W} 2,62 S 2 \end{aligned}$ |

    b Coefficients of free energy expansion at low temperatures:
    66C6
    Saturation polarization: Fig. 77.
    Remanent polarization: Fig. 78.
    d Electrocaloric effect: Fig. 79.
    For additional data, see
    $64 \mathrm{~K} 5,65 \mathrm{H} 4$,
    $61 \mathrm{H1}$
    Specific heat: Fig. 80.
    Specific heat below $1{ }^{\circ} \mathrm{K}$, see
    61g1, 66A4

    Thermal conductivity: Figs. 81, 82.
    For ceramics: see also
    58Y1, 60 Y 1, $61 \mathrm{~g} 1,66 \mathrm{H} 9$
    Piezoelectricity (dc bias induced piezoelectricity): Figs. 83, 84, 85.
    Electrostriction: Fig. 86.
    Elaṣtic compliances and stiffnesses: Tab. 17; Figs. 87, 88, 89.
    Refractive indices: Tabs. 18, 19; Fig. 90.
    Reflectivity, absorption coefficient and dielectric constant:
    (i) Infrared region: Figs. $91 \cdots 95$. See also Tab. 42.
    (ii) Visible and ultraviolet region: Figs. $96 \cdots$ 102. See also Tab. 43.
    b. Quadratic electrooptic effect: $M_{11}-M_{12}=(0.14 \pm 0.01) \mathrm{m}^{4} \mathrm{C}^{-2}$ at $6328 \AA$ ( $4.2 \cdots 300{ }^{\circ} \mathrm{K}$ ).
    c Piezooptic effect: Tabs. 20, 21.

    * In phase II a hysteresis loop is observed, a ), b) but the remanent polarization depends upon the amplitude of the applied field. According to Lytur, phase II consists of three phases. a) [59W 2], D) [61M 3], [64L4]
    ** Generally the phase $I$ is believed to be cubic but evidence of pseudo-cubic structure was reported by a few authors.
    $[64 L 4],[66 C \sigma]$

    Figuren S. 236 ff.
    II 1 Oxide des Perowskit-Typs
    

    Tab. 17. $\mathrm{SrTiO}_{3}$. Elastic constants at RT

    | $s_{11}$ | $s_{12}$ | $s_{13}$ | $10^{11} \mathrm{~N} \mathrm{~m}^{-2}$ |  |  | Method | Note | Reference |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $10^{-12} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ |  |  |  |  |  |  | c calculated | 58p5 |
    | 3.3 | --0.74 | 8.4 | 3.48 | 1.01 |  | bar | from $s$ calculated | $63 \mathrm{B2}$ |
    |  | -0.909 | 8.091 | 3.181 | 1.025 | 1.236 | pulse | from $c$ | $63 W 1$ |
    | 3.729 |  |  |  | 1.027 | 1.215 | pulse | $s$ calculated from $c$ |  |
    | 3.772 | -0.926 | 8.233 +0.040 | + $\begin{array}{r}3.156 \\ \pm 0.027\end{array}$ | $\pm 0.027$ | $\pm 0.006$ |  |  |  |
    | $\pm 0.023$ | $\pm 0.010$ | $\pm 0.040$ |  |  |  |  |  |  |

    Tab. 19. $\mathrm{SrTiO}_{3} . n$ vs. $\lambda$ [65B9]
    Tab. 18. $\mathrm{SrTiO}_{3} . n$ vs. $\lambda$ at $21^{\circ} \mathrm{C}$. [57G1]

    | $\lambda$ | $n$ | $\lambda$ | $n$ | $\lambda$ | $n$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\AA$ |  | $\AA$ | $n$ | $n$ |  |
    | 4200 | 2.6050 | 5400 | 2.4386 | 6600 | 2.3771 |
    | 4300 | 2.5810 | 5500 | 2.4312 | 6700 | 2.3737 |
    | 4400 | 2.5585 | 5600 | 2.4245 | 6800 | 2.3703 |
    | 4500 | 2.5394 | 5700 | 2.4182 | 6900 | 2.3674 |
    | 4600 | 2.5236 | 5800 | 2.4122 | 7000 | 2.3645 |
    | 4700 | 2.501 | 5900 | 2.4069 | 7100 | 2.3617 |
    | 4800 | 2.4970 | 6000 | 2.4019 | 7200 | 2.3590 |
    | 4900 | 2.4846 | 6100 | 2.3971 | 7300 | 2.3564 |
    | 5000 | 2.4734 | 6200 | 2.3928 | 7400 | 2.3538 |
    | 5100 | 2.4636 | 6300 | 2.3886 | 7500 | 2.3514 |
    | 5200 | 2.4548 | 6400 | 2.3846 | 7600 | 2.3490 |
    | 5300 | 2.4464 | 6500 | 2.3807 | 7700 | 2.3468 |


    |  |  |  |  |
    | :--- | :--- | :--- | :--- |
    | $\lambda$ <br> $\mu \mathrm{m}$ | $n$ | $\lambda$ <br> $\mu \mathrm{m}$ | $n$ |
    | 0.45 | 2.537 | 1.8 | 2.270 |
    | 0.5 | 2.472 | 2.0 | 2.264 |
    | 0.6 | 2.402 | 2.2 | 2.258 |
    | 0.7 | 2.363 | 2.4 | 2.2524 |
    | 0.8 | 2.340 | 2.6 | 2.2490 |
    | 0.9 | 2.326 | 2.8 | 2.2395 |
    | 1.0 | 2.315 | 3.0 | 2.2315 |
    | 1.1 | 2.306 | 3.2 | 2.2236 |
    | 1.2 | 2.299 | 3.4 | 2.2143 |
    | 1.4 | 2.287 | 3.6 | 2.2058 |
    | 1.6 | 2.279 | 3.8 | 2.1951 |
    |  |  |  |  |

    46

    Tab. 20. $\mathrm{SrTiO}_{3} . \Pi_{66}$ vs. $\lambda$ at $(27 \pm 1)^{\circ} \mathrm{C} .[57 G 1]$

    | $\lambda$ | $\Pi_{66}$ <br> $\AA$ | $\lambda$ <br>  <br> $10^{-13} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ | $\Pi_{66}$ <br> $10^{-13} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ |
    | :---: | :---: | :---: | :---: |
    | 4200 | -3.69 | 6000 | -4.92 |
    | 4300 | -3.74 | 6100 | -4.99 |
    | 4400 | -3.78 | 6200 | -5.05 |
    | 4500 | -3.99 | 6300 | -5.12 |
    | 4600 | -3.965 | 6400 | -5.13 |
    | 4700 | -4.13 | 6500 | -5.18 |
    | 4800 | -4.09 | 6600 | -5.22 |
    | 4900 | -4.22 | 6700 | -5.29 |
    | 5000 | -4.33 | 6800 | -5.52 |
    | 5100 | -4.32 | 6900 | -5.48 |
    | 5200 | -4.41 | 7000 | -5.555 |
    | 5300 | -4.51 | 7100 | -5.62 |
    | 5400 | -4.59 | 7200 | -5.77 |
    | 5500 | -4.575 | 7300 | -5.73 |
    | 5600 | -4.62 | 7400 | -5.78 |
    | 5700 | -4.69 | 7500 | -5.79 |
    | 5800 | -4.79 | 7600 | -5.825 |
    | 5900 | -4.85 | 7700 | -5.98 |
    |  |  |  |  |

    Tab. 21. $\mathrm{SrTiO}_{3} . \Pi_{21}-\Pi_{11}$ vs. $\lambda$ at $(27 \pm 1)^{\circ} \mathrm{C}$. [57G1]

    | $\lambda$ | $\Pi_{21}-\Pi_{11}$ <br> $10^{-13} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ | $\lambda$ <br> $\AA$ | $\Pi_{21}-\Pi_{11}$ <br> $10^{-13} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ |
    | :---: | :---: | :---: | :---: |
    | 4200 | 9.03 | 6000 | 9.95 |
    | 4300 | 9.23 | 6100 | 9.94 |
    | 4400 | 9.03 | 6200 | 9.91 |
    | 4500 | 9.26 | 6300 | 9.84 |
    | 4600 | 9.12 | 6400 | 9.82 |
    | 4700 | 9.12 | 6500 | 9.88 |
    | 4800 | 9.14 | 6600 | 9.96 |
    | 4900 | 9.16 | 6700 | 9.92 |
    | 5000 | 9.35 | 6800 | 9.98 |
    | 5100 | 9.44 | 6900 | 9.99 |
    | 5200 | 9.61 | 7000 | 9.91 |
    | 5300 | 9.54 | 7100 | 9.92 |
    | 5400 | 9.68 | 7200 | 9.94 |
    | 5500 | 9.56 | 7300 | 9.99 |
    | 5600 | 9.85 | 7400 | 10.05 |
    | 5700 | 9.85 | 7500 | 9.90 |
    | 5800 | 9.86 | 7600 | 9.92 |
    | 5900 | 9.88 | 7700 | 10.02 |
    |  |  |  |  |

    Tab. 22. $\mathrm{SrTiO}_{3}$ (single crystal). Effects of electrode material on the apparent conductivity [65C6]. Measurements were made by the two terminal method at $T=130^{\circ} \mathrm{C}, t=24$ hours after the application of the field $E=100 \mathrm{kV} \mathrm{m}^{-1}$

    | Electrode <br> material | $\sigma\left[\Omega^{-1} \mathrm{~m}^{-1}\right]$ <br> after 24 h at 130${ }^{\circ} \mathrm{C}$ |
    | :---: | :---: | :--- |$\quad$ Form of $\sigma$ vs. $t$ curve

    Tab. 23. $\mathrm{SrTiO}_{3}$ (single crystal). The $300^{\circ} \mathrm{K}$ and $2^{\circ} \mathrm{K}$ Hall coefficient $R_{\mathrm{H}}$ and Hall mobility $\mu_{\mathrm{H}}$ values and the $300^{\circ} \mathrm{K}$ electron concentrations for semiconductive single crystals. [67T6]. In the first column, $(\mathrm{Nb})$ means Nb -doped samples, the other samples are reduced ones

    | Sample | $300{ }^{\circ} \mathrm{K}$ |  | $2^{\circ} \mathrm{K}$ |  | $n=\frac{1}{e R_{\mathrm{H}}\left(300^{\circ} \mathrm{K}\right)} \mathrm{m}^{-3} \mathrm{~m}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\underset{10^{-6} \mathrm{~m}^{3} \mathrm{C}^{-1}}{R_{\mathrm{H}}}$ | $\underset{10^{-4} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{sec}^{-1}}{\mu_{\mathrm{H}}}$ |  | $\frac{\mu_{\mathrm{H}}}{10^{-1} \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{sec}^{-1}}$ |  |
    | 5 | 0.26 | 6.5 | 0.25 | 1.0 | $2.4 \cdot 10^{25}$ |
    | 2 | 0.62 | 5.2 | 0.77 | 1.8 | $1.0 \cdot 10^{25}$ |
    | 3 | 1.8 | 7.2 | 3.9 | 2.7 | $3.5 \cdot 10^{24}$ |
    | 6 | 5.3 | 8.0 | 11.0 | 3.1 | $1.2 \cdot 10^{24}$ |
    | 12 9 | 14.0 23.0 | 8.0 5.8 |  |  | $4.5 \cdot 10^{23}$ $2.7 \cdot 10^{\text {a }}$ |
    | 13(Nb) | 0.22 | 5.5 | 0.22 | 3.3 | $2.8 \cdot 10^{25}$ |
    | 8(Nb) | 0.58 | 4.8 | 0.63 | 8.2 | $1.1 \cdot 10^{25}$ |
    | $10(\mathrm{Nb})$ | 3.4 | 6.2 | 3.3 | 12.0 | $1.8 \cdot 10^{24}$ |
    | $14(\mathrm{Nb})$ | 14.0 | 6.7 | 11.0 | 13.0 | $4.5 \cdot 10^{\text {2 }}$ |
    | 15(Nb) | 22.0 | 5.4 | 18.0 | 19.0 | $2.8 \cdot 10^{23}$ |
    | 11(Nb) | 44.0 | 6.0 | 33.0 | 22.0 | $1.4 \cdot 10^{33}$ |

    Tab. 24 see page 50

    Figuren S. 236 ff.
    II 1 Oxide des Perowskit-Typs
    
    
    
    

    II 1 Oxide des Perowskit-Typs
    Tab. 24. $\mathrm{SrTiO}_{3}$ (ceramics containing Ba or Ca in $\mathrm{mol} \%$ ). Superconductive properties of $\left(\mathrm{Ba}_{x} \mathrm{Sr}_{1-x}\right) \mathrm{TiO}_{3}$ and $\left(\mathrm{Ca}_{x} \mathrm{Sr}_{1-x}\right) \mathrm{TiO}_{z}$ [67S8]. $H_{c 1}$ is the point at which the magnetization curve first deviates from linearity; $H_{c 1}(0)$ is the extrapolated value for $T \rightarrow 0{ }^{\circ} \mathrm{K}$. $N=$ Carrier concentration $\quad \Theta_{c}=$ superconducting transition temperature

    | \% Ba or Ca | $\begin{gathered} \begin{array}{c} N \\ 10^{25} \mathrm{~m}^{-3} \end{array} \\ \hline 2.7 \end{gathered}$ | $\Theta_{\boldsymbol{c}}{ }^{\circ} \mathrm{K}$ <br> 0.18 | $\begin{gathered} H_{c 1}(0) \\ \mathrm{Oe} \end{gathered}$ | \% Ba or Ca | $\begin{gathered} N \\ 10^{25} \mathrm{~m}^{-3} \\ \hline \end{gathered}$ | ${ }^{\Theta_{c}}$ ${ }^{\circ} \mathrm{K}$ | $H_{c 1}(0)$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | 5.8 | 0.18 0.30 |  | 10.0 | 4.2 |  |  |
    | - | 6.4 | 0.30 0.25 | 2.8 | 12.5 | 4.5 | -0.10 |  |
    | - | 1.7 | 0.10 |  | 2.5 (Ca) | 5.0 |  |  |
    | - | 12.0 | 0.17 |  | 5.0 | 9.2 | 0.32 |  |
    |  | 23.0 | 0.10 |  | 7.5 | 74.0 | <0.06 |  |
    | 2.5 (Ba) | 6.0 | 0.52 |  | 7.5 | 8.7 | 0.43 | (3.5) ${ }^{\text {a }}$ |
    | 2.5 | 0.3 | 0.23 |  | 7.5 | 0.2 | <0.06 | (3.5) |
    | 5.0 | 6.7 | 0.50 | 3.9 | 7.5 | 0.6 | 0.37 |  |
    | 7.5 | 7.0 | 0.29 | 3.9 | 7.5 | 33.0 | $<0.07$ |  |
    | 7.5 | 0.05 | 0.22 ' |  | 7.5 | 2.0 | 0.48 |  |
    | 7.5 | 34.0 0.5 | 0.09 |  | 7.5 10.0 | $0.06{ }^{\text {b }}$ ) | <0.06 |  |
    | 7.5 | 0.5 2.3 | 0.25 |  | 20.0 | 13.3 | 0.39 |  |
    | 7.5 | 15.0 | 0.27 0.45 |  | 30.0 | 13.0 | 0.29 |  |
    | $\mathrm{CdTiO}_{3}$, Cadmium titanate |  |  |  | 30.0 | 0.6 | <0.05 | 1.9 |

    Nt. 1A-7 $\mathrm{CdTiO}_{3}, \mathrm{Cadmium}_{\text {titanate }}$
    1a $\mathrm{CdTiO}_{\mathrm{s}}$ was reported by Smolenskit in 1950 to be ferroelectric below $50 \cdots 60^{\circ} \mathrm{K}$ kir's findings.
    b
    

    |  | Lattice constants: $a=5.348 \AA, b=7.615 \AA, c=5.417 \AA$ at $R T$. <br> The relation between the orthorhombic unit cell and the pseudo-cubic is the same as in the |
    | :---: | :---: |
    | 2 | Flux method (flux: $40 \mathrm{wt} \mathrm{\%} \mathrm{NaTaO}_{3}$; see Fig. 21. |
    | 3 | $Z=4$. Crystal structure in phase I $\left.40 \mathrm{wt} \% \mathrm{NaBO}_{2}+20 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$. |
    | 5a b | Dielectric constant: $x=250$ at RT. $x=C /\left(T-\Theta_{p}\right), C=4.5 \cdot 10^{4}{ }^{\circ} \mathrm{K}$. Effect of $E_{\text {blas }}$ on $\boldsymbol{x}$ : Fig. 139. |

    Tab. 28. $\mathrm{CdTiO}_{3}$. Fractional coordinates of atoms in the unit cell.
    [57K1]

    Positions
    $\mathrm{Cd} \begin{cases}x: & 0+0.006 \\ y: & z \\ z: & 0+0.016\end{cases}$
    $\mathrm{Ti} \quad \begin{cases}x: & \frac{1}{z}+0.005 \\ y: & 0 \\ z: & 0-0.065\end{cases}$

    $$
    \begin{aligned}
    & 0-0.006 \\
    & \frac{1}{4}-0.016 \\
    & 0-0.0 .05 \\
    & \frac{1}{2}-0.005 \\
    & \frac{1}{2} \\
    & 0+0.065
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \frac{1}{2}+0.006 \\
    & \frac{1}{4} \\
    & \frac{1}{2}-0.016 \\
    & 0+0.005 \\
    & \frac{1}{2} \\
    & \frac{1}{2}+0.065
    \end{aligned}
    $$

    $\mathrm{O}(1) \begin{cases}x: & 0-0.03 \\ y: & \frac{3}{4} \\ z: & \frac{1}{2}+0.05\end{cases}$

    $$
    0+0.03 \quad \frac{1}{2}+0.03
    $$

    $$
    \frac{1}{\frac{1}{2}}
    $$

    $\mathrm{O}(2)$

    $$
    \begin{aligned}
    & \left\{\begin{array}{llll}
    x: & \frac{1}{2}+0.05 & \frac{1}{2}-0.05 & 0+0.05 \\
    y: & 0-0.03 & \frac{1}{4}-0.05 & \frac{3}{4}-0.05 \\
    y: 0.03 & \frac{1}{2}-0.03
    \end{array}\right. \\
    & z: \quad \frac{1}{z}+0.06 \\
    & \begin{array}{l}
    0-0.03 \\
    3+0.06
    \end{array} \\
    & \frac{1}{2}-0.05 \\
    & 0+0.0 \\
    & \frac{1}{2}-0.03 \\
    & \frac{3}{4}-0.06 \\
    & \begin{array}{l}
    3^{i}-0.05 \\
    0+0.07
    \end{array} \\
    & \text { s. } 0.06
    \end{aligned}
    $$

    a) This specimen is not spherical, so that the value of $H_{c_{1}(1)}(0)$ quoted is only approximate.
    b) Hall coefficient appeared to be affected by magnetic history of specimen at liquid helium

    Nr. 1
    $\pm 0.002$
    $\pm 0.002$
    $\pm 0.005$
    0
    $\frac{1}{2}-0.065$
    $\pm 0.010$
    $\frac{1}{2}-0.03$
    $\pm 0.015$
    $\pm 0.025$
    $\pm 0.015$
    $\pm 0.005$
    $\pm 0.015$
    $\pm 0.015$
    $\pm 0.005$
    $\pm 0.015$
    $\pm 0.015$

    ## Nr. $\mathbf{1 A}^{\mathrm{A}} \mathbf{8} \mathrm{BaTiO}_{3}$, Barium titanate

    (Responsible authors for this section are as follows: Ikeda, Nakamura, Nomura, Sawaguchi, Shiozaki and Toyoda, abbreviated as INaNoSaShito).

    | 12 <br> b | The anomalous dielectric properties of $\mathrm{BaTiO}_{3}$ were discovered on ceramic specimens independently by Wainer and Solomon in 1942, by Ogawa in 1944 and by Wul in 1945. The ferroelectric activity of $\mathrm{BaTiO}_{3}$ was reported independently by von Hippel and co-workers in 1944 and by Wul in 1946. The structural change associated with the cubic-tetragonal phase transition was observed, by means of x-rays, by Megaw in 1945, independently of the above dielectric studies. |  |  |  |  |  | $\begin{aligned} & 42 W 1,4401, \\ & 45 W 1 \\ & 44 V 2 \\ & 46 W 2 \\ & 45 M 1 \\ & \\ & \\ & \text { a) } 49 \mathrm{~K} 2,49 R 1 \\ & \text { b } 45 M 1 \\ & \text { ç } 46 \mathrm{Vi} 1,46 \mathrm{Wi} \\ & \text { d) } 55 R 1 \end{aligned}$ <br> 51W2 <br> $51 R 1$ <br> 48B3 | | | |
|---|---|---|---|---|---|---|---|---|---|---|
    |  | phase |  | III ${ }^{\text {a }}$ ) |  |  |  |  |
    |  | state |  | F | $\mathrm{F}^{\text {c }}$ ) | Pb) |  |  |
    |  | crysta <br> system | rhombohedrala) | ortho- rhombic | tragonal ${ }^{\text {b }}$ | cubic | hexagonald ${ }^{\text {( }}$ |  |
    |  | space group | R3m-C ${ }^{5}{ }^{\text {a }}$ ) | m2-C24 | $\mathrm{P} 4 \mathrm{~mm}-\mathrm{C}_{4 \mathrm{l}}{ }^{\text {b }}$ ) | 3 m | $\mathrm{C} 63 / \mathrm{mmc}-\mathrm{D}_{6 \mathrm{~L}}^{4}{ }^{\text {d }}$ ) |  |
    |  | $P_{s} \\|[001]$ in phase II (along [100] of phase I). <br> $P_{s} \\|$ [001] in phase III (along [110] of phase I). <br> $P_{\mathrm{s}} \\|$ [111] in phase IV (along [111] of phase I). <br> The directions of $P_{\mathrm{a}}$ are illustrated along with lattice distortions in Fig. 140. $T_{\text {melt }}=1618^{\circ} \mathrm{C}$ <br> Tetragonal form (phase II): $\varrho=6.02 \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ (calculated from lattice constants) $a=3.9920 \AA, c=4.0361 \AA \text { at } 20^{\circ} \mathrm{C}$ <br> Transparent, light brown. <br> Hexagonal form: $a_{\text {hex }}=5.735 \AA, c_{\text {bex }}=14.05 \AA$ at RT. $\varrho=(6.1 \pm 0.1) \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ |  |  |  |  |  |  |
    | 2 a | Crystal growth: Flux method (flux $\mathrm{KFa}^{\mathrm{a}}$ ) or $\mathrm{TiO}_{\mathbf{2}}$-rich meltb)). <br> Pulling method (top-seeded solution growth technique using excess $\mathrm{TiO}_{2}$ as the solvent). <br> Melting method (with limited success). <br> Tab. 29; Fig. 141. |  |  |  |  |  | a) $54 R 1, \mathrm{~b}) 65 S 88 \mathrm{l}$ |
    | b | Crystal forms: For butterfly-type: Fig. 142. <br> For chunky type: Fig. 143. <br> For hexagonal form: Fig. 144. |  |  |  |  |  |  |
    | 3 | Crystal structure of phase I: $Z=1$. Tab. 30. <br> Crystal structure of phase II: $Z=1$. Tab. 31. <br> Crystal structure of phase III: $Z=2$. Tab. 32; Fig. 145, 146; Tab. 33. <br> Crystal structure of phase IV: $Z=1$. <br> Crystal structure of hexagonal form: $Z=6$. Tab. 34, 35; Fig. 147. |  |  |  |  |  |  |
    | 4 | Lattice constants of phase I, II, III, and IV: <br> Phase I: $\quad a=3.996 \AA$ at $120^{\circ} \mathrm{C}$. <br> Phase II: $a=3.9920 \AA, c=4.0361 \AA$ at $20^{\circ} \mathrm{C}$. <br> Phase III: $a=3.990 \AA, b=5.669 \AA, c=5.682 \AA$ at $-10^{\circ} \mathrm{C}$. <br> Phase IV: $a=4.001 \AA, \alpha=89^{\circ} 51^{\prime}$ at $-168^{\circ} \mathrm{C}$. <br> Thermal expansion: Fig. 148, 149; Tab. 36, 37; Fig. 150. <br> Lattice distortion due to $p$ : Fig. 151. |  |  |  |  |  | 47M3 $51 R 1$ $57 S 2$ $57 J 2$ |
    | 5 a | Dielectric constant: Fig. 152, 153, 154, 192. <br> Dielectric dispersion: Fig. $155 \cdots 159$. <br> Further data from optical measurements: Fig. 201; Tab. 42. <br> Effect of $p$ on $x$ : Fig. 160, 161, 162. <br> Phase diagram in regard to $p$ : Fig. 163, 164. <br> Effect of $E_{\text {blas }}$ on $\Theta_{\mathrm{f}}: \mathrm{d} \Theta_{\mathrm{f}} / \mathrm{d} E_{\text {blas }}=1.43 \cdot 10^{-5}{ }^{\circ} \mathrm{K} \mathrm{V}^{-1} \mathrm{~m}$; on $x$ : Fig. 165. |  |  |  |  |  | 53M2 |
    | \% b | Non-linear dielectric properties: Fig. 166.$\xi=-5.5 \cdot 10^{8} \mathrm{~J} \mathrm{C}^{-4} \mathrm{~m}^{5}, \zeta=1.7 \cdot 10^{10} \mathrm{~J} \mathrm{C}^{-6} \mathrm{~m}^{9}$ |  |  |  |  |  | 53M2 |
    | The transition from the bexagonal form to the cubic one is very sluggish and the hexagonal form can be produced by rapid cooling from above $1460^{\circ} \mathrm{C}$. <br> In most papers this Curie point bas been reported to be about $120^{\circ} \mathrm{C}$, but it seems to be about $130^{\circ} \mathrm{C}$ for pure $\mathrm{BaTiO}_{3}$ [65] 2$]$. |  |  |  |  |  |  |  |

    Figuren S. 249 fr.
    II 1 Oxide des Perowskit-Typs
    
    

    Tab. 32. $\mathrm{BaTiO}_{\mathrm{s}}$. Fractional coordinates of atoms in the unit cell of phase III. [57S2]

    |  | $x$ | $y$ | $z$ |
    | :---: | :---: | :---: | :---: |
    | Ba | 0 | 0 | 0 |
    |  | 0 | $\frac{1}{2}$ | 1 |
    | Ti | $\frac{1}{2}$ | 0 | $\frac{1}{2}+{ }^{\frac{1}{2}} 8 z_{T 1}$ |
    | $\mathrm{O}(1)$ | $\frac{1}{2}$ | $\frac{1}{2}$ | ${ }^{2} z_{\text {Tl }}$ |
    |  | 0 | 0 | $\frac{1}{2}+\delta z_{0(1)}$ |
    |  | 0 | $\underline{4}+\frac{\frac{1}{8}}{8}$ | $\delta z_{0(1)}$ |
    |  | $\frac{1}{2}$ | $t+\delta y_{0(2)}$ $3+\delta y_{0}$ | $t+\delta z_{0(2)}$ |
    | O(2) | $\frac{1}{3}$ | $4+\delta y_{0(2)}$ $4-\delta y_{0}(2)$ | ${ }^{3}+\delta z_{0(2)}$ |
    |  | 年 | - $\frac{1}{4}-\delta y_{0(2)}$ 4 | $\underline{1+\delta z_{0(2)}}$ |
    | = | 10 ; | $4{ }^{1}$ | ${ }_{4}+\delta z_{0(2)}$ |

    Tab. 33. $\mathrm{BaTiO}_{3}$. Comparison of atomic shifts in phase III and phase II with respect to different origins. The coordinate of atoms of [55F1] and [57S2] are used for phase II and III, respectively. [57S2]

    |  | Orthorhombic | Tetragonal |
    | :--- | :---: | :---: |
    |  | Ba at (000) |  |
    | $\delta z\left\{\begin{array}{ll}\mathrm{Ti} & +0.06 \AA \\ \mathrm{O}(1) & -0.06 \AA \\ \mathrm{O}(2) & -0.07 \AA \\ \delta y_{\mathrm{O}(2)} & \pm 0.02 \AA\end{array}\right)-0.06 \AA$ |  |  |
    |  | - |  |

    Origin is chosen to give $\delta \delta_{0(2)}=0$
    $\delta z\left\{\begin{array}{l|l|r}\mathrm{Ti} & +0.13 \AA & +0.15 \AA \\ \mathrm{Ba} & +0.07 \AA & +0.09 \AA \\ \mathrm{O}(1) & +0.02 \AA & -0.03 \AA\end{array}\right.$

    Tab. 34. $\mathrm{BaTiO}_{3}$. Fractional coordinates of atoms in the unit cell of hexagonal structure. [48B3]

    | $2 \mathrm{Ba}(1)$ at $(\mathrm{b})$, |  |
    | ---: | :--- |
    | $4 \mathrm{Ba}(2)$ at $(\mathrm{f})$, | $z=0.097$, |
    | $2 \mathrm{Ti}(1)$ at $(\mathrm{a})$, |  |
    | $4 \mathrm{Ti}(2)$ at $(\mathrm{f})$, | $z=0.845$, |
    | $6 \mathrm{O}(1)$ at $(\mathrm{h})$, | $x=0.52$, |
    | $120(2)$ at $(\mathrm{k})$, | $x=0.836, z=0.076$ |

    Tab. 35. $\mathrm{BaTiO}_{\mathbf{a}}$. Interatomic distances of hexagonal structure. [48B3]
    in the $\mathrm{Ti}_{2} \mathrm{O}_{9}$ group

    | $\mathrm{O}(1)-\mathrm{O}(1)=2.49 \AA$ | in the shared |
    | :---: | :---: |
    | $=3.25 \AA$ | in the same layer |
    | $\mathrm{O}(2)-\mathrm{O}(2)=2.91 \AA$ | in the same |
    | $\mathrm{O}(1)-\mathrm{O}(2)=2.91 \AA$ |  |
    | $\mathrm{Ti}(2)-\mathrm{O}(1)=1.96 \AA$ |  |
    | $\mathrm{Ti}(2)-\mathrm{O}(2)=2.02 \mathrm{~A}$ |  |
    | in the TiO, octahedra |  |
    | $\mathrm{O}(2)-\mathrm{O}(2)=2.82 \AA$ | in the same layer. |
    | $\mathrm{O}(2)-\mathrm{O}(2)=2.69 \AA$ | between adjacent |
    | $\mathrm{Ti}(1)-\mathrm{O}(2)=1.95 \AA$ | between adjacent layers. |

    Tab. 36. $\mathrm{BaTiO}_{\mathbf{a}}$. Lattice constants and unit cell volume at various $T$. [51R1]

    | $\begin{gathered} T \\ { }^{\circ} \mathrm{C} \end{gathered}$ | A | $\stackrel{\text { d }}{ }$ | A | $V$ $A^{\text {a }}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | + 20 | 3.9920 | 3.9920 |  |  |
    | + 4 | 3.9910 | 3.9911 | 4.0361 4.0357 | 64.317 64.282 |
    | $\boldsymbol{\Theta}_{\text {III-II }}$ |  |  |  |  |
    | $\begin{array}{r} \\ +\quad 4 \\ \hline 99\end{array}$ | 4.0185 | 3.9860 | 4.0162 |  |
    | 99 | 4.0170 | 3.9750 | 4.0150 | 64.319 64.093 |
    | $\Theta_{\text {IV-III }}$ |  |  |  |  |
    | -99 | 4.0015 | 4.0015 |  |  |
    | -160 | 3.9996 | 3.9996 | 3.9997 | $\begin{aligned} & 64.079 \\ & 63981 \end{aligned}$ |

    Accuracy of measurement below RT was $\pm 0.0007 \AA$.

    Tab. 37. $\mathrm{BaTiO}_{3}$. Lincar thermal expansion coefficients along $a, b$, and $c$ axes. [ $51 R i$ ]

    | $T$ |  |  |  |
    | :---: | :---: | :---: | :---: |
    | ${ }^{\circ} \mathrm{C}$ | $\alpha_{a}$ <br> $10^{-6}{ }^{\circ} \mathrm{C}^{-1}$ | $\alpha_{b}$ <br> $10^{-6}{ }^{\circ} \mathrm{C}^{-1}$ | $\alpha_{c}$ <br> $10-{ }^{\circ} \mathrm{C}-1$ |
    | $+20 \cdots+4$ | 15.7 | 15.7 | 6.2 |
    | $+4 \cdots \pm 99$ | 4.9 | 28.4 | -0.9 |
    | $-99 \cdots-160$ | 7.8 | 7.8 | 8.2 |

    Tab. 38. $\mathrm{BaTiO}_{3}$. Transition heats and transition

    | Transition | $\left\lvert\, \begin{gathered}\Delta Q_{m} \\ \mathrm{cal} \mathrm{mol}^{-1}\end{gathered}\right.$ | $\begin{gathered} \Delta S_{\mathrm{m}} \\ \mathrm{cal}_{\mathrm{mol}}{ }^{-1}{ }^{\circ} \mathrm{K}^{-1} \end{gathered}$ | References |
    | :---: | :---: | :---: | :---: |
    | IV $\rightarrow$ III III $\rightarrow$ II | $8 \pm 2$ 14.3 12 | $\begin{aligned} & 0.04 \\ & 0.07 \\ & 0.06 \end{aligned}$ | $\begin{aligned} & 52 \mathrm{~S} 5 \\ & 52 V 1 \\ & 52 T 1 \end{aligned}$ |
    | III $\rightarrow$ II | $22 \pm 4$ 15.5 16 | 0.076 0.054 0.058 | $\begin{aligned} & 52 \mathrm{~S} 5 \\ & 52 \mathrm{~V} 1 \\ & 52 \mathrm{~T} 1 \end{aligned}$ |
    | II $\rightarrow$ I | 50 $\frac{17}{47}$ 47 | 0.125 0.12 0.12 | $\begin{aligned} & 52 S 5 \\ & 52 \mathrm{V1} \\ & 48 B 1 \end{aligned}$ |

    

    Figuren S. 252 ff.
    II 1 Oxide des Perowskit-Typs
    

    II 1 Perovskite-type oxides
    


    

    INaNoSaShiTo

    Figuren S. 259 ff.
    II 1 Oxide des Perowskit-Typs
    Tab. 42. $\mathrm{BaTiO}_{3}, \mathrm{SrTiO}_{3}, \mathrm{TiO}_{2}, \mathrm{KTaO}_{3}$. Dispersion parameters calculated from the Kramers-Kronig

    | $x^{\prime}=x_{\infty}+\sum_{i} 4 \pi \varrho_{i} \nu^{2} \frac{\nu_{i}^{2}-\nu^{2}}{\left(\nu_{i}^{2}-\nu^{2}\right)^{2}+\gamma_{i}^{2} \nu^{2}}$ |  |  | $x^{\prime \prime}=\sum_{i} 4 \pi e_{i} \nu_{i}^{2} \frac{\gamma_{i} \nu}{\left(\nu_{i}^{2}-\nu^{2}\right)^{2}+\gamma_{i}^{2} \nu^{2}}$ |  |
    | :---: | :---: | :---: | :---: | :---: |
    | $\lambda_{1} ; \nu_{1}$ | Ordinary ray | $\mathrm{SrTiO}_{3}$ | $\begin{gathered} \mathrm{TiO}_{\mathbf{2}} \\ \text { Ordinary ray } \end{gathered}$ | $\mathrm{KTaO}_{3}$ |
    | $\gamma_{1} / \nu_{1}$ | $0.059 \pm 0.002$ |  |  |  |
    | $4 \pi e_{1}$ | $0.60 \pm 0.03$ | $\begin{gathered} 0.049 \pm 0.002 \\ 1.56+0.06 \end{gathered}$ | $0.044 \pm 0.004$ | $\begin{aligned} & 18.2 \pm 0.2 ; 549 \pm 6 \\ & 0.043 \pm 0.009 \end{aligned}$ |
    | $\lambda_{2} ; \nu_{2}$ | 54.8; 183 |  |  | $2.4 \pm 0.5$ |
    | $\gamma_{2} / \nu_{2}$ $4 \pi \rho_{8}$ | $\begin{aligned} & 0.030 \\ & 2.2 \pm 0.4\end{aligned}$ | $\begin{aligned} & 3 \pm 0.5 ; 178 \pm 2.0 \\ & 0.039 \pm 0.004 \end{aligned}$ | $25.8 ; 388$ $0.058 \pm 0.006$ | 49.8; 200.8 |
    | $\lambda_{3} ; \nu_{3}$ | 296 + 8; 33.8 | $3.6 \pm 0.4$ | $1.08 \pm 0.1$ | $\begin{gathered} 0.055 \pm 0.011 \\ 7.6 \pm 1.5 \end{gathered}$ |
    | $\gamma_{3} / \nu_{s}$ $4 \pi \rho_{3}$ | $\begin{gathered} \pm \\ 2.5 \\ \hline \end{gathered} \pm 0.8$ | $\begin{gathered} 114.3 \pm 1.1 ; 87.7 \pm 0.9 \\ 0.5 \pm 0.1 \end{gathered}$ | $54.8 \pm 0.5 ; 183 \pm 1.8$ | 107.5 $\pm 2.0 ; 93.0$ |
    |  |  | $311 \pm 62$ | $81.5 \pm 4.1$ | $\begin{aligned} & 0.5 \pm 0.1 \\ & 163 \pm 33 \end{aligned}$ |

    Resonance wavelength $\lambda_{i}$ in $10^{-6} \mathrm{~m}$; resonance frequency $\nu_{i}$ in ${ }^{\text {in }}$. Tab. 43. $\mathrm{BaTiO}_{3}, \mathrm{SrTiO}_{3}, \mathrm{TiO}_{2}$. $\begin{aligned} & \text { Energies of fundamental absorption edges (in } \mathrm{eV} \text { ) } \\ & \text { at } \mathrm{RT} \text {. } 655 \mathrm{C} 2]\end{aligned}$

    |  | $E_{0}$ | $A_{1}$ | $A_{2}$ | $A_{3}$ | $B_{1}$ | $B_{2}$ | $C_{1}$ | $C_{3}$ | $D$ | $E$ |  |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{SrTiO}_{3}$ | 3.2 | 4.00 | 4.86 | 5.5 | 6.52 | 7.4 | 9.2 | 9.9 | 12.5 | 15.3 | eV |
    | $\mathrm{BaTiO}_{3}$ | 3.2 | 3.91 | 4.85 |  | 6.10 | 7.25 | 10.3 | 11.8 | 12.8 | 15 | eV |
    | $\mathrm{TiO}_{2}$ |  |  |  |  |  |  |  |  |  |  |  |
    | $\left(E_{\perp}\right)$ |  | 3.97 | 5.52 |  | 6.50 | 7.64 | 8.53 | 9.24 | 11 | 14.1 | eV |

    Tab. 44. $\mathrm{BaTiO}_{3}, \mathrm{SrTiO}_{3}, \mathrm{KTaO}_{3}, \mathrm{KTa}_{0.25} \mathrm{Nb}_{0.65} \mathrm{O}_{3}$ (KTN), $\mathrm{TiO}_{8}$. Band gap energies $\hbar \omega_{\mathrm{g}}$ (in eV).
    [67B1]. See Fig. 46, 103, 216, 430
    [67B1]. See Fig. 46, 103, 216, 430. $F_{1}, F_{2}$ : different dispersion functions $F_{i}\left(\omega / \omega_{\mathrm{g}}\right)$, see [67B1]
    

    Tab. 45. $\mathrm{BaTiO}_{3}$ (reduced or doped). List of reference papers on PTC anomaly

    | Materials (dopants) | References | Materials <br> (dopants) | References |
    | :---: | :---: | :---: | :---: |
    | Single crystal $\mathrm{BaTiO}_{3}$ : reduced |  | Ceramics |  |
    | $\mathrm{BaOH}_{3}$. reduced | 57H1, 63K3, 6414. | $\mathrm{BaTiO}_{3}$ |  |
    | $\mathrm{BaTiO}_{3}: \mathrm{Nb}$ | $\begin{aligned} & 64 G 4,65 M 1,65 U 2 \\ & 64 B 11 \end{aligned}$ | $\mathrm{BaTiO}_{3}$ : La | $\begin{aligned} & 63 \mathrm{HF}, 65 \mathrm{U} 2 \\ & 59 \mathrm{Si}, 63 \mathrm{~T}, 64 \mathrm{~J} 1, \end{aligned}$ |
    |  |  | $\mathrm{BaTiO}_{3}$ : Ce | $65 \mathrm{M1}$ $63 \mathrm{T3}$ |
    |  |  | $\mathrm{BaTiO}_{3}$ : Sm | ${ }^{63153}$ |
    |  |  | BaTio ${ }_{3}$ : Gd | $65 U 2$ |
    |  |  | $\mathrm{BaTiO}_{3}$ : Sb | 65A3 |
    |  |  |  | 61H5, 65A3 |
    |  |  |  | 59S1, 61T1, 63T3 |
    |  |  | $\mathrm{BaTiO}_{\mathbf{a}}$ : $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Sn}$ | 6151 |
    |  |  | $\mathrm{BaTiO}_{3}: \mathrm{Sr}, \mathrm{Bi}$ | $63 \mathrm{T3}$ |
    |  |  | $\mathrm{BaTiO}_{3}: \mathrm{Mg}, \mathrm{Ce}$ | 6151 |
    |  |  | $\mathrm{BaTiO}_{3}$ : $\mathrm{Zr}, \mathrm{Ce}$ | 6151 |
    |  |  | $\mathrm{BaTiO}_{3}$ : $\mathrm{Si}, \mathrm{Ce}$ | 6151 |

    Tab. 47. $\mathrm{PbTiO}_{\mathbf{3}}$. Positional parameters of atoms at RT. [56S5]

    |  | $x$ | $y$ | $z$ |
    | :--- | :--- | :--- | :--- |
    | Pb | 0 | 0 | 0 |
    | Ti | $\frac{1}{2}$ | $\frac{1}{2}$ | 0.540 |
    | $\mathrm{O}(1)$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 0.112 |
    | $\mathrm{O}(2)$ | $\frac{1}{2}$ | 0 | 0.612 |
    |  | 0 | $\frac{1}{2}$ | 0.612 |

    Tab. 48. $\mathrm{PbTiO}_{3}$. Bond lengths in $\AA$ at RT (phase II) and at $490^{\circ} \mathrm{C}$ (phase I) [56S5]. $\mathrm{O}(1)_{+}$ represents the $O(1)$ ion closer to, $O(1)_{-}$that further away from Ti . Similarly $\mathrm{O}(2)_{+}$is closer to Pb

    | phase | II (at RT) | I (at $490{ }^{\circ} \mathrm{C}$ ) |
    | :--- | :---: | :---: |
    | $\mathrm{Ti}-\mathrm{O}(1)_{+}$ | 1.78 | 1.89 |
    | $\mathrm{Ti}-\mathrm{O}(1)_{-}$ | 2.38 |  |
    | $\mathrm{Ti-O}(2)^{\prime}$ | 1.98 |  |
    | $\mathrm{~Pb}-\mathrm{O}(1)$ | 2.80 | 2.80 |
    | $\mathrm{Pb-O}()_{+}$ | 2.53 |  |
    | $\mathrm{~Pb}-\mathrm{O}(2)_{-}$ | 3.20 |  |

    学 Phase transition II-III was reported to occur only if the cooling rate is extremely slow. [55K 3]

    Figuren S. 270 ff .
    II 1 Oxide des Perowskit-Typs
    Tab. 49. $\mathrm{PbTiO}_{3}$ (modified ceramics). Electromechan[68U1]
    

    Tab. 51. $\mathrm{PbTiO}_{3}$. g-factors at RT. [64G1]
    Tab. 50. $\mathrm{PbTiO}_{3}$. Wave numbers in $10^{2} \mathrm{~m}^{-1}$ and symmetries of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4]

    | Paramagnetic <br> center | Site | $S$ | $\mathscr{H}$ | $v$ <br> GHz | $T$ <br> ${ }^{\circ} \mathrm{K}$ | $g$-factor |  | |
|---|---|---|---|---|---|---|---|---|
    | $\mathrm{Fe}^{3+}$ | $\mathrm{Ti}^{4+}$ | $1 / 2^{*}$ | (2) | 8.8 | RT | $2.009 \pm 0.005$ | $g_{\\|}$ |

    The spectrum up to $300^{\circ} \mathrm{C}$ and down to $-120^{\circ} \mathrm{C}$ did not show any fundamental change.
    Nr. 1A-10 $\mathrm{CaZrO}_{3}$, Calcium zirconate

    | 1 | A few physical properties of $\mathrm{CaZrO}_{3}$ were studied in comparison with those of some perovskite-type ferroelectrics. <br> The crystal was reported to be orthorhombic with the cell dimensions $a=5.587 \mathrm{~A}$, $b=8.008 \AA, c=5.758 \AA$ at RT. <br> Linear thermal expansion: $\alpha=8.55 \cdot 10^{-6}{ }^{\circ} \mathrm{C}-1$ between $23^{\circ} \mathrm{C}$ and $223^{\circ} \mathrm{C}$; $\alpha=9.53 \cdot 10^{-6}{ }^{\circ} \mathrm{C}-1$ between $223^{\circ} \mathrm{C}$ and $333^{\circ} \mathrm{C}$ for ceramics of bulk density ${ }^{\circ} \mathrm{C}$ and $\varrho=4.95 \cdot 10^{3} \mathrm{~kg} \mathrm{~m}^{\circ} \mathrm{C}$ |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 4 |  |  |  |  | $\frac{55 C 1}{65 B 10}$ |
    | 9 | Infrared absorption: Fig. 289, 290; Tab. 52. <br> Tab. 52. $\mathrm{CaZrO}_{3}$. Wave numbers in $10^{2} \mathrm{~m}^{-1}$ and symmetry of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4] |  |  |  | 6510 |
    |  |  |  |  |  |  |
    |  | $\begin{gathered} \tilde{\nu}_{1} \\ (\mathrm{Zr} \text {-O stretch }) \\ \hline \end{gathered}$ | $\left(\mathrm{Zr}-\mathrm{O}_{3} \text { torsion }\right)$ | $\begin{gathered} \tilde{\nu}_{3} \\ \text { (O-Zr-O bend) } \end{gathered}$ | $\begin{gathered} \tilde{\nu}_{4} \\ \text { (cation-ZrO } \\ \text { lattice mode) } \\ \hline \end{gathered}$ |  |
    |  | $515\left(B_{1}, B_{2}, A_{1}\right)$ | $\underset{(370)}{340}\left(B_{1}, B_{2}, A_{2}\right)$ | ${ }_{186}^{228}\left(B_{1}, B_{2}, A_{1}\right)$ | ${ }_{96}^{153}\left(B_{1}, B_{2}, A_{1}\right)$ |  |

    Nr. 1

    Nr. 1A-11 $\mathbf{S t Z r O}_{3}$, Strontium zirconate
    

    Nr. 1A-12 $\mathrm{BaZrO}_{3}$, Barium zirconate
    1 A few properties of $\mathrm{BaZrO}_{3}$ were reported in comparison with those of some perovskitetype ferroelectrics. The crystal was reported to be cubic with the cell dimensions $a=4.192 \AA$ at RT
    4 Linear thermal expansion: $\alpha=5.64 \cdot 10^{-6}{ }^{\circ} \mathrm{C}-1$ between $23^{\circ} \mathrm{C}$ and $214^{\circ} \mathrm{C}$;
    $\alpha=6.54 \cdot 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$ between $214^{\circ} \mathrm{C}$ and $324^{\circ} \mathrm{C}$ for ceramics of bulk density

    ## Nr. 1A-13 $\mathbf{P b Z r O}_{\mathbf{3}}$, Lead zirconate

    Dielectric anomaly of $\mathrm{PbZrO}_{3}$ associated with a phase transition was reported independently by Robert and by Smolenskir in 1950. Antiparallel ionic shifts on the (001) projection of crystal structure were found by Sawaguchi et al. in 1951. In the

    50R1,50S7
    51S3
    51S8
    
    $a=5.87 \AA, b=11.74 \AA, c=8.20 \AA$ at RT (in phase II). The cubic unit cell in phase I becomes pseudo-tetragonal in phase II. The pseudo-tetragonal cell constants $a^{\prime}$ and $c^{\prime}$ are related with the orthorhombic cell constants $a, b$ and $c: a=\sqrt{2} a^{\prime}$, $b=2 \sqrt{2} a^{\prime}$ and $c=2 c^{\prime}$, where $a^{\prime}=4.15 \AA, c^{\prime}=4.10 \AA$ at RT. Relation between the pseudo-tetragonal and orthorhombic cells: Fig. 295.
    a) $50 \mathrm{R1}$

    Figuren S. 271 ff.
    II 1 Oxide des Perowskit-Typs
    

    Tab. 55. $\mathrm{PbZrO}_{3}$ (ceramics). Atomic coordinates and shifts from ideal perovskite positions at RT .
    [57J4]

    | Atom | $x$ | $y$ | $z$ | Wyckoff <br> notation | Total <br> shift <br> $\AA$ |
    | :--- | :--- | :--- | :--- | :--- | :--- |
    | $\mathrm{Pb}^{\prime}$ | 0.706 | 0.127 | 0 | $4 c$ | 0.26 |
    | $\mathrm{~Pb}^{\prime \prime}$ | 0.706 | 0.127 | 0.500 | $4 c$ | 0.26 |
    | $\mathrm{Zr}^{\prime}$ | 0.243 | 0.124 | 0.250 | $4 c$ | 0.04 |
    | $\mathrm{Zr}^{\prime \prime}$ | 0.243 | 0.124 | 0.250 | $4 c$ | 0.04 |
    | $\mathrm{O}(1)^{\prime}{ }^{\prime}$ | 0.270 | 0.150 | 0.980 | $4 c$ | 0.35 |
    | $\mathrm{O}(1)^{\prime \prime}$ | 0.270 | 0.100 | 0.480 | $4 c$ | 0.35 |
    | $\mathrm{O}(2)^{\prime}$ | 0.040 | 0.270 | 0.300 | $4 c$ | 0.53 |
    | $\mathrm{O}(2)^{\prime \prime}$ | 0.040 | 0.270 | 0.750 | $4 c$ | 0.34 |
    | $\mathrm{O}(3)^{\prime}$ | 0 | 0.500 | 0.250 | $2 b$ | 0 |
    | $\mathrm{O}(3)^{\prime \prime}$ | 0 | 0.500 | 0.800 | $2 b$ | 0.41 |
    | $\mathrm{O}(4)^{\prime}$ | 0 | 0 | 0.250 | $2 a$ | 0 |
    | $\mathrm{O}(4)^{\prime \prime}$ | 0 | 0 | 0.800 | $2 a$ | 0.41 |
    |  |  |  |  |  |  |

    Tab. 56. $\mathrm{PbZrO}_{3}$. Wave numbers in $10^{2} \mathrm{~m}^{-1}$ and symmetries of infrared modes of lattice vibration obtained from Kramers-Kronig analysis of the reflectance data at RT. [65P4]

    | $\tilde{\nu}_{1}$ <br> $(\mathrm{Zr}-\mathrm{O}$ stretch $)$ | $\tilde{\boldsymbol{\nu}}_{2}$ <br> $\left(\mathrm{Zr}-\mathrm{O}_{3}\right.$ torsion $)$ | $\tilde{\nu}_{3}$ <br> (O-Zr-O bend) | $\tilde{\boldsymbol{v}}_{4}$ <br> (cation-ZrO <br> lattice mode) |
    | :---: | :---: | :---: | :---: |
    | $508\left(E_{u}, A_{1}\right)$ | $290\left(B_{1}, E_{u}\right)$ | $221\left(E_{u}, A_{1}\right)$ | $80\left(E_{u}, A_{1}\right)$ |

    

    ## $7 J 4$

    ## [57J4]

    \begin{tabular}{|c|c|c|c|c|c|c|}
    \hline 4 \& \multicolumn{5}{|l|}{Thermal expansion: Fig. 314. Cubic thermal expansion coefficients: below \(158{ }^{\circ} \mathrm{C}: 20 \cdot 10^{-6} \mathrm{deg}^{-1}\); above \(215^{\circ} \mathrm{C}: 27^{\cdot} \cdot 10^{-6} \mathrm{deg}^{-1}\).} \& 53S3 \\
    \hline 5a \& \multicolumn{5}{|l|}{Dielectric constant: Fig. 315. \(C=9.5 \cdot 10^{\circ}{ }^{\circ} \mathrm{K}\) (ceramics).} \& 53S3 \\
    \hline \multicolumn{7}{|l|}{Nr. 1A-15 \(\mathrm{BiFeO}_{3}\), Bismuth ferrite} \\
    \hline \multirow[t]{6}{*}{1a} \& \multicolumn{5}{|l|}{\begin{tabular}{l}
    In \(1960^{\circ}\) ) it was pointed out on the basis of \(x\)-ray studies of the solid solution, \(\mathrm{PbTiO}_{3}-\mathrm{BiFeO}_{3}\), that \(\mathrm{BiFeO}_{3}\) could have a ferroelectric Curie point at high temperatures. The Curie point was estimated to be about \(850^{\circ} \mathrm{C}\) from studies of the same solid solution \({ }^{\mathrm{D}}\) ). \\
    Disagreement, however, exists among many experimental data reported so far, therefore reservation is necessary in deciding whether \(\mathrm{BiFeO}_{8}\) is ferroelectric or antiferroelectric. \\
    Antiferromagnetic anomaly in \(\mathrm{BiFeO}_{3}\) was observed by direct magnetic measurements at about \(370^{\circ} \mathrm{C}\) ).
    \end{tabular}} \& \multirow[t]{5}{*}{\begin{tabular}{l}
    a) \(60 \mathrm{F9} 960 \mathrm{~V} 2\) \\
    \({ }^{\text {b }}\) 61F3, \(62 F 8\)
    \[
    \begin{aligned}
    \& \left.{ }^{c}\right) 62 S 10 \\
    \& 63 R 1,6512
    \end{aligned}
    \]
    \end{tabular}} \\
    \hline \& \multirow[t]{2}{*}{phase} \& IV \& III \& II \& I \& \\
    \hline \& \& (A) or (F), \& \[
    \begin{gathered}
    \text { (A) or (F), } \\
    P_{\text {magn }}
    \end{gathered}
    \] \& \[
    \begin{gathered}
    \text { (A) or (F), } \\
    P_{\text {magn }}
    \end{gathered}
    \] \& \[
    \begin{gathered}
    (\mathrm{P}), \\
    \mathbf{P}_{\text {magn }}
    \end{gathered}
    \] \& \\
    \hline \& crystal system \& rhombohedral \& rhombohedral \& nombohedral \& \[
    \begin{gathered}
    \text { cubic } \\
    \text { (possibly) }
    \end{gathered}
    \] \& \\
    \hline \& space group \& R3m-C \({ }_{\text {sv* }}^{\text {5** }}\) \& \& \& \& \\
    \hline \& \multicolumn{5}{|l|}{Further references are available on unit cell parameters.} \& \[
    \begin{aligned}
    \& 64 \mathrm{~Tb} \\
    \& 60 \mathrm{~V} 2,60 \mathrm{~F} 6, \\
    \& 6022
    \end{aligned}
    \] \\
    \hline 3 \& \multicolumn{5}{|l|}{\begin{tabular}{l}
    Crystal structure: From the x-ray diffraction studies, \(\mathrm{BiFeO}_{3}\) was found to belong to one of the five space groups: R \(3, R \overline{3}, R 32, R 3 m\) and \(R \overline{3} m\). \\
    Neutron diffraction studies suggested that \(\mathrm{BiFeO}_{3}\) belongs to the non-centrosymmetric space group R3m. The crystal structure can be regarded as consisting of alternating \(\mathrm{FeO}_{3}\) and \(\mathrm{BiO}_{3}\) trigonal pyramids: Fig. 316; Tab. 57. \\
    According to the electron diffraction study, \(\mathrm{BiFeO}_{3}\) belongs to the non-centrosymmetric space group R3m at RT. Atomic coordinates: Tab. 58. \\
    The space group R3m was, however, rejected by Smolenskil et al., because it does not satisfy the conditions for the existence of weak ferromagnetism. \\
    The magnetic structure of \(\mathrm{BiFeO}_{3}\) was proved to be G-type by the neutron diffraction experiments. Fig. 317, 318.
    \end{tabular}} \& 6022
    63 K 5

    6476

    $64 S 9$
    63 K 5 <br>
    \hline 4 \& \multicolumn{5}{|l|}{Unit cell parameters: Fig. 319, 320. See also} \& 66R8, 64T5 <br>

    \hline 52 \& \multicolumn{5}{|l|}{| Dielectric constant: Fig. 321, 322, 323. |
    | :--- |
    | No reliable data on the dielectric constant in the high temperature region near $850^{\circ} \mathrm{C}$ are available. |} \& <br>


    \hline 11 \& \multicolumn{5}{|l|}{| Magnetic susceptibility: Fig. 324. |
    | :--- |
    | At RT, no spontaneous magnetic moment was observed in the fields up to 22 kOe . |} \& <br>

    \hline 12c \& \multicolumn{5}{|l|}{Mössbauer effect: Fig. 325, 326.} \& <br>
    \hline 17 \& \multicolumn{5}{|l|}{Calculations of the internal electric fields and their gradients in $\mathrm{BiFeO}_{3}$ crystals were made on the basis of an ionic model.} \& 6777 <br>
    \hline
    \end{tabular}

    Tab. 57. $\mathrm{BiFeO}_{3}$. Values of the interatomic distances $[\mathrm{A}]$. [63K5]. See Fig. 316. See also [64T6]

    |  | $520{ }^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
    | :--- | :---: | :---: |
    | $\mathrm{Bi-Fe}(A)$ | 3.841 | 3.857 |
    | $\mathrm{Bi-Fe}(B)$ | 3.006 | 2.994 |
    | $\mathrm{BiO}(C)$ | 2.903 | 2.907 |
    | $\mathrm{Bi-O}(D)$ | 2.680 | 2.693 |
    | $\mathrm{Fe}-\mathrm{O}(F)$ | 2.233 | 2.214 |
    | $\mathrm{Fe}-\mathrm{O}(G)$ | 1.754 | 1.774 |
    | $\mathrm{O}-\mathrm{O}(H)$ | 2.841 | 2.859 |
    | $\mathrm{O}-\mathrm{O}(K)$ | 2.800 | 2.800 |
    | $\mathrm{O}-\mathrm{O}(L)$ | 2.680 | 2.724 |

    Tab. 58. $\mathrm{BiFeO}_{3}$. Atomic coordinates. [64T6]

    | Atom | $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ |
    | :--- | ---: | ---: | ---: |
    | Bi | 0.0337 | 0.0337 | 0.0337 |
    | Fe | 0.5000 | 0.5000 | 0.5000 |
    | $\mathrm{O}(1)$ | -0.0280 | 0.5000 | 0.5000 |
    | $\mathrm{O}(2)$ | 0.5000 | -0.0280 | 0.5000 |
    | $\mathrm{O}(3)$ | 0.5000 | 0.5000 | -0.0280 |

    * This state is presumably weak ferromagnetic. [66Y2]
    ** See subsection 3.


    ## II 1 Oxide des Perowskit-Typs

    

    | 1b | phase | III | II | I | 6215 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | state | F | (A) | P |  |
    |  | crystal system | rhombohedral | pseudo-cubic | cubic |  |
    |  | space group |  |  | Pm3m-O ${ }_{\text {b }}$ |  |
    |  | $a=(3.891 \pm 0.002) \AA, \alpha=89^{\circ} 36^{\prime} \pm 3^{\prime}$ at RT. |  |  |  | a)60S6 |
    | 3 | Crystal structure: Disordered perovskite. |  |  |  | 6215 |
    | 4 | Thermal expansion: Fig. 337. |  |  |  |  |
    | 5 a | Spontaneous polarization and coercive field: $P_{s} \approx 8.0 \cdot 10^{-2} \mathrm{C} \mathrm{m}^{-2}$; $E_{\mathrm{c}} \approx 14 \cdot 10^{2} \mathrm{kV} \mathrm{m}^{-1}$ at $116^{\circ} \mathrm{C}$. |  |  |  | 6056 |

    Nr. ${ }^{1 \mathrm{~B}} \mathbf{2 - i} \mathbf{P b}\left(\mathbf{M g}_{1 / 2} \mathbf{W}_{1 / 2}\right) \mathrm{O}_{3}$

    | 1a | Antiferroelectric properties of $\mathrm{Pb}\left(\mathrm{Mg}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ were discovered by Smolenskir et al. in 1959. |  |  | 5957 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | phase | II | I |  |
    |  | state | A | P |  |
    |  | crystal system | orthorhombic | cubic | $62 Z 1$ |
    |  | space group | C222 ${ }_{1}$ - ${ }_{2}^{5}$ |  |  |
    |  | $\begin{aligned} & \Theta \\ & a=22.74 \AA, b \\ & \text { Orthorhombic } \end{aligned}$ | $=22.79 \AA, c=$ <br> nit cell: see Fig | ${ }^{\circ} \mathrm{C}$ <br> A at RT. |  |
    | 2a | Crystal growth: Crystal growth of $\mathrm{Pb}\left(\mathrm{Mg}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ was reported by Myi'nikova. |  |  | 60M2 |
    | 3 | Crystal structure: $\mathrm{Pb}\left(\mathrm{Mg}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ has the structure of perovskite type. Fig. 339. $Z=64$ (molecular unit: $\mathrm{Pb}_{2} \mathrm{MgWO}_{8}$ ). |  |  | $62 Z 1$ |
    | 4 | Lattice distortion associated with the phase transition. Thermal expansion: Fig. 340. |  |  | 6221. |
    | 5a | Dielectric constants: Fig. 341, 342, 343. $\mathrm{d} \Theta_{\mathrm{a}} / \mathrm{d} p=-5.84 \cdot 10^{8}{ }^{\circ} \mathrm{K} \mathrm{N}^{-1} \mathrm{~m}^{2}$. |  |  |  |
    | 6 | Specific heat: Fig. 344. <br> Transition heat $(\mathrm{II} \rightarrow \mathrm{I}): \Delta Q_{\mathrm{m}}=276 \mathrm{cal} \mathrm{mol}^{-1}$. |  |  | $66 S 28$ |
    | 8 a | Elastic compliance: Fig. 345. <br> Ultrasound absorption: Fig. 346, 347. |  |  |  |

    Nr. $1 \mathrm{~B} 2-\mathrm{ii} \mathrm{Pb}\left(\mathrm{Cd}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$

    | ia | Synthesis of $\mathrm{Pb}\left(\mathrm{Cd}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ was reported by Belyaev et al: in 1963. | $63 \mathrm{B3}$ |
    | ---: | :--- | :--- | :--- |

    
    $a=(4.156 \pm 0.002) \AA, b=(4.074 \pm 0.002) \AA, \beta=91^{\circ} 9^{\prime} \pm 5^{\prime}$ at RT.
    $a=\left(4.156 \pm 0.002{ }^{\circ} \mathrm{C}\right.$, in addition to the transition at $400^{\circ} \mathrm{C}$.
    Crystal structure: Superstructure lines, indicating ordered location of the octahedral voids of the perovskite lattice, were observed.
    Lattice distortion: Fig. 348, 349.
    Dielectric constant: Fig. 350.

    Figuren S. 280 ff.
    II 1 Oxide des Perowskit-Typs

    Nr. 1B2-iv $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$
    

    Nr. ${ }^{1 B 2-v} \mathbf{P b}\left(\mathbf{M n}_{1 / 2} \mathbf{R e}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$
    

    | 4 | Lattice distortion: Fig. 359. |
    | :---: | :---: |
    | 10 | Electrical conductivity: $\sigma=1 \cdot 10^{-1} \Omega^{-1} \mathrm{~m}^{-1}$. |
    | 11 | Magnetic susceptibility and magnetic moment: Fig. 360. <br> The linear temperature dependence of $\chi_{\operatorname{maga}}^{-1}$ with a positive value of $\Theta_{\mathrm{pmagn}}=85^{\circ} \mathrm{K}$, and the appearing of the spontaneous moment at $103^{\circ} \mathrm{K}$, may indicate the presence of ferromagnetic properties in this compound, which is in agreement with the positive sign of the indirect exchange interaction proposed by Goodenough for $\mathbf{M n}^{2+}$ and $\mathrm{Re}^{6+}$ ions. However, the magnitudes of the calculated theoretical spontaneous moments agree with the experimental values only on the assumption of an antiferromagnetic interaction between ions distributed in an ordered fashion over the octahedral vacancies. |


    | $65 R 5$ |
    | :--- |
    | $65 R 5$ |

    Nr. 1B3-i $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$
    

    Nr. ${ }^{1 B 3-i i} \mathbf{P b}\left(\mathbf{M n}_{1 / 2} \mathbf{N b}_{\mathbf{1} / 2}\right) \mathrm{O}_{\mathbf{3}}$
    1a A synthesis of $\mathrm{Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ with perovskite structure was reported by VenevtSEV et al.

    ```
 64V3
    ```

    Nr. $\mathbf{1 B 3 - i i i ~}^{\mathrm{Pb}}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$

    | $\left.\begin{array}{r} 1 \mathrm{a} \\ \mathrm{~b} \end{array} \right\rvert\,$ | Ferroelectricity in $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ was discovered by Smolenskir et al. in 1958. phase $\mid$ III $\mid$ II $\mid$ I |  |  |  | $\begin{aligned} & 58.54 \\ & 62 B 7 \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | state | F, Amagn | F, $P_{\text {magn }}$ | P, $\mathrm{P}_{\text {magn }}$ |  |
    |  | crystal system | rhombohedral | rhombohedral | cubic | 64S8 |
    |  | space group |  |  | Pm3m- $\mathrm{O}_{\mathrm{h}}^{1}$ |  |
    |  | $\begin{aligned} & \Theta \\ & a=4.014 \AA, \alpha \end{aligned}$ | $\begin{array}{r} 14 \\ =89.92^{\circ} \text { at } \mathrm{RT} . \end{array}$ |  | ${ }^{\circ} \mathrm{K}$ | $62 B 10$ |
    | 2a | Crystal growth: Flux method with PbO . |  |  |  | $62 B 7$ |
    | 3 | Crystal structure: Disordered perovskite; X-ray studies have not shown any ionic ordering in the octahedral sites of perovskite structure. The magnetic peak was found in the neutron diffraction experiments at $78{ }^{\circ} \mathrm{K}$. The effective magnetic moment of the $\mathrm{Fe}^{3+}$ ion was found to be $(0.80 \pm 0.16) \mu_{\mathrm{B}}$ at $78{ }^{\circ} \mathrm{K}$ from the calculation of the intensity of the (111) reflection, which is about $90 \%$ of the magnetic moment at $0{ }^{\circ} \mathrm{K}$. Fig. 362. |  |  |  | $\begin{aligned} & 64 S 8 \\ & 65 D 6 \end{aligned}$ |
    | 5a | Dielectric constant: Fig. 363. |  |  |  |  |
    | 9a | Optical absorption: Fig. 364. |  |  |  |  |
    | 11 | Magnetic susceptibility: Fig. 365.$\mu_{\mathrm{eff}}=5.4 \mu_{\mathrm{B}}$ |  |  |  | $62 B 7$ |
    | 12 b $c$ | ESR: Fig. 366. <br> Mössbauer effect: Fig. 367, 368. <br> The quadrupile splitting $\Delta E_{\mathrm{qu}}=(0.37 \pm 0.02) \mathrm{mm} \mathrm{sec}^{-1}$, the isomer shift $\delta=(0.52 \pm 0.02) \mathrm{mm} \mathrm{sec}^{-1}$, corresponding to trivalent iron (at $20^{\circ} \mathrm{C}$ ). |  |  |  | $66 S 22$ |
    | Nomura |  |  |  |  |  |

    Figuren S. 283
    II 1 Oxide des Perowskit-Typs
    

    | 1a <br> b | Dielectric anomaly in $\operatorname{Pb}\left(\mathrm{In}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ was found by Kupriyanov and Fesenko in 1965. |  |  | 65 K 9 |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |
    |  | state | (F) | P |  |
    |  | crystal systerm | monoclinic (possibly) | cubic | 65 K 9 |
    |  | $\begin{aligned} & \Theta \\ & a=4.11 \AA \text { at } \mathrm{R} \end{aligned}$ |  | ${ }^{\circ} \mathrm{C}$ |  |
    | 5a | Dielectric constant: Fig. 369. |  |  |  |

    Nr. ${ }^{1 B 3}$-vii $\mathbf{P b}\left(\mathbf{Y b}_{1 / 2} \mathbf{N b}_{1 / 2}\right) \mathrm{O}_{3}$
    
    

    II 1 Perovskite-type oxides
    Figures p. 284 ff.
    

    | 1b | phase | II | I |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | state | (A) | P |  |
    |  | crystal system | monoclinic | cubic |  |
    |  | $\begin{aligned} & \Theta \\ & a=4.152 \AA, b \end{aligned}$ | $4.093 \AA, \beta=$ |  | 65 K 9 |
    | 4 | Thermal expansion: Fig. 374. |  |  |  |
    | 5 a | Dielectric constant: Fig. 375. |  |  |  |
    | Nr. 1B3-x $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ |  |  |  |  |
    | 1a$\mathbf{b}$ | Ferroelectricity in $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ was discussed by Smolenskil et al. in 1959. |  |  | 5959 |
    |  | phase | II | I |  |
    |  | state | F | P | 5959 |
    |  | crystal system | tetragonala) (possibly) | cubic | a) 5973 |
    |  | $\begin{aligned} & \Theta \\ & a=(4.072 \pm \end{aligned}$ | 1) $\mathrm{A}, c=(4$ | $\begin{array}{r} { }^{\circ} \mathrm{C} \\ \pm 0.001) \end{array}$ |  |
    | 3 | Crystal structure: The large number of superstructure lines and their great intensity in $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ indicates that the degree of ordering of $\mathrm{Sc}^{3+}$ and $\mathrm{Ta}^{5+}$ ions is greater than in $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$. See 1B3-i-3. |  |  | 5913 |
    | 5 a | Dielectric constant: Fig. 376. |  |  |  |

    Nr. ${ }^{1 B 3-x i ~} \mathrm{~Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$
    1a $\mathrm{Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ with perovskite structure was synthesized by the addition of $5 \mathrm{~mol} \% \mathrm{SrO}$.

    Nr. ${ }^{1 B 3-x i i} \operatorname{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$

    | 1a | Ferroelectricity in $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ was discovered by Smolenskil et al. in 1959. |  |  |  | 5957 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | phase | III | II | I |  |
    |  | state | $F, A_{\text {magn }}$ | F, $\mathrm{P}_{\text {magn }}$ | $\mathrm{P}, \mathrm{P}_{\text {magn }}$ |  |
    |  | crystal system | rhombohedral | rhombohedral ${ }^{\text {a }}$ | cubic | 68 N 1 a) 65 S 17 |
    |  | space group |  |  | Pm3m-O ${ }_{\text {h }}$ |  |
    |  |  |  |  |  |  |
    |  |  |  |  |  |  |
    | 2 a | Crystal growth: Flux method with PbO . When the soak temperature is higher than $1200^{\circ} \mathrm{C}$, crystals are obtained having both pyrochloride and perovskite structure. |  |  |  | 68N1 |
    | 3 | Crystal structure: Disordered perovskite. |  |  |  | 65517 |
    | 4 | phase ${ }^{\text {a }}$ lattice constants |  |  |  |  |
    |  | I |  |  |  |  |
    |  | II $\quad$$a=(4.006 \pm 0.001) \AA$ at $90^{\circ} \mathrm{K}$ <br> $\alpha=89.89^{\circ} \pm 0.02^{\circ}$ |  |  |  | 68N1 |
    | $5 a$ | Dielectric constant: Fig. 377, 378. <br> Spontaneous polarization: Fig. 379. |  |  |  |  |
    | 11 | Magnetic susceptibility: Fig. 380. $\mu_{\mathrm{eff}}=5.92 \mu_{\mathrm{B}} ; \Theta_{\mathrm{pmagn}}=-370^{\circ} \mathrm{K}$. |  |  |  | $68 \mathrm{N1}$ |
    |  | Nomura |  |  |  |  |

    Figuren S. 285
    II 1 Oxide des Perowskit-Typs

    | Nr. 1 B 3 -xiii $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ |
    | :--- | :--- | :--- | :--- |

    Nr. 1B3-xiv $\mathrm{Pb}\left(\mathrm{Yb}_{\mathbf{1}_{2}} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$

    | $\begin{array}{r} 1 \mathrm{a} \\ \mathrm{~b} \end{array}$ | Dielectric anomaly in $\mathrm{Pb}\left(\mathrm{Yb}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ was reported by Isupov and Kranik in 1964. phase II |  |  | 6416 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | state | (A) | F |  |
    |  | crystal system | monoclinic | cubic |  |
    |  | $\begin{aligned} & \Theta \\ & a=4.154 \AA, b= \end{aligned}$ | $4.108 \AA, \beta=$ | a) ${ }^{\circ} \mathrm{C}$ <br> $30^{\prime}$ at R | a) 65 K 9 |
    | 4 | Thermal expansion: Fig. 381 . |  |  |  |
    | 5a | Dielectric constant: Fig. 382. |  |  |  |

    ## Nt. ${ }^{1 B 3-x v} \operatorname{Pb}\left(\mathrm{Lu}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$

    

    Nr. 1B3-xvi $\mathbf{P b}\left(\mathrm{Fe}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$
    1a A synthesis of $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ with perovskite structure was reported by VENEV-

    b The magnetic measurements confirmed the presence of the spinel phase in | 64 V 3 |
    | :--- | :--- | :--- | of this composition.

    Nr. 1B3-xvii $\mathbf{P b}\left(\mathrm{Li}_{1 / 4} \mathrm{Nb}_{1 / 4} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$ and sister crystals
    1a
    Following composite perovskite compounds containing Pb were synthesized:

    $$
    \begin{array}{lll}
    \mathrm{Pb}\left(\mathrm{Li}_{1 / 4} \mathrm{Nb}_{1 / 4} \mathrm{~W}_{1 / 4}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Zn}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Co}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3} \\
    \mathrm{~Pb}\left(\mathrm{Mg}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Cd}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Ni}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3} \\
    \mathrm{~Pb}\left(\mathrm{Co}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Mg}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Cd}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3} \\
    \mathrm{~Pb}\left(\mathrm{Ni}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3} & \mathrm{~Pb}\left(\mathrm{Mg}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{WW}_{1 / 2} \mathrm{O}_{3}\right. & \mathrm{Pb}\left(\mathrm{Sc}_{1 / 4} \mathrm{Cr}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}
    \end{array}
    $$

    ## 

    | 64 V 3 |
    | :--- |
    | 65 V 3 |

    Nr . ${ }^{184-i} \mathbf{~} \mathrm{~Pb}\left(\mathrm{Mg}_{\mathrm{y} / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$
    1a $\left\lvert\, \begin{aligned} & \text { Ferroelectricity in } \mathrm{Pb}\left(\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3} \text { was discovered by Smolensiit and Agranov- } \\ & \text { skaya in } 1958 .\end{aligned}\right.$
    b

    | phase | II | I |
    | :--- | :---: | :---: |
    | state | F | P |
    | crystal system |  | cubic |
    | space group |  |  |
    | $\Theta$ |  | Pm3m-O $\mathrm{O}_{\mathrm{h}}^{1}$ |

    58S3,59S6

    61B5.60S7
    a)67B9

    67B18

    | 2 a | Crystal growth: Flux method (using PbO ). Kyropoulos method. | $\begin{aligned} & 59 M 5 \\ & 67 B 18 \end{aligned}$ |
    | :---: | :---: | :---: |
    | 3 | Crystal structure: Disordered perovskite. | 6185 |
    | 4 | Thermal expansion: Fig. 386. |  |
    | 5a b c | Dielectric constant: Fig. 387, 388, 389. <br> Nonlinear dielectric properties: $E=\left[\left(T-\Theta_{\mathrm{p}}\right)\left(\varepsilon_{\mathrm{o}} C\right)^{-1}\right] P+\xi P^{3}+\zeta P^{5}+\cdots$, where $\Theta_{p}=265{ }^{\circ} \mathrm{K}, C=(3.7 \pm 1.0) \cdot 10^{5}{ }^{\circ} \mathrm{K}$, and $\xi \cong 5.6 \cdot 10^{8} \mathrm{~V} \mathrm{~m}^{5} \mathrm{C}^{-8}$. <br> Spontaneous polarization and coercive field: Fig. 390. | 67B9 |
    | 7a | Piezoelectricity: Fig. 391. |  |
    | 9 a e | Refractive index: $n=2.56$ for $6328 \AA$ at $299{ }^{\circ} \mathrm{K}$. <br> Birefringence: It was found that the crystals $\mathrm{Pb}\left(\mathrm{Mg}_{1 / \mathrm{s}} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$ behave like optically isotropic crystals. An applied electric field causes double refraction. Fig. 392. <br> Quadratic electrooptic effect: $M_{11}-M_{12}=+0.015 \mathrm{~m}^{4} \mathrm{C}^{-2}, M_{44}=+0.008 \mathrm{~m}^{4} \mathrm{C}^{-2}$ for $6328 \AA$ at $299{ }^{\circ} \mathrm{K}$. | $\begin{aligned} & 67 B 9 \\ & 67 B 9 \end{aligned}$ |
    | 14a | Domain structure: Clear domains were observed only in very thin wafers (e.g., $20 \cdot 10^{-6} \mathrm{~m}$ ). | 6185 |

    Nr. 1B4-ii $\mathrm{Pb}\left(\mathrm{Zn}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$

    | 1a <br> b | Ferroelectric $\mathrm{Pb}\left(\mathrm{Zn}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$ crystal was synthesized by Bokov and Myl'nikova in 1960. |  |  | $60 B 7$ |
    | :---: | :---: | :---: | :---: | :---: |
    |  | phase | II | I |  |
    |  | state | F | P | $60 B 7$ |
    |  | crystal system |  | cubic |  |
    |  | $a=4.04 \AA \text { at RT. }$ <br> light yellow. |  |  |  |
    | 2a | Crystal growth: Flux method with PbO. The crystals were separated from the matrix solution by washing in acetic acid at RT for a long time. |  |  | $60 B 7$ |
    | 52 | Dielectric constant: Fig. 393. |  |  |  |


    | $\begin{gathered} 1 \mathrm{a} \\ \mathrm{~b} \end{gathered}$ | Ferroelectricity in $\mathrm{Pb}\left(\mathrm{Co}_{1 / 8} \mathrm{Nb}_{2 / 8}\right) \mathrm{O}_{3}$ was found by Borov and MyL'nikova in 1960. |  |  | $60 B 7$ |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |
    |  | state | F | P |  |
    |  | crystal system |  | cubic | $60 B 7$ |
    |  | space group |  | Pm3m-O ${ }_{\text {h }}^{1}$ |  |
    |  | $\begin{aligned} & \Theta \\ & a=4.04 \AA \text { at } \mathrm{R} \\ & \text { brown. } \end{aligned}$ | $-98$ | ${ }^{\circ} \mathrm{C}$ |  |
    | 2a | Crystal growth: Flux method with PbO. |  |  | $60 B 7$ |
    | 53 | Dielectric constant: Fig. 394. |  |  |  |

    Figuren S. 287
    II 1 Oxide des Perowskit-Typs
    
    

    Nr. 1B4-viii $\mathbf{P b}\left(\mathrm{Ni}_{1 / 3} \mathrm{Ta}_{2 / 3}\right) \mathrm{O}_{\mathbf{3}}$

    | $1 \mathrm{a}$ | Ferroelectricity in $\mathrm{Pb}\left(\mathrm{Ni}_{1 / 3} \mathrm{Ta}_{2 / 3}\right) \mathrm{O}_{3}$ was found by Boкov and Myı'niкova in 1960. phase $\qquad$ 1 <br> II <br> I |  |  | $60 B 7$ |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |
    |  | state | F | P |  |
    |  | crystal system |  | cubic | $60 B 7$ |
    |  | space group |  | Pm3m-O ${ }_{\text {L }}^{1}$ |  |
    |  | $\Theta$ $a=4.01 \AA$ at green. |  |  |  |
    | 2 a | Crystal growth | me |  | 60B7 |
    | 3 | Crystal structu | sord | perovskite. | $60 B 7$ |
    | 53 | Dielectric const | Fig. |  |  |

    Nr. $\mathbf{1 B 5} \mathbf{- i} \mathbf{P b}\left(\mathbf{M n}_{2 / 3} \mathbf{W}_{1 / 3}\right) \mathrm{O}_{3}$

    | $\begin{gathered} 1 \mathrm{a} \\ \mathrm{~b} \end{gathered}$ | Dielectric and magnetic anomalies in $\mathrm{Pb}\left(\mathrm{Mn}_{2 / 3} \mathrm{~W}_{1 / 3}\right) \mathrm{O}_{3}$ were reported by Roginskaya et al. in 1965. |  |  |  | $65 R 5$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | phase | III | II | I |  |
    |  | state | (A), ( $A_{\text {magn }}$ ) | (A), $\mathrm{P}_{\text {mag }}$ | P, $\mathrm{P}_{\text {magn }}$ |  |
    |  | crystal system |  | monoclinic | cubic | $65 R 5$ |
    |  | $\Theta$ $a=c=4.098$ | $b=4.014 \AA^{2}$ | $\left.=90^{\circ} 23^{\prime} \text { at }\right]$ | ${ }^{\circ} \mathrm{K}$ |  |
    | 5 a | $a=c=4.098 \AA, b=4.014 \AA, \beta=90^{\circ} 23^{\prime}$ at RT. |  |  |  |  |
    | 10 | Dielectric constant: Fig. 403. |  |  |  | 65R5. |
    | 11 | Magnetic susceptibility: see Fig. 403. $\Theta_{\text {pmagn }}=-75^{\circ} \mathrm{K}$. |  |  |  |  |

    Nr. 1B5-ii $\mathrm{Pb}\left(\mathrm{Fe}_{2 / 3} \mathrm{~W}_{1 / 3}\right) \mathrm{O}_{3}$

    | $\begin{array}{r} 1 \mathrm{a} \\ \mathrm{~b} \end{array}$ | Ferroelectricity in $\mathrm{Pb}\left(\mathrm{Fe}_{2 / 3} \mathrm{~W}_{1 / 3}\right) \mathrm{O}_{3}$ was discovered by Smolenskir et al. in 1959. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | phase | III | II | I |  |
    |  | state | F, $\mathrm{A}_{\text {magn }}$ | P, $\mathrm{A}_{\text {magn }}$ | P, $\mathrm{P}_{\text {mag }}$ |  |
    |  | crystal system |  | cubic | cubic | $62 B 7$ |
    |  | $\begin{aligned} & \Theta \\ & a=4.02 \AA \text { at } \mathrm{R} \end{aligned}$ |  |  | ${ }^{\circ} \mathrm{K}$ | 65125 |
    | 2 a | Flux method (PbO). |  |  |  | $62 B 7$ |
    | 5a | Dielectric constant: Fig. 404. |  |  |  |  |
    | 11 | Magnetic susceptibility: see Fig. 404. <br> Magnetization is a linear function of the magnetic field intensity up to 8000 Oe. <br> Effective magnetic moment: $4.2 \mu_{\mathrm{B}}$. |  |  |  | $62 B 7$ |
    | 12 b 1 C Nr. | Solid solutions with perovskite-type oxides as end members $1 \mathrm{C}-\mathrm{al} \mathrm{NaNbO}_{3}-\mathrm{KNbO}_{3}$ |  |  |  |  |
    | 1b | Phase diagram: Fig. 406, 407, 408. Lattice parameters: Fig. 409. |  |  |  |  |
    | 5 a | Dielectric constant: Fig. 410; see Tab. 60. Polarization and coercive field: Fig. 411. |  |  |  |  |
    | 6a | Transition energy: Tab. 59. |  |  |  |  |
    | 7 a | Electromechanical properties: Fig. 412 $\cdots$ 417; Tab. 60. |  |  |  |  |

    Figuren S. 287 ff .
    II 1 Oxide des Perowskit-Typs
    

    Tab. 61. $K\left(\mathrm{Nb}_{1-x} \mathrm{Ta}_{x}\right) \mathrm{O}_{3}$. $L$ : latent heat, $\Theta_{\mathrm{r}}$ : Curie point, $A$ : constant in the formula for free energy $=$ $A\left(T-\Theta_{\mathrm{p}}\right) P^{2}+\cdots, P_{\text {cala }}: P_{\mathrm{s}}$ calculated for $T=\Theta_{\mathrm{f}}$. [59H1]

    | $x$ | $L$ <br> cal $\mathrm{mol}^{-1}$ | $\Theta_{\mathrm{f}}$ <br> ${ }^{\circ} \mathrm{K}$ | ${ }^{10^{5}{ }^{\circ} \mathrm{K}^{-1}}$ | $P_{\text {calc }}$ <br> $10^{-2} \mathrm{C} \mathrm{m}^{-2}$ |
    | :--- | :---: | :---: | :---: | :---: |
    | $\mathbf{0}$ | 110 | $\pm 10$ | 679 | 2.6 |
    | 0.06 | 46 | $\pm$ | 4 | 656 |
    | 0.12 | 10 | $\pm$ | 2.7 | 27 |
    | 0.18 | $4.0 \pm$ | 623 | 2.85 | 17.7 |
    |  |  | 591 | 3.05 | 7.9 |
    |  |  |  |  |  |

    Nr. 1C-a5 K (Ta $\left.\mathrm{Ta}_{0.35} \mathbf{N b}_{0.65}\right) \mathrm{O}_{\mathbf{s}}$ (KTN)
    For general properties of $\mathrm{KNbO}_{3}-\mathrm{KTaO}_{3}$ see 1 C -a4.
    9b $\mid$ Electroreflectance: Fig. 429.
    d Faraday rotation: Fig. 430. See also Tab. 44.
    Nr. ${ }^{1 C-a 6 ~} \mathrm{CaTiO}_{\mathbf{3}}-\mathrm{SrTiO}_{3}$

    | 1b | Phase diagram: Fig. 431, 432, 433. <br> Lattice parameters: Fig. 434. |
    | ---: | :--- |
    | 5 F | Dielectric constant: Fig. 435, 436. <br> c |
    | Spontaneous polarization: Fig. 437. |  |

    Nr. $1 \mathrm{C}-\mathrm{a} 7 \mathrm{CaTiO}_{\mathbf{2}}-\mathrm{BaTiO}_{3}$

    | 1b | Phase diagram: Fig. 438, 439, 440. <br> Lattice parameters: Fig. 441. |
    | :---: | :--- |
    | $\frac{\text { 5a }}{\text { 6b }}$ | Dielectric constant: Fig. 442, 443. |
    | 7a | Thermal conductivity: Fig. 444. |
    | Electromechanical property: Tab. 62. See Fig. 183 and Tab. 40. |  |

    II 1 Perovskite-type oxides
    Figures p. 295 ff.

    Tab. 62. $\left(\mathrm{Ba}_{1-x} \mathrm{Ca}_{x}\right) \mathrm{TiO}_{3}$ (ceramics, pure $\mathrm{BaTiO}_{3}$ base). $d_{31}$ and $d_{35}$ at RT. [57B4]

    | $x$ | $\varrho$ <br> $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ | $\varrho_{\mathrm{X}}$ <br> $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ | $d_{\mathbf{3 1}}$ <br> $10^{-12} \mathrm{CN}^{-1}$ | $d_{33}$ <br> $10^{-12} \mathrm{CN}^{-1}$ | $-d_{\mathbf{3 3}} / d_{\mathbf{3 1}}$ | Porosity <br> $\left(1-\left(\varrho / \varrho_{\mathrm{x}}\right)\right)$ |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
    | 0 | 5.85 | 6.017 | -97.5 | 229 | 2.35 | 0.028 |
    | 0.05 | 5.70 | 5.85 | -66.6 | 167 | 2.51 | 0.026 |
    | 0.07 | 5.68 | 5.80 | -58.0 | 150 | 2.58 | 0.021 |
    | 0.09 | 5.65 | 5.74 | -52.1 | 139 | 2.67 | 0.016 |
    | 0.12 | 5.55 | 5.66 | -43.4 | 124.5 | 2.88 | 0.019 |

    Nr. $\mathbf{1 C - a 8 ~}_{\mathbf{C a T i O}}^{\mathbf{3}}-\mathrm{PbTiO}_{3}$
    1b Curie temperature: Fig. 445.
    Lattice parameter: Fig. 446.

    Nr. $1 \mathrm{C}-\mathbf{a} 9 \mathrm{SrTiO}_{3}-\mathrm{BaTiO}_{3}$

    | 1b | Phase diagram: Fig. $447 \cdots 450$. <br> Lattice parameter: Fig. 451; see Fig. 448. |
    | :---: | :---: |
    | 5 a | Dielectric constant: Fig. 452. <br> Microwave dielectric loss: Tab. 63. |
    | 6 a | Specific heat: Fig. 453. |
    | 10b | Conductivity associated with doping: Fig. 454, 455, 456. |

    Tab. 63. $\left(\mathrm{Ba}_{1-\kappa} \mathrm{Sr}_{x}\right) \mathrm{TiO}_{3}$. Dielectric loss: $\alpha, \beta, \gamma$ at 20 GHz . [62R4]. $\left(T-\Theta_{\mathrm{p}}\right) \tan \delta=\alpha+\beta T+\gamma T^{2}$.

    | Sample |  | Heat treatment | Grain size $\mu$ | ${ }^{\oplus_{p}}{ }^{\mathrm{K}}$ | ${ }^{\circ}{ }^{\alpha}$ | $\beta \cdot 10^{4}$ | $\begin{gathered} \gamma \cdot 10^{6} \\ \left({ }^{\circ} \mathrm{K}\right)^{-1} \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Polycristalline | $\mathrm{SrTiO}_{3}$ | Hot pressed and fired in air at $900^{\circ} \mathrm{C}$ for 10 h | 1 | 37 | 0.33 | 7.7 | 4.3 |
    |  |  | Refired at $1200{ }^{\circ} \mathrm{C}$ in air for 10 h | 3 | 37 | 0.26 | 5.5 | 4.7 |
    |  |  | Refired at $1400{ }^{\circ} \mathrm{C}$ in air for 10 h | 15 | 37 | 0.17 | 4.4 | 4.2 |
    |  |  | $\begin{aligned} & \text { Refired at } 1500^{\circ} \mathrm{C} \text { in } \mathrm{O}_{2} \\ & \text { for } 6 \mathrm{~h} \end{aligned}$ | 30 | 37 | 0.08 | 4.5 | 3.7 |
    |  | $\mathrm{Ba}_{0.8} \mathrm{Sr}_{0.8} \mathrm{TiO}_{3}$ | Hot pressed and fired in $\mathrm{O}_{2}$ at $1500^{\circ} \mathrm{C}$ for 10 h | 30 | 105 | 0.6 | 9 | 2.5 |
    |  | $\mathrm{Ba}_{0.5} \mathrm{Sr}_{0.5} \mathrm{TiO}_{3}$ | Hot pressed and fired in $\mathrm{O}_{2}$ at $1500^{\circ} \mathrm{C}$ for 10 h | 30 | 218 | 2.0 | (9) ${ }^{\text {a }}$ | (2.5) |
    |  | $\mathrm{Ba}_{0.8} \mathrm{Sr}_{0.8} \mathrm{TiO}_{3}$ | Ceramic fired to $1375{ }^{\circ} \mathrm{C}$ in air for 1 h | 8 | 280 | 2.2 | (9) | (2.5) |
    |  | $\mathrm{Ba}_{0.8} \mathrm{Sr}_{0.2} \mathrm{TiO}_{3}$ | Ceramic fired to $1300{ }^{\circ} \mathrm{C}$ in air for 1 h | 8 | 324 | 1.6 | (9) | (2.5) |
    | Single crystal | $\begin{aligned} & \mathrm{SrTiO}_{3} \\ & \mathrm{SrTiO}_{3}+0.1 \% \mathrm{Gd}^{3+} \\ & \mathrm{SrTiO}_{3}+0.03 \% \mathrm{Fe}^{3+} \end{aligned}$ | None | $\infty$ | 37 |  | 6.53 | 2.54 |
    |  |  | None | $\infty$ | 37 37 | 0.033 | (6.53) | (2.54) |
    |  |  | None | $\infty$ | 37 | 0.043 | (6.53) | (2.54) |

    $\mathbf{N r}$. ${ }^{\mathbf{C}}-\mathbf{a 1 0} \mathrm{SrTiO}_{\mathbf{3}}-\mathrm{PbTiO}_{\mathbf{3}}$

    | 1 b | Curie temperature: Fig. 457. <br> Lattice parameter: Fig. 458. |
    | :---: | :--- |
    | 5 La | Dielectric constant: Fig. 459. <br> Curie constant: Fig. 460. |
    | 6 Ea | Transition heat: Fig. 461. |

    Nr. ${ }^{1 \mathrm{C}}$-al1 $\mathrm{BaTiO}_{\mathbf{3}}-\mathrm{PbTiO}_{3}$

    | 1b | Phase diagram: Fig. 462. <br> Lattice parameter: Fig. 463. |
    | :---: | :---: |
    | 5a | Dielectric constant: Fig. 464. |
    | 63 | Specific heat: Fig. 465. <br> Transition heat: Fig. 466. |
    | 7 | Electromechanical properties: see 1A-8. |
    | 16 | Radiation damage: Fig. 467. |

    ${ }^{\text {a }}$ ) Values in parentheses indicate that these values were assumed in order to determine $\alpha$.

    Figuren S. 299 ff.
    II 1 Oxide des Perowskit-Typs
    Nr. ${ }^{1} \mathrm{C}-\mathrm{a} 12 \mathrm{CaZrO}_{3}-\mathrm{BaZrO}_{3}$
    1b | Lattice parameter: Fig. 468.
    Nr. $1 \mathrm{C}-\mathrm{al} 3 \mathrm{CaZrO}_{3}-\mathrm{PbZrO}_{3}$

    | 1b | Phase diagram: Fig. 469. |
    | :--- | :--- |
    | 5a | Thermal expansion: Fig. 470. |
    | Dielectric constant: Fig. 471. |  |

    Nr. $1 \mathrm{C}-\mathrm{al} 4 \mathrm{SrZrO}_{3}-\mathrm{PbZrO}_{3}$

    | 1b | Phase diagram: Fig. 472, 473. <br> Lattice parameter: Fig. 474. |
    | :---: | :---: |
    | 4 | Thermal expansion: Fig. 475, 476, 477; Tab. 64. |
    | 5 a | Dielectric constant: Fig. 478, 479. |
    | c | Polarization: Fig. 480. |
    | 6 | Specific heat: Fig. 481. <br> Transition heat: Tab. 65 |

    Tab. 64. $\mathrm{PbZrO}_{3},\left(\mathrm{~Pb}_{0.95} \mathrm{Sr}_{0.05}\right) \mathrm{ZrO}_{3}$, and $\left(\mathrm{Pb}_{0.925} \mathrm{Ba}_{0.075}\right) \mathrm{ZrO}_{3} . \Delta V / V$. $\Delta V$ : anomalous volume change at the transition point. [54S2]

    | Composition | $\Delta V / V\left[10^{-4}\right]$ |  |
    | :--- | :---: | :---: |
    |  | Lowest phase | Intermediate phase |
    | $\mathrm{PbZrO}_{3}$ | -41 at $230^{\circ} \mathrm{C}$ | - |
    | $\left(\mathrm{Pb}_{0.925} \mathrm{Ba}_{0.075}\right) \mathrm{ZrO}_{3}$ | -43 at $150^{\circ} \mathrm{C}$ | +24 at $190^{\circ} \mathrm{C}$ |
    | $\left(\mathrm{Pb}_{0.95} \mathrm{Sr}_{0.05}\right) \mathrm{ZrO}_{3}$ | -30 at $210^{\circ} \mathrm{C}$ | -20 at $230^{\circ} \mathrm{C}$ |

    Tab. 65. $\mathrm{PbZrO}_{3},\left(\mathrm{~Pb}_{0.95} \mathrm{Sr}_{0.05}\right) \mathrm{ZrO}_{3}$, and $\left(\mathrm{Pb}_{0.925} \mathrm{Ba}_{0.075}\right) \mathrm{ZrO}_{3} . \Delta Q_{\mathrm{m}}$. [52S2]

    | Composition | $\Delta Q_{\mathrm{m}}\left[\mathrm{cal}\right.$ mol $\left.{ }^{-1}\right]$ |  |
    | :--- | :---: | :---: |
    |  | Lower transition | Upper transition |
    | $\mathrm{PbZrO}_{3}$ | - | 440 |
    | $\left(\mathrm{~Pb}_{0.925} \mathrm{Ba}_{0.075}\right) \mathrm{ZrO}_{3}$ | 190 | 230 |
    | $\left(\mathrm{~Pb}_{0.95} \mathrm{Sr}_{0.05} \mathrm{ZrO}_{3}\right.$ | 180 | 230 |

    Nr. $1 \mathrm{C}-\mathrm{al} 15 \mathrm{BaZrO}_{\mathbf{3}}-\mathrm{PbZrO}_{3}$

    | 1b | Phase diagram: Fig. 482. <br> Lattice parameter: Fig. 483. |
    | :---: | :--- |
    | 4 | Thermal expansion: Fig. 484. |
    | 5a | Dielectric constant: Fig. $485 \cdots 488$. <br> c |
    | 8 | Coercive field: Fig. 489. |

    ## $\mathrm{Nr} .1 \mathrm{C}-\mathrm{a} 16 \mathrm{CaHfO}_{3}-\mathrm{PbHfO}_{3}$

    $\frac{1 \mathrm{~b}}{5 \mathrm{a}} \left\lvert\, \frac{\text { Phase diagram: Fig. } 491 .}{\text { Dielectric constant: Fig. } 492 .}\right.$
    Nr. 1C-a17 SrHfO $\mathbf{S}_{3}-\mathrm{PbHfO}_{3}$
    $\frac{1 \mathrm{~b}}{5 \mathrm{a}} \left\lvert\, \frac{\text { Phase diagram: Fig. } 493 .}{\text { Dielectric constant: Fig. } 494 .}\right.$
    Nr. 1C-al8 $\mathrm{BaHfO}_{3}-\mathrm{PbHiO}_{3}$
    1b | Phase diagram: Fig. 495.
    Nr. 1C-a19 $\mathrm{CaSnO}_{3}-\mathrm{SrSnO}_{3}$
    1b | Lattice parameter: Fig. 496.
    Nr. 1C-a20 $\mathrm{BaSnO}_{3}-\mathrm{SrSnO}_{3}$
    1b | Lattice parameter: see Fig. 496.
    Nr. $1 \mathrm{C}-\mathrm{a} 21 \mathrm{BaSnO}_{3}-\mathrm{PbO}: \mathrm{SnO}_{\mathbf{2}}$

    | 1b | Phase diagram: Fig. 497. |
    | :--- | :--- |
    | 5a | Dielectric constant: Fig. 498. |

    $\mathrm{Nr} .1 \mathrm{C}-\mathrm{a} 22 \mathrm{CaTiO}_{3}-\mathrm{CaZrO}_{3}$
    1b | Lattice parameter: Fig. 499.

    Nr. $1 \mathrm{C}-\mathrm{a} 23 \mathrm{BaTiO}_{3}-\mathrm{BaZrO}_{3}$

    | 1b | Phase diagram: Fig. 500. <br> Lattice parameter: Fig. 501. |
    | :--- | :--- |
    | $\frac{\text { 2a }}{5 \mathrm{a}}$ | Phase diagram: Fig. 502. <br> 8a |
    | Dielectric constant: Fig. 503. |  |
    | Elastic property: Fig. 504 |  |

    Nr. ${ }^{1} \mathrm{C}-\mathrm{a} 24 \mathrm{BaTiO}_{3}-\mathrm{BaHiO}_{3}$

    | 1b | Phase diagram: Fig. 505. <br> Lattice parameter: Fig. 506. |
    | :---: | :--- |
    | 5a | Dielectric constant: Fig. 507. |$|$

    Nr. $\mathbf{1 C - a}^{25} \mathrm{BaTiO}_{3}-\mathrm{BaSnO}_{3}$

    | $\frac{\text { Phase diagram: Fig. 508. See also }}{2 \mathrm{a}}$ | Phase diagram: Fig. 509. <br> 4 <br> 5a | Thermal expansion: Fig. 510. |
    | :--- | :--- | :--- |
    |  | Dielectric constant: Fig. 511. |  |

    Nr. $\mathbf{1 C}_{\mathbf{- a}} \mathbf{2 6} \mathrm{BaTiO}_{\mathbf{3}}-\mathrm{BaUO}_{3}$
    1b | Lattice parameter: Fig. 512.

    Nr. ${ }^{1 \mathrm{C}} \mathbf{- a 2 7} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbZrO}_{3}$
    $\mathrm{Pb}\left(\mathrm{Zr}_{x} \mathrm{Ti}_{1-x}\right) \mathrm{O}_{3}$ with $x=0.5 \cdots 0.6$; for electromechanical properties of these very important piezoelectric materials, see $1 \mathrm{C}-\mathrm{a} 28$.

    | 1 a b | Ferro- and antiferroelectric phase transitions in the $\mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}$ system were revealed in 1952 by Shirane, Suzuki and Takeda. <br> Phase diagram at high temperature: Fig. 513. <br> Phase diagram: Fig. 514, 515. <br> Lattice parameter: Fig. 516, 517. | $\begin{aligned} & 52 S 6,52 S 4, \\ & 52 S 3 \end{aligned}$ |
    | :---: | :---: | :---: |
    | 2 | Flux method: | $\begin{aligned} & 62 I 1,64 F 6, \\ & 67 F 7 \end{aligned}$ |
    | 4 | Lattice distortion: Fig. 518a, b, 519. <br> Thermal expansion: Fig. 520, 521, 522. |  |
    | 51 c | Dielectric constant: Fig. $523 \cdots 526$. Spontaneous polarization: Fig. 527. Critical field: Fig. 528. |  |
    | 6 | Specific heat: Fig. 529, 530. Transition energy: Tab. 66. |  |
    | $\left.\begin{array}{l}7 \\ 8\end{array}\right\}$ | Electromechanical properties: see 1C-a28. |  |
    | 9 | Birefringence: Fig. 531a, b, c. |  |
    | 16 | Radiation damage: Fig. 532. |  |

    Tab. 66. $\mathrm{Pb}(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{8}$. Transition energy and entropy. [53S1]. $x$ : atomic percent of $\mathrm{PbTiO}_{3} ; \mathrm{d} \Theta / \mathrm{d} x$ : shift of the transition temperature with $x ; \mathrm{dS}(\mathrm{d} \Theta / \mathrm{d} x)$; it may be assumed that the free energy should decrease with the rate of $\mathrm{d} S(\mathrm{~d} \Theta / \mathrm{d} x)$ with increasing $x$.

    | Kind of the phase change | $\stackrel{\Theta}{{ }^{\circ} \mathrm{C}}$ | $\begin{gathered} \Delta Q_{\mathrm{m}} \\ \mathrm{cal} \mathrm{~mol} \end{gathered}$ | $\frac{\Delta S_{\mathrm{m}}}{\mathrm{cal} \mathrm{~mol}} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ | $\mathrm{d} \theta / \mathrm{d} x$ | $\mathrm{d} S(\mathrm{~d} \Theta / \mathrm{d} x)$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{A}_{\alpha} \rightarrow \mathrm{P}_{\alpha}$ | $230>T>225$ | 400 | 0.8 | - | (-5.8) |
    | $\mathrm{A}_{\alpha} \rightarrow \mathrm{A}^{\alpha}$ | $\cdots \quad 225$ | 110 | 0.22 | -16 | -3.5 |
    | $\mathrm{A}_{\beta} \rightarrow \mathrm{P}_{\alpha}$ | 230 | 290 | 0.58 | - 4 | -2.3 |
    | $\mathrm{A}_{\alpha} \rightarrow \mathrm{F}_{\alpha}$ | 240 | $\overline{5} 0$ | 0.51 | -19 +1.0 | + $\overline{0} .5$ |
    | $\mathrm{F}_{\alpha} \rightarrow \mathrm{P}_{\alpha} \mathrm{P}^{\text {a }}$ ( | 217 | 250 40 | 0.51 0.08 | +1.0 | $+0.5$ |

    Figuren S. 312ff.
    II 1 Oxide des Perowskit-Typs
    Nr. 1C-a28 $\mathrm{Pb}\left(\mathrm{Zr}_{x} \mathrm{Ti}_{1-x}\right) \mathrm{O}_{3}(x=0.5 \cdots 0.6$, lead zirconate-titanate)
    For general properties of $\mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}$ see 1 C -a27.

    | 1a | Jaffe, Roth, and Marzullo discovered the excellent piezoelectric performances of $\mathrm{Pb}(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{\mathrm{s}}$ ceramics in 1954. PZT is the trade mark of this substance developed by Clevite Corporation, Cleveland, Ohio, USA. | 54 J 1 |
    | :---: | :---: | :---: |
    | 5a | Dielectric constants: Fig. 533 and Fig. 539, 540, 541, 543, 544. |  |
    | 7 8 8 | Electromechanical properties (ceramics): Tab. 67; Fig. $534 \cdots 538$; Tab. $68 \cdots 72$; Fig. 539 ${ }^{\text {a }}$, Tab. 73 ; Fig. $543 \cdots 554$. |  |
    | 10 | Electrical conductivity: see For breakdown, see | $\begin{aligned} & 63 G 1 \\ & 59 G 2 \end{aligned}$ |

    Tab. 67. $\mathrm{Pb}\left(\mathrm{Ti}_{\mathrm{r}_{1}-x} \mathrm{Zr}_{x}\right) \mathrm{O}_{3}[x=0.48 \cdots 0.60]$ (ceramics). Electromechanical constants at RT. [60B3]
    

    Tab. 68. $\left(\mathrm{Pb}_{1-x} \mathrm{Sr}_{x}\right)\left(\mathrm{Zr}_{1-y} \mathrm{Ti}_{y}\right) \mathrm{O}_{3}$ and $\left(\mathrm{Pb}_{1-x} \mathrm{Ca}_{x}\right)\left(\mathrm{Zr}_{1-y}, \mathrm{Ti}_{y}\right) \mathrm{O}_{3}$ (modified ceramics). Effects of Ca and Sr on electromechanical properties. [59K4]

    | Intended composition | $\begin{gathered} \varrho_{a} \\ 10^{3} \\ \mathrm{kgm}^{-3} \end{gathered}$ | $\begin{gathered} \begin{array}{c} x \\ \text { at } \\ 1 \mathrm{kHz} \end{array} \end{gathered}$ | 24 hours after poling |  |  |  |  |  | $\begin{aligned} & \Theta_{\mathrm{f}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | $\begin{gathered} x \\ \text { at } \\ 1 \mathrm{kHz} \end{gathered}$ | $\boldsymbol{\operatorname { t a n }} \delta$ \% at <br> 1 kHz | $k_{p}$ | $\begin{gathered} d_{31} \\ 10^{-12} \\ \mathrm{CN}^{-1} \end{gathered}$ | $\begin{gathered} g_{31} \\ 10^{-3} \\ \mathrm{~m}^{2} \mathrm{C}^{-1} \end{gathered}$ | $\begin{gathered} \left(s_{11}^{E}\right)^{-1} \\ 10^{10} \\ \mathrm{Nm}^{-2} \end{gathered}$ |  |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.53} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.40 | 736 | 544 | 0.5 | 0.48 | 71 | 14.7 | 7.67 | 385 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.53} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.39 | 707 | 542 | 0.4 | 0.47 | 69 | 14.4 | 7.76 |  |
    | $\mathrm{Pb}_{0.99} \mathrm{Ca}_{0.01}\left(\mathrm{Zr}_{0.63} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.42 | 729 | 624 | 0.5 | 0.49 | 77 | 13.9 | 7.89 |  |
    | $\mathrm{Pb}_{0.99} \mathrm{Sr}_{0.01}\left(\mathrm{Zr}_{0.58} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.42 | 755 | 584 | 0.6 | 0.49 | 75 | 14.5 | 7.68 |  |
    | $\mathrm{Pb}_{0.95} \mathrm{Ca}_{0.05}\left(\mathrm{Zr}_{0,33} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.26 | 832 | 973 | 0.5 | 0.44 | 88 | 10.2 | 7.62 |  |
    | $\mathrm{Pb}_{0.95} \mathrm{Sr}_{0.05}\left(\mathrm{Zr}_{0.58} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.47 | 920 | 1002 | 0.4 | 0.50 | 101 | 11.4 | 7.65 | 360 |
    | $\mathrm{Pb}_{0.92} \mathrm{Ca}_{0.08}\left(\mathrm{Zr}_{0.53} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 6.86 | 794 | 888 | 0.4 | 0.32 | 60 | 7.6 | 7.85 |  |
    | $\mathrm{Pb}_{0.925} \mathrm{Sr}_{0.075}\left(\mathrm{Zr}_{0.53} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.29 | 942 | 1094 | 0.3 | 0.50 | 103 | 10.6 | 7.94 |  |
    | $\mathrm{Pb}_{0.90} \mathrm{Sr}_{0.70}\left(\mathrm{Zr}_{0.59} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.22 | 997 | 1129 | 0.3 | 0.49 | 103 | 10.3 | 7.95 | 290 |
    | $\mathrm{Pb}_{0.875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0.47} \mathrm{Ti}_{0.53}\right) \mathrm{O}_{3}$ | 7.09 | 609 | 663 | 0.3 | 0.28 | 40 | 6.8 | 9.91 |  |
    | $\mathrm{Pb}_{0.875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0,50} \mathrm{Ti}_{0.50}\right) \mathrm{O}_{3}$ | 7.11 | 813 | 880 | 0.3 | 0.33 | 57 | 7.3 | 9.05 |  |
    | $\mathrm{Pb}_{0.875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0.68} \mathrm{Ti}_{0.48}\right) \mathrm{O}_{3}$ | 7.10 | 973 | 1149 | 0.3 | 0.44 | 91 | 9.0 | 8.32 |  |
    | $\mathrm{Pb}_{0.875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0.6 s} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.14 | 1076 | 1237 | 0.4 | 0.47 | 100 | 9.1 | 8.06 | 265 |
    | $\mathrm{Pb}_{0,875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0.54} \mathrm{Ti}_{0.46}\right) \mathrm{O}_{3}$ | 7.16 | 1095 | 1325 | 0.6 | 0.51 | 119 | 10.1 | 7.51 |  |
    | $\mathrm{Pb}_{0.875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0.56} \mathrm{Ti}_{0.44}\right) \mathrm{O}_{3}$ | 7.14 | 1105 | 1210 | 0.4 | 0.51 | 116 | 10.8 | 7.31 |  |
    | $\mathrm{Pb}_{0.875} \mathrm{Sr}_{0.125}\left(\mathrm{Zr}_{0.59} \mathrm{Ti}_{0.41}\right) \mathrm{O}_{3}$ | 7.17 | 919 | 585 | 0.4 | 0.45 | 66 | 12.7 | 8.39 |  |
    | $\mathrm{Pb}_{0.85} \mathrm{Sr}_{0.25}\left(\mathrm{Zr}_{0.58} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 6.90 | 1106 | 1260 | 0.5 | 0.43 | 97 | 8.7 | 7.68 | 242 |
    | $\mathrm{Pb}_{0.80} \mathrm{Sr}_{0,20}\left(\mathrm{Zr}_{0.50} \mathrm{Ti}_{0.50}\right) \mathrm{O}_{3}$ | 6.56 | 941 | 970 | 0.6 | 0.29 | 56 | 6.5 | 8.11 |  |
    | $\mathrm{Pb}_{0.80} \mathrm{Sr}_{0.20}\left(\mathrm{Zr}_{0.55} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 6.48 | 1212 | 1257 | 0.5 | 0.34 | 86 | 7.8 | 7.05 |  |
    | $\mathrm{Pb}_{0.80} \mathrm{Sr}_{0.20}\left(\mathrm{Zr}_{0.54} \mathrm{Ti}_{0.46}\right) \mathrm{O}_{3}$ | 6.36 | 1182 | 1341 | 0.8 | 0.35 | 91 | 7.7 | 6.18 |  |
    | $\mathrm{Pb}_{0.80} \mathrm{Sr}_{0.20}\left(\mathrm{Zr}_{0.55} \mathrm{Ti}_{0.45}\right) \mathrm{O}_{3}$ | 6.36 | 1200 | 1337 | 0.8 | 0.34 | 86 | 7.3 | 6.42 |  |
    | $\mathrm{Pb}_{0.80} \mathrm{Sr}_{0.20}\left(\mathrm{Zr}_{0.56} \mathrm{Ti}_{0.44}\right) \mathrm{O}_{3}$ | 6.35 | 1107 | 1113 | 0.7 | 0.35 | 81 | 8.2 | 6.50 |  |

    Tab. 69. $\mathrm{Pb}(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ (ceramics, modified). Electromechanical properties of $\mathrm{Pb}\left(\mathrm{Zr}_{0.54} \mathrm{Ti}_{0.46}\right) \mathrm{O}_{3}$ with five-valent additives. [59K5]. $f_{R} \cdot r$ : radial frequency constant

    | Addition wt. \% | $\begin{gathered} \varrho_{a} \\ 10^{3} \\ \mathrm{~kg} \mathrm{~m}^{-8} \end{gathered}$ | Before poling |  | 24 hours after poling |  |  |  |  |  | ${ }^{\theta_{\mathrm{r}}}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{gathered} \begin{array}{c} \text { at } \\ 1 \mathrm{kHz} \end{array} \end{gathered}$ | $\tan \delta$ \% at 1 kHz | $\begin{gathered} \begin{array}{c} x \\ \text { at } \\ 1 \mathrm{kHz} \end{array} \end{gathered}$ | $\tan \delta$ \% at 1 kHz | $k_{\mathrm{p}}$ | $\begin{aligned} & f_{\mathrm{R}} \cdot r \\ & \mathrm{~Hz} \cdot \mathrm{~m} \end{aligned}$ | $\begin{gathered} d_{31} \\ 10^{-12} \\ \mathrm{CN}^{-1} \end{gathered}$ | $Q_{\text {mech }}$ |  |
    | None | 7.41 | 707 | 0.3 | 537 | 0.4 | 0.49 | 1641 | 71 |  | 390 |
    | None | 7.29 | 706 | 0.4 | 513 | 0.5 | 0.50 | 1687 | 69 |  | 387 |
    | $0.1 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.26 | 598 | 0.3 | 508 | 0.4 | 0.38 | 1643 | 54 |  |  |
    | $0.5 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 6.96 | 732 | 2.1 | 790 | 2.0 | 0.46 | 1443 | 94 |  |  |
    | $0.8 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.36 | 965 | 1.6 | 1166 | 1.5 | 0.48 | 1606 | 105 |  |  |
    | $1.0 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.36 | 1064 | 1.8 | 1308 | 1.6 | 0.53 | 1563 | 126 | 61 |  |
    | $1.0 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.60 | 1055 | 2.2 | 1242 | 2.2 | 0.54 | 1538 | 125 |  | 361 |
    | $1.2 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.34 | 1011 | 2.0 | 1167 | 1.7 | 0.48 | 1614 | 104 | 70 |  |
    | $1.4 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.37 | 1057 | 2.2 | 1218 | 1.9 | 0.50 | 1584 | 113 | 69 |  |
    | $1.7 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.39 | 1058 | 2.0 | 1218 | 1.8 | 0.47 | 1594 | 105 |  |  |
    | $2.0 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.37 | 1074 | 2.1 | 1202 | 2.0 | 0.50 | 1550 | 115 |  | 344 |
    | $\left.\begin{array}{l}0.5 \mathrm{Nb}_{8} \mathrm{O}_{5} \\ 0.5 \mathrm{La}_{2} \mathrm{O}_{8}\end{array}\right\}$ | 7.39 | 1169. | 2.1 | 1377 | 2.0 | 0.57 | 1491 | 146 | 48 | 369 |
    | $1.0 \mathrm{Ta}_{2} \mathrm{O}_{5}{ }^{\text {a }}$ | 7.31 | 989 | 1.5 | 1187 | 1.5 | 0.49 | 1563 | 111 | 61 |  |
    | $1.0 \mathrm{Ta}_{2} \mathrm{O}_{5}$ | 7.22 | 918 | 2.0 | 1121 | 2.1 | 0.50 | 1525 | 114 |  | 368 |
    | $2.0 \mathrm{Ta}_{2} \mathrm{O}_{5}$ | 7.49 | 1062 | 2.2 | 1230 | 2.1 | 0.50 | 1547 | 115 |  |  |
    | $2.0 \mathrm{Ta}_{2} \mathrm{O}_{5}$ | 7.40 | 1077 | 1.8 | 1275 | 1.8 | 0.48 | 1581 | 111 |  | 364 |
    |  | 7.23 6.75 | 959 995 | 2.7 2.5 | 1112 1052 | 2.4 2.6 | 0.36 0.33 | 1518 1508 | 82 | 28 |  |

    Figuren S. 313ff.
    II 1 Oxide des Perowskit-Typs

    Tab. 70. $\mathrm{Pb}(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ (ceramics, modified). Electromechanical properties of $\mathrm{Pb}\left(\mathrm{Zr}_{0.54} \mathrm{Ti}_{0.46}\right) \mathrm{O}_{3}$ with three-valent additives. [59K5]. $f_{\mathbf{R}} \cdot r$ : radial frequency constant

    | Addition wt. \% | $\begin{gathered} \varrho_{a} \\ 10^{3} \\ \mathrm{~kg} \mathrm{~m}^{-3} \end{gathered}$ | Before poling |  | 24 hours after poling |  |  |  |  | ${ }^{+}{ }_{+}{ }_{\text {¢ }} \mathrm{C}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{gathered} x \\ \text { at } \\ 1 \mathrm{kHz} \end{gathered}$ | $\tan \delta$ \% at 1 kHz | $\begin{gathered} x \\ \text { at } \\ 1 \mathrm{kHz} \end{gathered}$ | $\begin{array}{r} \tan \delta \\ \% \text { at } \\ 1 \mathrm{kHz} \end{array}$ | $k_{\mathrm{p}}$ | $\begin{aligned} & f_{\mathrm{R}} \cdot r \\ & \mathrm{~Hz} \cdot \mathrm{~m} \end{aligned}$ | $\begin{gathered} d_{31} \\ 10^{-12} \\ \mathrm{CN}^{-1} \end{gathered}$ |  |
    | None | 7.41 | 707 | 0.3 | 537 |  |  |  |  |  |
    | None | 7.29 | 706 | 0.4 | 513 | 0.4 0.5 | 0.49 0.50 | 1641 | 71 69 | 390 387 |
    | $1.0 \mathrm{Y}_{2} \mathrm{O}_{3}$ | 7.26 | 796 | 0.9 | 841 | 1.0 | 0.34 | 1547 | 69 | 387 374 |
    | $1.0 \mathrm{La}_{2} \mathrm{O}_{3}$ | 7.46 | 1187 | 1.9 | 1483 | 2.0 | 0.53 | 1510 | 138 |  |
    | $1.0 \mathrm{Nd}_{2} \mathrm{O}_{3}$ | 7.47 7.43 | 1139 | 2.2 | 1387 | 2.1 | 0.52 | 1522 | 130 | 339 |
    | $1.0 \mathrm{Nd}_{2} \mathrm{O}_{3}$ | 7.37 | 1101 | 1.6 | 1395 1354 | 1.8 | 0.49 | 1512 | 123 |  |
    | 1.0 didymia | 7.41 | 1122 | 1.9 2.2 | 1341 | 1.8 2.2 | 0.48 0.50 | 1511 1499 | 119 | 348 |
    | $2.0 \mathrm{La}_{2} \mathrm{O}_{3}$ | 7.49 | 1296 | 2.6 | 1545 | 2.3 | 0.50 0.51 | 1499 | 125 |  |
    | $1.0 \mathrm{La}_{2} \mathrm{O}_{3}$ | 7.20 | 1375 | 2.1 | 1792 | 1.7 | 0.51 | 1528 | 147 |  |
    | $1.0 \mathrm{Nd}_{2} \mathrm{O}_{3}$ | 7.35 | 1362 | 2.2 | 1776 | 1.9 | 0.49 | 1558 | 136 |  |
    | $0.1 \mathrm{La}_{2} \mathrm{O}_{3}$ | 6.75 | 790 | 0.4 | 870 | 0.6 | 0.42 | 1505 | 136 88 |  |
    | $0.2 \mathrm{La}_{2} \mathrm{O}_{3}$ $0.4 \mathrm{La}_{2} \mathrm{O}_{3}$ | 6.45 6.44 | 686 942 | 0.7 1.4 | 735 | 0.9 | 0.37 | 1419 | 78 |  |
    | $0.4 \mathrm{La}_{2} \mathrm{O}_{3}$ $0.8 \mathrm{La}_{2} \mathrm{O}_{3}$ | 6.44 7.19 | 942 1288 | 1.4 1.8 | 1100 | 1.5 | 0.42 | 1407 | 109 |  |
    | $1.0 \mathrm{La}_{2} \mathrm{O}_{3}$ | 7.49 7.50 | 1288 | 1.8 2.4 | 1682 1532 | 1.8 2.4 | 0.49 0.50 | 1516 1550 | 139 |  |

    Tab. 71. Electromechanical properties of $\mathrm{Pb}\left(\mathrm{Zr}_{1}-\mathrm{Ti}_{x}\right) \mathrm{O}_{\mathrm{a}}$ (ceramics), modified with additives of $1 \mathrm{wt} \% \mathrm{Nb}$.
    [59K5]. $f_{\mathrm{R}} \cdot r$ : radial frequency constant

    | Base composition | $\begin{gathered} \varrho_{a} \\ 10^{3} \\ \mathrm{~kg} \mathrm{~m}^{-3} \end{gathered}$ | Before poling |  | 24 hours after poling |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{gathered} \begin{array}{c} x \\ \text { at } \\ 1 \mathrm{kHz} \end{array} \end{gathered}$ | $\begin{gathered} \tan \delta \\ \% \text { at } \\ 1 \mathrm{kHz} \end{gathered}$ | $\begin{gathered} \begin{array}{r} \text { at } \\ 1 \mathrm{kHz} \end{array} \end{gathered}$ | $\begin{gathered} \tan \delta \\ \% \\ \% \\ 1 \mathrm{kHz} \end{gathered}$ | $k_{\text {p }}$ | $\begin{aligned} & f_{\mathrm{R}} \cdot r \\ & \mathrm{~Hz} \cdot \mathrm{~m} \end{aligned}$ | $\begin{gathered} d_{31} \\ 10^{-12} \\ \mathrm{CN}^{-1} \end{gathered}$ | $Q_{\text {mech }}$ |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.50} \mathrm{Ti}_{0.50}\right) \mathrm{O}_{3}$ | 7.38 | 879 | 1.5 | 1041 | 1.2 | 0.42 | 1696 | 82 |  |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.51} \mathrm{Ti}_{0.49}\right) \mathrm{O}_{3}$ | 7.31 | 975 | 1.6 | 1188 | 1.3 | 0.45 | 1642 | 97 | 81 73 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.52} \mathrm{Ti}_{0.48}\right) \mathrm{O}_{3}$ | 7.39 | 985 | 1.5 | 1200 | 1.4 | 0.45 | 1640 | 97 | 73 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.53} \mathrm{Ti}_{0.47}\right) \mathrm{O}_{3}$ | 7.43 | 1092 | 1.8 | 1371 | 1.4 | 0.53 | 1547 | 97 130 | 61 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.54} \mathrm{Ti}_{0.48}\right) \mathrm{O}_{3}$ | 7.44 | 1051 | 1.8 | 1296 | 1.7 | 0.54 | 1549 | 128 | 62 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.55} \mathrm{Ti}_{0.45}\right) \mathrm{O}_{3}$ | 7.40 | 955 | 2.4 | 973 | 2.0 | 0.56 | 1524 | 117 | 55 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.56} \mathrm{Ti}_{0.44}\right) \mathrm{O}_{3}$ | 7.38 | 818 | 2.8 | 745 | 2.5 | 0.53 | 1601 | - 93 | 56 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.57} \mathrm{Ti}_{0.43}\right) \mathrm{O}_{3}$. | 7.41 | 750 | 3.0 | 684 | 2.5 | 0.50 | 1636 | 82 | 60 |
    | $\mathrm{Pb}\left(\mathrm{Zr}_{0.58} \mathrm{Ti}_{0.42}\right) \mathrm{O}_{3}$ | 7.41 | 713 | 3.0 | 630 | 2.8 | 0.49 | 1676 | 75 | 60 |

    Tab. 72. Electromechanical properties of $\left(\mathrm{Pb}_{0.95} \mathrm{Sr}_{0.05}\right)\left(\mathrm{Zr}_{0.54} \mathrm{Ti}_{0.46}\right) \mathrm{O}_{3}$ (ceramics) with $\mathrm{Nb}_{2} \mathrm{O}_{5}$ or $\mathrm{Ta}_{2} \mathrm{O}_{5}$. [59K5]. $f_{\mathrm{R}} \cdot r:$ radial frequency constant

    | Addition wt. \% | $\begin{gathered} \varrho_{\mathrm{a}} \\ 10^{3} \\ \mathrm{~kg} \mathrm{~m}^{-3} \end{gathered}$ | Before poling |  | 24 hours after poling |  |  |  |  | $\begin{aligned} & \Theta_{\mathrm{r}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{gathered} x \\ i \stackrel{x}{\text { at }} \\ 1 \mathrm{kHz} \end{gathered}$ | $\begin{aligned} & \tan \delta \\ & \% \text { at } \\ & 1 \mathrm{kHz} \end{aligned}$ | $\begin{gathered} \begin{array}{c} x \\ \text { at } \\ 1 \mathrm{kHz} \end{array} \end{gathered}$ | $\begin{gathered} \tan \delta \\ \% \text { at } \\ 1 \mathrm{kHz} \end{gathered}$ | $k_{\mathrm{p}}$ | $\begin{aligned} & f_{R} \cdot r \\ & \mathrm{~Hz}_{\mathrm{z}} \cdot \mathrm{~m} \end{aligned}$ | $\begin{gathered} d_{31} \\ 10^{-12} \\ \mathrm{CN}^{-1} \end{gathered}$ |  |
    | $1.0 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.34 | 1291 | 2.0 |  | 2.0 |  |  |  |  |
    | $2.0 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.22 | 1380 | 2.4 | 1662 | 2.1 | 0.56 0.47 | 1512 | 153 127 | 306 |
    | $3.0 \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 6.63 | 1125 | 2.1 | 1301 | 2.1 | 0.36 | 1550 | 127 91 |  |
    | $2.0 \mathrm{Ta}_{2} \mathrm{O}_{5}$ | 7.33 | 1343 | 2.3 | 1695 | 2.0 | 0.36 0.54 | 1517 | 91 151 | 296 |


    | Substance | $\chi_{11}^{\top}$ | $\chi_{\text {S }}^{\text {S }}$ | $\chi_{33}^{\top}$ | $\chi_{33}^{\text {S }}$ | $d_{15}$ | $d_{31}$ | $d_{33}$ | $e_{15}$ | $e_{31}$ | $e_{33}$ | $g_{15}$ | $g_{31}$ | $g_{33}$ | $h_{15}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  | $10^{-12} \mathrm{C} \mathrm{N}^{-1}$ |  |  | $\mathrm{Cm}^{-2}$ |  |  | $10^{-8} \mathrm{~m}^{2} \mathrm{C}^{-1}$ |  |  | $10^{8} \mathrm{NC}^{-1}$ |
    | PZT-2 | 990 | 504 | 450 | 260 | 440 | -60.2 | 152 | 9.8 | $-1.86$ | 9.0 | 50.3 | -15.1 | 38.1 | 21.9 |
    | PZT-4 | 1475 | 730 | 1300 | 635 | 496 | -123 | 289 | 12.7 | $-5.2$ | 15.1 | 39.4 | -11.1 | 26.1 | 19.7 |
    | PZT-5A | 1730 | 916 | 1700 | 830 | 584 | -171 | 374 | 12.3 | -5.4 | 15.8 | 38.2 | -11.4 | 24.8 | 15.2 |
    | PZT-5H | 3130 | 1700 | 3400 | 1470 | 741 | -274 | 593 | 17.0 | -6.55 | 23.3 | 26.8 | - 9.11 | 19.7 | 11.3 |
    | PZT-6A |  |  | 1100 |  |  | - 77 | 195 |  |  |  |  | - 7.9 | 17.0 |  |
    | PZT-6B | 515 | 441 | 500 | 420 | 135 | - 29 | 76 153 | 4.8 | $-0.96$ | 7.4 | 29.6 | - 6.6 | 17.3 | 12.2 |
    | PZT-7A | 840 | 450 | 425 1000 | 235 | 368 | - 61 | 153 215 | 9.3 | -2.15 | 9.7 | 49.5 | -16.2 -10.5 | 40.7 24.5 | 23.4 |
    |  | $h_{31}$ | $h_{33}$ | $k_{15}$ | $k_{31}$. | $k_{33}$ | $k_{\mathrm{p}}$ | $s_{11}{ }^{\text {F }}$ | $s_{11}{ }_{1}$ | $s_{33}^{E}$ | $s_{33}$ | $s_{12}^{E}$ | $s_{12}{ }^{\text {P }}$ | $s_{13}^{E}$ | $s_{13}^{D}$ |
    |  | $10^{8} \mathrm{~N} \mathrm{C}^{-1}$ |  |  |  |  |  | $10^{-12} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ |  |  |  |  |  |  |  |
    | PZT-2 | $-8.1$ | 39.2 | 0.701 | 0.28 | 0.626 | 0.47 | 11.6 | 10.7 | 14.8 | 9.0 | -3.33 | -4.24 | -4.97 | -2.68 |
    | PZT-4 | - 9.2 | 26.8 | 0.71 | 0.334 | 0.70 | 0.58 | 12.3 | 10.9 | 15.5 | 7.90 | -4.05 | $-5.42$ | -5.31 | -2.10 |
    | PZT-5A | - 7.3 | 21.5 | 0.685 | 0.344 | 0.705 | 0.60 | 16.4 | 14.4 | 18.8 | 9.46 | -5.74 | -7.71 | -7.22 | -2.98 |
    | PZT-5H | $-5.05$ | 18.0 | 0.675 | 0.388 | 0.752 | 0.65 | 16.5 | 14.05 | 20.7 | 8.99 | -4.78 | -7.27 | -8.45 | -3.05 |
    | PZT-6A |  |  |  | 0.229 | ${ }_{0}^{0.54}$ | 0.39 | 11.5 | 10.9 |  |  | $-3.45$ | -4.05 |  |  |
    | PZT-6B | $-2.6$ | 19.9 | 0.377 | 0.145 | 0.375 | 0.25 | 9.0 | 8.8 | 9.35 | 8.05 | $-3.0$ | -3.2 | $-3.1$ | -2.6 |
    | $\begin{aligned} & \text { PZT-7A } \\ & \text { PZT-8 } \end{aligned}$ | -10.4 | 46.6 | 0.68 | $\begin{aligned} & 0.306 \\ & 0.295 \end{aligned}$ | 0.67 0.60 | 0.52 0.50 | 10.7 11.1 | 9.7 10.1 | 13.9 13.9 | 7.65 8.9 | -3.2 | -4.2 | -4.6 | -2.3 |
    |  | $S_{44}^{E}$ | $s_{44}^{D}$ | $s_{68}$ | $c_{11}^{E}$ | $c_{11}^{D}$ | $c_{33}^{E}$ | $c_{33}^{D}$ | $c_{12}^{E}$ | $c_{12}^{D}$ | $c_{13}^{E}$ | $c_{13}^{D}$ | $c_{44}^{E}$ | $c_{44}^{D}$ | $c_{68}$ |
    |  | $10^{-12} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ |  |  | $10^{9} \mathrm{~N} \mathrm{~m}^{-2}$ |  |  |  |  |  |  |  |  |  |  |
    | PZT-2 | 45.0 | 22.9 | 29.9 | 135 | 136 | 113 | 148 | 67.9 | 69.3 | 68.1 | 61.2 | 22.2 | 43.7 | 33.4 |
    | PZT-4 | 39.0 | 19.3 | 32.7 | 139 | 145 | 115 | 159 | 77.8 | 83.9 | 74.3 | 60.9 | 25.6 | 51.8 | 30.6 |
    | PZT-5A | 47.5 | 25.2 | 44.3 | 121 | 126 | 111 | 147 | 75.4 | 80.9 | 75.2 | 65.2 | 21.1 | 39.7 | 22.6 |
    | PZT-5H | 43.5 | 23.7 | 42.6 | 126 | 130 | 117 | 157 | 79.5 | 82.8 | 84.1 | 72.2 | 23.0 | 42.2 | 23.5 |
    | PZT-6A |  |  | 29.9 |  |  |  |  |  |  |  |  |  |  |  |
    | PZT-6B | 28.2 | 24.2 | 24.0 | 168 | 169 | 163 | 177 | 85.1 | 86.2 | 84.0 | 82.4 | 35.4 | 41.3 | 41.7 |
    | PZT-7A | 39.5 | 21.2 | 27.8 | 148 | 157 | 131 | 175 | 76.2 | 85.4 | 74.2 | 73.0 | 25.3 | 47.2 | 36.0 |
    | PZT-8 |  |  | 29.6 |  |  |  |  |  |  |  |  |  |  |  |


    |  |  |  |
    | :---: | :---: | :---: |
    | Nr. $1 \mathrm{C}-\mathbf{a} 30 \mathrm{PbTiO} \mathbf{3}-\mathrm{PbO}: \mathrm{SnO}_{\mathbf{2}}$ | 1b | - Phase diagram: Fig. 557. |
    |  | 5a | Dielectric constant: Fig. 558. |
    | Nr. ${ }^{1 \mathrm{C}}-\mathbf{a 3 1} \mathrm{PbZrO}_{\mathbf{3}}-\mathrm{PbHfO}_{3}$ |  | \| Phase diagram: Fig. 559. |
    | Nr. 1C-a32 PbZrO3-PbO: $\mathrm{SnO}_{2}$ | 1b | Phase diagram: Fig. 560. Lattice parameter: Fig. 561. |
    |  | 4 | Thermal expansion: Fig. 562, 563. |
    |  | 52 | Dielectric constant: Fig. 564a, b. |
    | Nr. 1C-233 $\mathrm{LaFeO}_{3}-\mathrm{BiFeO}_{3}$ | 1b | Phase diagram: Fig. 565. <br> Lattice parameter: Fig. 566a, b. |
    |  | 5 a | Dielectric constant: Fig. 567. |
    |  | 11 | Magnetization: see Fig. 565. |
    | Nr. ${ }^{\text {chebl }}{ }^{\text {NaNbO}}{ }_{3}-\mathrm{KTaO}_{3}$ | 1b | Phase diagram: Fig. 568. <br> Lattice parameter: Fig. 569. |
    |  | 4 | Thermal expansion: Fig. 570. |
    |  | 5 a | Dielectric constant: Fig. 571. |
    | Nr. 1C-b2 $\mathrm{NaNbO}_{\mathbf{3}}-\mathrm{KSbO}_{3}$ | 1a 1 | \| Curie temperature: see Fig. 423. |
    | Nr. $1 \mathrm{C}-\mathrm{b} 3 \mathrm{BaTiO}_{3}-\mathrm{PbZrO}_{3}{ }^{\text {a }}$ | 4 | Thermal expansion: Fig. 572. |
    |  | 52 | Dielectric constant: Fig. 573. |
    | Nr. ${ }^{\text {1 }}$-b4 $\mathrm{BaTiO}_{3}$ - $\mathrm{PbO}: \mathrm{SnO}_{2}$ | 1b | Phase diagram: Fig. 574. |
    |  | 5 F | Dielectric constant: Fig. 575. |
    | $\mathrm{Nr.}^{1 \mathrm{C}-\mathrm{b} 5} \mathrm{PbTiO}_{3}-\mathrm{CaZrO}_{3}$ | 1b | Phase diagram: Fig. 576. Lattice parameter: Fig. 577. |
    |  | 5 a | Dielectric constant: Fig. 578. |
    | Nr. $1 \mathrm{C}-\mathrm{b6} \mathrm{PbTiO}_{3}-\mathrm{CaSnO}_{3}$ | 1b | Phase diagram: see Fig. 576. Lattice parameter: Fig. 579. |
    |  | 5 L | Dielectric constant: Fig. 580. |
    | Nr. $1 \mathbf{C - b 7} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{SrZrO}_{3}$ | 1b | Phase diagram: Fig. 581. <br> Lattice parameter: Fig. 582a, b. |
    |  | 5a | Dielectric constant: Fig. 583. |
    | Nr. $1 \mathrm{C}-\mathrm{b8} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{SrSnO}_{\mathbf{3}}$ | 1b ${ }^{\text {1 }}$ | Phase diagram: Fig. 584. <br> Lattice parameter: Fig. 585a, b. |
    |  | 5a | Dielectric constant: Fig. 586. |
    |  | 1b ${ }^{\text {a }}$ | Phase diagram: Fig. 587. <br> Lattice parameter: Fig. 588a, b. |
    |  | 5a | Dielectric constant: Fig. 589. |
    |  | 7 a E | Electromechanical property: Tab. 74. |

    Tab. 74. $(1-x) \mathrm{PbTiO}_{3}-x \mathrm{BaZrO}_{3}$ (ceramics). $k_{\mathrm{p}}$ and $d_{33}$ at RT. [63B15]

    | $x$ | Poling field <br> $10^{5} \mathrm{~V} \mathrm{~m}^{-1}$ <br> $\left[T\right.$ in $\left.{ }^{\circ} \mathrm{C}\right]$ | $k_{\mathrm{p}}$ | $d_{\mathrm{s3}}$ <br> $10^{-12} \mathrm{C} \mathrm{N}^{-1}$ |
    | :---: | :---: | :---: | :---: |
    | 0.25 | 29 <br> 0.30 | 0.16 | 40 |
    | 0.35 | $[170 \cdots 40]$ | 0.23 | 50 |
    | 0.40 | $\left[\begin{array}{c}39 \\ {[145 \cdots 40]} \\ 30\end{array}\right.$ | 0.30 | 110 |
    |  | $[120 \cdots 40]$ | 0.17 | 45 |

    Nr. $\mathbf{1 C b l}^{\mathbf{C}} \mathbf{1 0} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{BaSnO}_{\mathbf{3}}$
    1b $\mid$ Phase diagram: Fig. 590.
    Lattice parameter: Fig. 591a, b.

    Nr. $1 \mathrm{C}-\mathrm{bl1} \mathrm{LaAlO}_{\mathbf{3}}-\mathrm{BiFeO}_{3}$

    | 1b | Phase diagram: Fig. 592. <br> Lattice parameter: Fig. 593. |
    | :---: | :--- |
    | Dielectric constant: Fig. 594. |  |

    Nr. $1 \mathrm{C}-\mathrm{b} 12 \mathrm{LaCrO}_{\mathbf{3}}-\mathrm{BiFeO}_{3}$

    | 1b | Phase diagram: Fig. 595. <br> Lattice parameter: Fig. $596 \mathrm{a}, \mathrm{b}$. |
    | :---: | :--- |
    | 4 | Thermal expansion: Fig. 597. |
    | 11 | Spontaneous magnetization: see Fig. 595. |

    $\mathrm{Nr} .1 \mathrm{C}-\mathrm{cl} \mathrm{NaNbO}_{3}-\mathrm{CaTiO}_{3}$

    $\frac{1 \mathrm{~b}}{5 \mathrm{a}} |$| Phase diagram: Fig. 598. |
    | :--- |
    | Dielectric constant: Fig. 599. |

    Nr. 1C-c2 $\mathrm{NaNbO}_{3}-\mathrm{BaTiO}_{3}$
    1b | Phase diagram: Fig. 600.

    Nt. $1 \mathrm{C}-\mathrm{c} 3 \mathrm{NaNbO}_{3}-\mathrm{PbTiO}_{3}$

    Nr. $1 \mathrm{C}-\mathrm{c} 4 \mathrm{NaNbO}_{3}-\mathrm{PbZrO}_{3}$

    Nr. $1 \mathrm{C}-\mathrm{c} 5 \mathrm{KNbO}_{\mathbf{3}}-\mathrm{BaTiO}_{3}$

    | 1b | Phase diagram: Fig. 605. <br> Lattice parameter: Fig. 606. |
    | :---: | :--- |
    | 5a | Dielectric constant: Fig. 607a, b, c. |

    $\mathbf{N r} .1 \mathrm{C}-6 \mathrm{KNbO}_{\mathbf{3}}-\mathrm{PbTiO}_{\mathbf{3}}$

    | 1b | Phase diagram: Fig. 608. <br> Lattice parameter: Fig. 609. |
    | :---: | :--- |
    | 5a | Dielectric constant: Fig. 610a, b. |

    Nr. ${ }^{1 \mathrm{C}} \mathrm{Cc} 7 \mathrm{SrTiO}_{3}-\mathrm{BiFeO}_{3}$

    | 1b | Phase diagram: Fig. 611. <br> Lattice parameter: Fig. 612. |
    | :---: | :--- |
    | $5 a$ | Relaxation phenomena are observed in the range II [65F1]. |

    $\mathrm{Nr} .{ }^{1 \mathrm{C}} \mathrm{C} 8 \mathrm{BaTiO}_{3}-\mathrm{LaAlO}_{3}$
    1b | Lattice parameter and Curie temperature: Tab. 75.

    Figuren S. 328 ff.
    II 1 Oxide des Perowskit-Typs

    Tab. 75. $\mathrm{BaTiO}_{3}-\mathrm{LaAlO}_{3}$. Lattice parameters and $\Theta_{\mathrm{r}}$. [5814]

    | Concentration <br> mol $\%$ |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\mathrm{BaTiO}_{\mathbf{3}}$ | $\mathrm{LaAlO}_{3}$ | $\boldsymbol{a}$ | $\boldsymbol{c}$ |  |  |  |
    | $\AA$ | $\boldsymbol{\AA} / a$ | $V$ <br> $\AA^{3}$ | $\Theta_{\mathrm{r}}$ <br> ${ }^{\circ} \mathrm{C}$ |  |  |  |
    | 100.0 | - | 3.9956 | 4.0352 | 1.0100 | 64.42 | +120 |
    | 99.0 | 1.0 | 3.9951 | 4.0345 | 1.0098 | 64.39 | +87 |
    | 97.5 | 2.5 | 3.9949 | 4.0293 | 1.0086 | 64.30 | +46 |
    | 95.0 | 5.0 | 4.0050 | - | 1.0000 | 64.24 | -14 |
    | 92.5 | 7.5 | 4.011 | - | 1.0000 | 64.05 | -85 |
    | 90.0 | 10.0 | 3.9984 | - | 1.0000 | 63.92 | -133 |
    | 87.5 | 12.5 | 3.9950 | - | 1.0000 | 63.76 | - |
    | 85.0 | 15.0 | 3.9906 | - | 1.0000 | 63.55 | - |
    | 75.0 | 25.0 | 3.9800 | - | 1.0000 | 63.04 | - |
    | - | 100.0 | 3.7950 | - | 1.000 | 54.65 | - |

    Nr. ${ }^{1 \mathrm{C}}-\mathrm{c} 9 \mathrm{BaTiO}_{3}-\mathrm{BiFeO}_{3}$

    | 11. | Néel temperature and magnetic resonance line width: |
    | :--- | :--- |
    | 12 | Fig. 613. |

    Nr. ${ }^{1 C-c 10} \mathrm{PbTiO}_{3}-\mathrm{LaAlO}_{3}$

    | 1 b | Phase diagram: Fig. 614. <br> Lattice parameter: Fig. 615. |
    | :---: | :--- |
    | 5 a | Dielectric constant: Fig. 616. |

    Nr. ${ }^{1 C-c 11} \mathrm{PbTiO}_{3}-\mathrm{LaMnO}_{3}$
    1b | Transition temperatures: Fig. 617.
    Lattice parameters: Fig. 618.
    Nr. ${ }^{1} \mathbf{C - c 1 2} \mathrm{PbTiO}_{3}-\mathrm{LaFeO}_{3}$

    Nr. $1 \mathrm{C}-\mathrm{c} 13 \mathrm{PbTiO}_{3}-\mathrm{BiFeO}_{3}$

    Nr. 1C-c14. $\mathrm{PbZrO}_{\mathbf{3}}-\mathrm{BiFeO}_{3}$

    | 1b | Phase diagram: Fig. 619. <br> Lattice parameter: Fig. 620. |
    | :---: | :--- |
    | 5a | Dielectric constant: Fig. 621. |

    1b $\mid$ Phase diagram: Fig. 622a, b.

    | 4 | $\frac{\text { Lattice parameter: Fig. 623a, b. }}{\text { Thermal expansion: Fig. } 624 .}$ |
    | :--- | :--- |
    | $5 a$ | Dielectric constant: Fig. 625. |


    | 1b | Phase diagram: Fig. 626. <br> Lattice parameter: Fig. 627. |
    | :---: | :--- |
    | Dielectric constant: Fig. 628. |  |

    Nr. $1 \mathrm{C}-\mathrm{c} 15 \mathrm{SrSnO}_{3}-\mathrm{BiFeO}_{3}$
    $\frac{1 \mathrm{~b}}{12 \mathrm{c}} \left\lvert\, \begin{aligned} & \text { Phase diagram: Fig. 629. } \\ & \text { Mössbauer absorption: Fig. } 630 .\end{aligned}\right.$
    Nr. $1 \mathrm{C}-\mathrm{c} 16 \mathrm{SrFeO}_{\mathbf{3}}-\mathrm{BiFeO}_{3}$
    $\frac{1 \mathrm{a}}{11} \left\lvert\, \begin{aligned} & \text { Unit cell volume: Fig. } 631 . \\ & \text { Magnetization: Fig. } 632 .\end{aligned}\right.$
    Nr. ${ }^{1 \mathrm{C}}-\mathrm{di} \mathrm{SrTiO}_{\mathbf{3}}-\mathrm{Sr}^{\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}}$
    1b | Phase diagram: Fig. 633.
    Nr. $1 \mathrm{C}-\mathrm{d} 2 \mathrm{BaTiO}_{\mathbf{3}}-\mathrm{Ba}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$
    2b | Phase diagram: Fig. 634.
    Nr. ${ }^{1} \mathbf{C - d 3} \mathrm{BaTiO}_{3}-\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}$
    1b $\begin{aligned} & \text { Curie temperature: Fig. } 635 . \\ & \text { Lattice parameters: Fig. } 636 .\end{aligned}$
    Nr. $1 \mathrm{C}-\mathrm{d} 4 \mathrm{PbTiO}_{\mathbf{3}}-\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}$
    $\frac{1 \mathrm{~b}}{5 \mathrm{a}} \left\lvert\, \frac{\text { Phase diagram and lattice parameters: Fig. } 637 .}{\text { Dielectric constant: Fig. } 638 .}\right.$
    1b | Curie temperature and lattice parameters: Fig. 639.
    1b | Curie temperature and lattice parameters: Fig. 640.

    Nr. $1 \mathrm{C}-\mathrm{d} 7 \mathrm{PbTiO}_{3}-\left(\mathrm{Na}_{1 / 2} \mathrm{La}_{1 / 2}\right) \mathrm{TiO}_{3}$ Nr. $1 \mathrm{C}-\mathrm{d} 8 \mathrm{PbTiO}_{3}$-( $\left.\mathrm{Li}_{1 / 2} \mathrm{Ce}_{1 / 2}\right) \mathrm{TiO}_{3}$ Nr. ${ }^{1} \mathbf{C}-\mathrm{d} 9 \mathrm{PbTiO}_{\mathbf{3}}-\left(\mathrm{Li}_{1 / 2} \mathrm{Nd}_{1 / 2}\right) \mathrm{TiO}_{3}$ Nr. $\mathbf{1 C}^{\mathbf{C}} \mathbf{- d 1 0} \mathrm{PbTiO}_{\mathbf{3}} \mathbf{-} \mathbf{P b}\left(\mathrm{Mg}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$

    Nr. ${ }^{1 \mathrm{C}}-\mathrm{d} 11 \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$
    Nr. ${ }^{\mathbf{C}}-\mathbf{d 1 2} \mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$
    $\mathbf{N r}$. ${ }^{1} \mathbf{C}-\mathrm{d} 13 \mathrm{PbTiO}_{3}-\mathbf{P b}\left(\mathrm{Mn}_{1 / 2} \mathbf{N b}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$

    Nr. $\mathbf{1 C}^{\mathrm{C}} \mathbf{d 1 4} \mathrm{PbZrO}_{\mathbf{3}}-\mathbf{P b}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$
    Nr. ${ }^{\mathbf{C}} \mathbf{C - d 1 5} \mathrm{PbZrO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$
    Nr. ${ }^{1 \mathrm{C}}$-d16 $\mathrm{PbZrO}_{\mathbf{3}}-\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}$

    Nr. $1 \mathrm{C}-\mathrm{d} 17 \mathrm{PbZrO}_{\mathbf{3}}-\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}$

    1b | Curie temperature and lattice parameters : Fig. 641.
    1b | Lattice parameters: Fig. 642.
    1b | Lattice parameters: Fig. 643.
    1b $\mid$ Phase diagram: Fig. 644. Lattice parameters: Fig. 645.

    1b | Curie temperature: Fig. 646.
    1b | Curie temperature: Fig. 647.
    1b $\mid$ Transition temperature: Fig. 648. Lattice parameters: Fig. 649.

    1b | Curie temperature: see Fig. 647.
    1b | Curie temperature: Fig. 650.

    | 1b | Phase diagram: Fig. 651. |
    | :--- | :--- |
    | 4 | Lattice distortion: Fig. 652. |
    | 5a | Dielectric constant: Fig. 653. |


    | 1b | Phase diagram: Fig. 654. <br> Lattice parameters: Tab. 76. |
    | :--- | :--- |
    | $\frac{4}{5 a}$ | Lattice distortion: Fig. 655. |
    | Dielectric constants: Fig. 656. |  |

    Tab. 76. $(1-x) \mathrm{PbZrO}_{3}-x\left(\mathrm{~K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}$. Lattice
    

    | $x$ | $a$ | $b$ | $c$ |  |
    | :--- | :---: | :---: | :---: | :--- |
    |  | $\AA$ | $\AA$ | $\AA$ |  |
    | 0 | 5.884 | 11.768 | 8.220 | orthorhombic <br> $\AA .10$ |
    | 5.882 | 11.764 | 8.227 | orthorhombic |  |
    | 0.20 | 5.877 | 11.755 | 8.237 | orthorhombic |
    | 0.30 | 5.876 | 11.751 | 8.248 | orthorhombic <br> cubic <br> 0.40 |
    | 4.151 | - | - | cubic |  |

    $\mathbf{N r} .1 \mathrm{C}-\mathrm{d} 18 \mathrm{PbHfO}_{3}-\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$
    $\mathbf{N r}$. $1 \mathrm{C}-\mathrm{d} 19 \mathrm{~Pb}\left(\mathrm{Mg}_{1 / 2} \mathbf{W}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}-\mathbf{P b}\left(\mathbf{M g}_{1 / 3} \mathbf{N b}_{2 / 3}\right) \mathrm{O}_{\mathbf{3}}$
    Nr. $1 \mathrm{C}-\mathrm{d} 20\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\left(\mathrm{K}_{1 / 8} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}$

    Nr. ${ }^{1 C-d 21} \mathrm{PbZrO}_{\mathbf{3}}-\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{\mathbf{3}}$

    Nr. ${ }^{1 C-d 22} \mathrm{BiFeO}_{3}-\mathrm{Sr}\left(\mathrm{Sn}_{1 / 3} \mathrm{Mn}_{2 / 3}\right) \mathrm{O}_{3}$

    Nt. $1 \mathrm{C}-\mathrm{d} 23 \quad \mathrm{BiFeO}_{\mathbf{3}}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$

    1b | Curie temperature: see Fig. 647.
    1b | Phase diagram: Fig. 657.
    1b Curie temperature: see Fig. 635.
    Lattice parameters: see Fig. 636.
    1b ${ }^{2}$ Phase diagram: Fig. 658.
    Lattice parameters: Fig. 659.
    $\overline{1 b} \left\lvert\, \begin{aligned} & \text { Phase diagram: Fig. } 660 . \\ & \text { Lattice parameters: Fig. } 661 .\end{aligned}\right.$

    $$
    1
    $$

    ).
    0.

    | $\frac{1 \mathrm{~b}}{5 \mathrm{a}}$ | $\left.$Lattice parameters: Fig. 662. <br> 11Dielectric constant: Fig. 663. <br> Magnetic susceptibility : Fig. 664. <br> Neel temperature and spontaneous magnetization: <br> Fig. 665. \right\rvert\, |
    | :---: | :--- |

    Figuren S. 337 ff.
    II 1 Oxide des Perowskit-Typs
    Nr. 1C-e1 $\mathrm{NaNbO}_{3}-\mathrm{LiNbO}_{3}$
    $\frac{1 \mathrm{~b}}{5 \mathrm{a}} \left\lvert\, \frac{\text { Phase diagram: Fig. } 666 .}{\text { Dielectric constant: Fig. } 667 .}\right.$

    Nr. $1 \mathrm{C}-\mathrm{e} 2 \mathrm{NaNbO}_{3}-\mathrm{NaVO}_{3}$

    Nr. $1 \mathrm{C}-\mathrm{e} 3 \mathrm{NaNbO}_{\mathbf{3}}-\mathrm{CaNb}_{2} \mathrm{O}_{\mathbf{6}}$ $\frac{5 a}{14 b} \left\lvert\, \begin{aligned} & \text { Dielectric constant: Fig. } 668 . \\ & \text { Switching: see Fig. 9. }\end{aligned}\right.$
    $\frac{1 b}{5 a} \left\lvert\, \frac{\text { Phase diagram: Fig. } 669 .}{\text { Dielectric constant: Fig. } 670 .}\right.$
    Nr. 1C-e4 NaNbO $\mathbf{3}^{-} \mathrm{CdNb}_{2} \mathrm{O}_{4}$

    | 1b | Phase diagram: Fig. 671, 672. <br> Lattice parameter: Fig. 673. |
    | :---: | :--- |
    | $\frac{\text { ab }}{7 \mathrm{a}}$ | Dielectric constant: Fig. 674; Tab. 77. <br> Piezoelectricity: Fig. 675; Tab. 78. |

    Tab. 77. $(1-x) \mathrm{NaNbO}_{3}-(x / 2) \mathrm{CdNb}_{2} \mathrm{O}_{6}$ [56L2]. r: capacitance ratio; $C$ : Curie constant; $\Theta_{\mathrm{f}}, \Theta_{\text {pare Fig. } 671,672}$ com-

    | Composition $x$ | Firing conditions |  |  | ${ }^{\boldsymbol{*}_{\text {RT }}}$ | $r$ | $\stackrel{+}{\circ} \mathrm{C}$ | $\boldsymbol{x}_{\text {max }}$ | ${ }^{\theta_{\mathbf{t}} \mathrm{C}}$ | $\begin{gathered} C \\ \cdot 10^{4} \mathrm{C} \end{gathered}$ | $\begin{aligned} & \Theta_{p} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\stackrel{\varrho}{10^{3} \mathrm{~kg} \mathrm{~m}^{-8}}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\stackrel{T}{{ }^{\circ} \mathrm{C}}$ | $\stackrel{t}{\mathrm{hr}}$ | atmosphere |  |  |  |  |  |  |  |  |
    | 0.02 | 1250 | 1 | CdO | 230 |  |  |  |  |  |  |  |
    | 0.05 | 1250 | 1 | CdO | 500 | 1200 | 20 60 | 2700 400 | 375 375 | 12 | 345 |  |
    | 0.10 0.15 | 1250 | 1 | CdO | 1000 | 130 | 75 | 4100 | 320 | 18 | 345 275 | 4.2 |
    | 0.15 0.20 | 1250 | 1 | CdO | 1400 | 40 | 50 | 8500 | 285 | 24 | 260 | 4.3 |
    | 0.25 | 1250 | 1 | CdO | 2300 3500 | 20 10 | 20 | 10000 | 250 | 14 | 250 | 4.4 |
    | 0.30 | 1220 | 2 | Cdo | 2700 | 12 | - ${ }^{5}$ |  | 220 | 20 | 230 | 4.5 |

    Tab. 78. $(1-x) \mathrm{NaNbO}_{3}-(x / 2) \mathrm{CdNb}_{2} \mathrm{O}_{6}$ (ceramics) [62K4]

    | $x$ | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 |  |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
    | $\varrho$ | 4.2 | 4.3 | 4.3 | 4.3 | 4.4 | 4.2 | $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ |
    | $f_{\mathrm{R}} \cdot 2 r$ | 3.0 | 3.0 | 3.0 | 3.15 | 3.36 | 3.25 | $10^{3} \mathrm{~Hz} \mathrm{~m}^{2}$ |
    | $s_{\mathrm{I}}^{K}$ | 11.9 | 11.6 | 11.6 | 10.5 | 9.0 | 10.1 | $10^{-12} \mathrm{~m}^{2} \mathrm{~N}^{-1}$ |
    | $\tan \delta$ | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 |  |
    | $x$ at $\Theta_{\mathrm{R}}$ | 4 | 4.1 | 8.5 | 16 | 13 | 11 | $10^{3}$ |

    Nr. $1 \mathrm{C}-\mathrm{e} 5 \mathrm{NaNbO}_{3}-\mathrm{SrNb}_{2} \mathrm{O}_{6}$

    Nr 1C-e6 $\mathrm{NaNbO}_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$

    Nr 1C-e7 $\mathrm{CdTiO}_{3}-\mathrm{LiNbO}_{3}, \mathrm{CdTiO}_{3}-\mathrm{LiTaO}_{3}$
    Nr. ${ }^{1 C}$-e8 $\mathbf{S r T i O}_{3}-\mathrm{Bi}_{2} \mathrm{O}_{\mathbf{3}} \cdot \mathbf{3 T i O} \mathbf{T}_{\mathbf{2}}$

    Nr. $1 \mathrm{C}-\mathrm{e} 9 \mathrm{BaTiO}_{3}-\mathrm{BaNb}_{2} \mathrm{O}_{6}$

    | 1 b | Phase diagram: Fig. 682. <br> Lattice parameter: Fig. 683. |
    | :---: | :--- |
    | Elactromechanical properties: Fig. 684. |  |


    | 1b | Phase diagram: Fig. 676. <br> Lattice parameter: Fig. 677. |
    | :---: | :---: |
    | 5a | Dielectric constant: Fig. 678. |
    | 7 a | Electromechanical properties: Fig. 679, 680, 681. |

    ; 5a | Dielectric constant: Fig. 685.
    $\frac{\text { 1b }}{\text { 5a }} \left\lvert\, \frac{\text { Lattice parameter: Fig. } 686 .}{\text { Dielectric constant: Fig. 687, } 688 .}\right.$
    1b | Phase diagram: Fig. 689.

    | Nr. ${ }^{1} \mathrm{C}-\mathrm{el0} \mathrm{BaTiO}_{3}-\mathrm{BaTa}_{2} \mathrm{O}_{6}$ | 1b | Lattice parameter: Fig. 690. |
    | :---: | :---: | :---: |
    |  | 5a | Dielectric constant: Fig. 691. |
    | Nr. $1 \mathrm{C}-\mathrm{el1} \mathrm{BaTiO}_{3}-\mathrm{A}_{\mathbf{2}} \mathrm{B}_{\mathbf{2}} \mathrm{O}_{7}$ | 1b | Curie temperature: Fig. 692. |
    |  | 5 a | Dielectric constant: Fig. $693 \cdots 697$. |
    | Nr. $1 \mathrm{C}-\mathrm{e} 12 \mathrm{PbZrO}_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ |  |  |
    | For the solid solution with $\mathrm{PbNb}_{2} \mathrm{O}_{6}$ as an end material see 5B-8. |  |  |
    |  | 1b | Phase diagram: Fig. 698. |
    |  | 4 | Thermal expansion: Fig. 699. |
    |  | 5 | Dielectric constant: Fig. 700. |
    | Nr. 1C-e13 $\mathrm{PbZrO}_{\mathbf{3}} \mathbf{- P b T a} \mathrm{e}_{2} \mathrm{O}_{6}$ | 1b | Phase diagram: Fig. 701. |
    |  | 4 | Thermal expansion: see Fig. 699. |
    |  | 5 | Dielectric constant: Fig. 702. |
    | Nr. $1 \mathrm{C}-\mathrm{fl} \mathrm{CaTiO}_{3}-\mathrm{SrTiO}_{\mathbf{3}}-\mathrm{BaTiO}_{3}$ | 1b | Phase diagram: Fig. 703. |
    | Nr. $1 \mathrm{C}-\mathbf{2} \mathbf{2} \mathrm{CaTiO}_{3}-\mathrm{BaTiO}_{3}-\mathrm{PbTiO}_{3}$ | 1b | Phase diagram: Fig. 704, 705. Curie temperature: Fig. 706. |
    |  | 7 a | Electromechanical properties: see Nr. 1A-8, 7a. |
    | Nr. 1C-f3 $\mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbZrO}_{\mathbf{3}}-\mathrm{PbO}: \mathrm{SnO}_{\mathbf{2}}$ | 1b | Phase diagram: Fig. 707. |
    |  | 8b | Elastic properties: Fig. 708, 709. |
    | Nr. ${ }^{\text {1C-f4 }} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbHfO}_{\mathbf{3}}-\mathrm{PbO}: \mathrm{SnO}_{\mathbf{2}}$ | 1b \| | Phase diagram: Fig. 710. |
    | Nr. $1 \mathrm{C}-\mathbf{5} 5 \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbZrO}_{\mathbf{3}}-\mathrm{LaFeO}_{\mathbf{3}}$ | 1b | Phase diagram: Fig. 711. <br> Lattice parameters: Fig. 712. |
    | Nr. $1 \mathrm{C}-\mathbf{6 6 ~} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbZrO}_{\mathbf{3}}-\mathrm{BiFeO}_{3}$ | 1b | Phase diagram: Fig. 713. <br> Lattice parameters: Fig. 714. |
    | $\mathrm{Nr} .1 \mathrm{C}-\mathrm{fl} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbZrO} \mathbf{3}_{\mathbf{3}}-\mathrm{Pb}\left(\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{\mathbf{3}}$ | 1b | Phase diagram: Fig. 715. <br> Lattice parameters: Fig. 716. |
    |  | 7 a | Electromechanical property: Fig. 717, 718. |
    | Nr. $1 \mathrm{C}-\mathbf{4 8} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{PbZrO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{\mathbf{3}}$ | 1b | Lattice parameters: Fig. 719. Curie temperature: Fig. 720. |
    |  | 72 | Electromechanical property: Fig. 721. |
    | Nr. $\mathbf{1}^{\text {C-f9 }} \mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}-\mathrm{ABO}_{3}$ | 1b \| | Phase diagram: Fig. 722. |
    | Nr. $\mathbf{1 C - f 1 0 ~}^{\text {PbTiO}} \mathbf{3}^{-} \mathrm{SrTiO}_{\mathbf{3}}-\mathrm{LaMnO}_{3}$ |  | Curie temperature: Fig. 723. |
    | Nr. $1 \mathrm{C}-\mathbf{1 1 1} \mathrm{PbTiO}_{\mathbf{3}}-\mathrm{LaMnO}_{\mathbf{3}}-\mathrm{LaMeO}_{\mathbf{3}}(\mathrm{Me}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cr})$ |  |  |
    | , | 1b | Transition temperatures: Fig. 724. |
    |  | 5a | Dielectric constant: Fig. 725. |
    |  | 11 | Magnetic susceptibility: see Fig. 725. Magnetization: Fig. 726. |

    Figuren S. 349 ff.
    II $2 \mathrm{WO}_{3}$
    $\mathrm{Nr} .1 \mathrm{C}-\mathrm{f12} \mathrm{BaTiO}_{3}-\mathrm{SrTiO}_{3}-\mathrm{LaYO}_{3}-\mathrm{LaInO}_{3}$
    Nr. $1 \mathrm{C}-\mathrm{f13} \mathrm{CaSnO}_{3}-\mathrm{SrSnO}_{3}-\mathrm{BaSnO}_{3}$
    Nr. 1C-f14 (Na-K)(Nb-Ta)Os
    Nr. 1C-f15 (Ca-Ba)(Ti-Zr)O ${ }_{3}$
    Nr. 1C-f16 (Sr-Pb)(Ti-Zr)O

    Nr. 1C-f17 (Ba-Pb)(Ti-Zr)O

    Nr. $1 \mathrm{C}-\mathrm{f} 18$ ( $\mathrm{Ba}-\mathrm{Pb}$ )( $\mathrm{Ti}-\mathrm{Sn}) \mathrm{O}_{3}$

    1b | Phase diagram: Fig. 727.
    1b | Phase diagram: Fig. 728.
    1b | Phase diagram: Fig. 729.
    1b | Phase diagram: Fig. 730.
    1b $\mid$ Phase diagram: Fig. 731. Lattice parameter: Fig. 732.
    5a $\left\lvert\, \begin{aligned} & \text { Transition temperature: Fig. } 733 . \\ & \text { Dielectric constant: Fig. 734, } 735 .\end{aligned}\right.$
    1b | Phase diagram: Fig. 736. Lattice parameter: Fig. 737. Transition temperature: Fig. 738.
    7a
    Electromechanical properties: Fig. 739, 740.
    1b
    Phase diagram: Fig. 741, 742.
    Lattice parameter: Fig. 743.
    Transition temperature: Fig. 744.
    1b
    Phase diagram: Fig. 745.
    Lattice parameter: Fig. 746.
    $2 \mathrm{WO}_{3}$
    2A Pure compound
    Nr. 2A-1 WO $\mathbf{W}_{3}$, Tungsten trioxide
    


    ## V Index of substances - Substanzenverzeichnis

    This index consists of two parts: part A is for pure compounds (including complex compounds such as $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ or $\mathrm{Na}_{0.5} \mathrm{Bi}_{4.5} \mathrm{Ti}_{4} \mathrm{O}_{15}$ ) and part $B$ is for solid solutions.

    V A: In the 1 st column the substances are ordered according to the alphabetically arranged gross formula. When their names (e.g. Rochelle salt) and/or their abbreviated names (e.g. TGS) are widely used, they are also included in this column In the gross formula the numbers of the elements are determined by simple addition.

    Compounds containing water of crystallization are, however, listed twice: (1) $H$ and $O$ of the water molecules are included in the gross formula, (2) the water molecules are attached separately to the gross formula. For instance, Rochelle salt is listed in the 1st column as $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}{ }_{6}-4 \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{KNaO}_{10}$ and also as Rochelle salt, RS, Seignette salt.

    Crystals in which $H$ is replaced by D (e.g $\mathrm{KD}_{2} \mathrm{PO}_{4}$ ) are not listed separately, since data on their properties are presented in the same section as the data on the non-deuterated crystals (e.g. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ ).
    V B: In the 1 st column the gross formula of each $\mathrm{PbTiO}_{3}$ for tha of a solid solution (e.g. $\mathrm{BaTiO}_{3}$ or listed in the same manner as in the case of ${ }_{3}$ ) is compounds. Thus thenner as in the case of pure can be found in the 2nd column by luoking $-\mathrm{PbTiO}_{3}$ either $\mathrm{BaO}_{3} \mathrm{Ti}$ or $\mathrm{O}_{3} \mathrm{PbTi}$ in the 1 st column for Part B. If the solid solution the 1st column of formula such as ( $\mathrm{Sb}_{n} \mathrm{Bi}_{1}$ ) SI is expressed by the be obtained by putting $x$ equal to either 0 or 1 When solid solutions have abbreviated names (e.g. KTN), these are also included in the 1st column.

    Since in general one section corresponds to one substance in this volume, the 3rd column gives the
    section number and the 4th section number and the 4 th column gives the first
    page of the section.

    Dieses Verzeichnis besteht aus zwei Teilen: Teil A enthālt die reinen Verbindungen (einschließlich komplexer Verbindungen wie $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ oder $\mathrm{Na}_{0.5} \mathrm{Bi}_{4.5} \mathrm{Ti}_{4} \mathrm{O}_{15}$ ) und Teil B enthält die Mischkristalle.
    V A: In der 1. Spalte sind die Substanzen nach der alphabetisch angeordneten Bruttoformel aufgeführt. Wenn ihre Namen (z. B. Seignette-Salz) und/ oder ihre abgekürzten Bezeichnungen (z. B. TGS) Spalte gebraucht werden, sind auch sie in dieser Spalte zu finden. In der Bruttoformel ist die Anstimmt

    Verbindungen, die Kristallwasser enthalten sind zweimal aufgeführt: 1. H und O der Wassermoleküle sind in der Bruttoformel enthalten. 2. die Wassermoleküle werden getrennt der Bruttoformel hinzugefügt (z. B. Seignette-Salz ist in der 1. Spalte aufgeführt als $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{KNaO}_{10}$ und auch als Rochelle-Salz, RS, Seignette-Salz).
    $\mathrm{KD}_{2} \mathrm{PO}_{4}$ ), werden nicht gesondert ersetzt ist ( $z$. B . ten von ihren selben Abschnittigenschaften erscheinen in demselben Abschnitt an der gleichen Stelle wie die Daten von den nicht deuterierten Kristallen (z.B. $\mathrm{KH}_{2} \mathrm{PO}_{4}$ ). Endsubstanz eine Spalte ist die Bruttoformel ${ }^{\text {jeder }}$ oder PbTiO für Mie Mischallreihe (z. $\mathrm{B} . \mathrm{BaTiO}_{3}$ $\mathrm{PbTiO}_{8}$ ) in derselben Weischkristallreihe $\mathrm{BaTiO}_{3}-$ von reinen Verbindungen. aufgeführt wie im Fall kristallreihe $\mathrm{BaTiO}_{3}-\mathrm{PbTiO}_{3}$ in der zweiten Spalte gefunden werden, wenn man zunächst entweder $\mathrm{BaO}_{3} \mathrm{Ti}$ oder $\mathrm{O}_{3} \mathrm{PbTi}$ in der ersten Spalte von Teil B sucht. Wenn die Mischkristallreihe durch die Formel ( $\mathrm{Sb}_{x} \mathrm{Bi}_{1-x}$ ) SI ausgedrückt wird, kann man die Endsubstanz finden, indem man $x$ gleich 0 oder 1 setzt. Wenn Mischkristalle abgekürzte Namen haben ( $z$. B. KTN), sind diese auch in der 1. Spalte
    enthalten.

    Da in diesem Band jeweils ein Abschnitt eine Substanz entspricht, gibt die 3. Spalte die Abschnittsnummer und die 4. Spalte die erste Seite
    des Abschnitts an.

    VA Pure compounds

    | Gross formula | Chemical formula |  |  |
    | :---: | :---: | :---: | :---: |
    | ADP |  | Nr. | Page |
    | $\mathrm{AgC}_{2} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{5}$ | $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4} \mathrm{CH}$ | 13A-7 |  |
    | $\mathrm{Ag}_{2} \mathrm{H}_{3} \mathrm{IO}_{6}$ $\mathrm{AgNbO}_{3}$ | $\mathrm{Ag}_{2} \mathrm{H}_{3} \mathrm{IO} \mathrm{O}_{6}$ | $13 \mathrm{~A}-7$ $29 \mathrm{~A}-1$ | 143 |
    | $\mathrm{AgO}_{3} \mathrm{Ta}$ | $\mathrm{AgNbO}_{3}$ | 35-22 | 209 |
    | ${ }^{\mathrm{AgO}_{3} \mathrm{~V}}$ | $\mathrm{AgTaO}_{3}$ | 35-16 | 207 |
    | $\mathrm{AlCH}_{6} \mathrm{NO}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{AgVO}_{3}$ $\mathrm{CH} \mathrm{NH}_{3} \mathrm{Al}(\mathrm{SO})_{2} \cdot 12 \mathrm{H}_{2} \mathrm{l}$ | $35-18$ $35-20$ | 207 |
    | AlCH ${ }_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 35-20 | 208 |
    | $\mathrm{AlCH}_{18} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{~S}_{2}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{3} \mathrm{O}$ | 18A-4 | 158 |
    | $\mathrm{AlCH}_{30} \mathrm{NO}_{20} \mathrm{NO}_{3}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{CH} \mathrm{NH}_{3} \mathrm{Al}$ | 19A-1 | 161 |
    | $\mathrm{AlCH}_{6} \mathrm{NO}_{3} \mathrm{Se}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 19A-1 | 161 |
    | $\mathrm{AlCH}_{6} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Se}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Al}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-4 | 158 |
    |  | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Al}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 18A-10 | 161 |
    | $\mathrm{AlCH}_{30} \mathrm{NO}_{20} \mathrm{Se}_{2}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Al}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-5 | 166 |
    | Ammonium | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Al}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 19A-5 | 166 |
    |  |  | 18A-10 | 161 |
    | $\mathrm{AsCsH}_{2} \mathrm{O}_{4}$ $\mathrm{AsH}_{2} \mathrm{KO}_{4}$ | $\mathrm{CsH}_{2} \mathrm{AsO}_{4}$ | 35-14 |  |
    | $\mathrm{AsH}_{2} \mathrm{KO}_{4}$ | $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ | 13A-6 | 143 |
    |  |  | 13A-4 | 141 |

    V Substanzenverzeichnis
    
    $V$ Index of substances

    | Gross formula | Chemical formula | Nr. | Page |
    | :---: | :---: | :---: | :---: |
    | BiClS | BiSCl |  |  |
    | BiClSe | BiSeCl | 10A-6 | 125 |
    | $\mathrm{Bi}_{2} \mathrm{Fe}_{4} \mathrm{Nb}_{6} \mathrm{Nd}_{4} \mathrm{O}_{30}$ | $\mathrm{Bi}_{2} \mathrm{Nd}_{4} \mathrm{Fe}_{4} \mathrm{Nb}_{6} \mathrm{O}_{30}$ | 10A-9 | 126 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}$ | 5C-i2 | 104 |
    | $\mathrm{Bi}_{5} \mathrm{GaO}_{15} \mathrm{Ti}_{3}$ | $\mathrm{BiBi}_{4} \mathrm{Ti}_{3} \mathrm{GaO}_{15}$ | 1A-15 | 63 |
    | BiIS | $\mathrm{BiSI}^{\text {(1) }}$ | 7A-18 | 112 |
    | BiISe | BiSeI | 10A-8 | 126 |
    | $\mathrm{BiK}_{2} \mathrm{Nb}_{5} \mathrm{O}_{15}$ | $\mathrm{K}_{2} \mathrm{BiNb}_{5} \mathrm{O}_{15}$ | 10A-11 | 127 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{~K}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ |  | $5 \mathrm{C}-\mathrm{a} 2$ | 102 |
    | $\mathrm{Bi}_{4.5} \mathrm{~K}_{0.5} \mathrm{O}_{15} \mathrm{Ti}_{4}$ | $\mathrm{K}_{0.5} \mathrm{Bi}_{4.5} \mathrm{Ti}_{4} \mathrm{O}_{15}$ | 181-i | 64 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{Na}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ |  | $7 \mathrm{~B}-4$ | 114 |
    | $\mathrm{Bi}_{4.5} \mathrm{Na}_{0.5} \mathrm{O}_{15} \mathrm{Ti}_{4}$ | ${ }^{\mathrm{Na}_{0.5} \mathrm{Hi}_{4.5} \mathrm{Ti}_{4} \mathrm{O}_{15}}$ | 181-ii | 64 |
    | $\mathrm{Bi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8} \mathrm{~Pb}$ | ( ${ }^{\mathrm{Na}_{0.5} \mathrm{SH}_{4.5} \mathrm{Hi}_{4} \mathrm{O}_{15}}$ | 7B-3 | 114 |
    | $\mathrm{Bi}_{3} \mathrm{NbO}_{12} \mathrm{PbTi}_{2}$ | $\mathrm{PbBi}_{3} \mathrm{Ti}_{2} \mathrm{NbO}_{12}$ | 7A-9 | 109 |
    | $\mathrm{Bi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{3} \mathrm{Sr}$ | $\mathrm{SrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7A-13 | 110 |
    | $\mathrm{Bi}_{3} \mathrm{NbO}_{9} \mathrm{Ti}$ | $\mathrm{BiBi}_{2} \mathrm{TiNbO}_{9}$ | 7A-5 | 108 |
    | $\mathrm{Bi}_{2} \mathrm{O}_{9} \mathrm{PbTa}_{2}$ | $\mathrm{PbBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}{ }^{9}$ | 7A-1 | 107 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{15} \mathrm{PbTi}_{4}$ | $\mathrm{PbBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ | 7A-10 | 110 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{18} \mathrm{~Pb}_{2} \mathrm{Ti}_{5}$ | $\mathrm{Pb}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$ | 7A-15 | 111 |
    | $\mathrm{Bi}_{2} \mathrm{O}_{8} \mathrm{SrTa}_{2}$ | $\mathrm{SrBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}{ }^{\text {a }}$ | 7A-20 | 112 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{15} \mathrm{SrTi}_{4}$ | $\mathrm{SrBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ | 7A-6 | 109 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{18} \mathrm{Sr}_{2} \mathrm{Ti}_{5}$ | $\mathrm{Sr}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$ | 7A-16 | 111 |
    | $\mathrm{Bi}_{3} \mathrm{O}_{9} \mathrm{TaTi}$ | $\mathrm{BiBi}_{2} \mathrm{TiTaO}_{9}$ | 7A-21 | 113 |
    | $\mathrm{Bi}_{2} \mathrm{O}_{11} \mathrm{Ti}_{4}$ | $\mathrm{Bi}_{2} \mathrm{Ti}_{4} \mathrm{O}_{4}$ | $7 \mathrm{~A}-2$ | 107 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{12} \mathrm{Ti}_{3}$ | ${ }^{\mathrm{BiBi}_{3} \mathrm{Ti}_{2} \mathrm{TiO}_{12}}$ | 7A-22 | 113 |
    | $\mathrm{Br}_{3} \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{HgN}$ | $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{HgBr}_{3}$ | 7A-11 | 110 |
    | $\mathrm{Br}_{3} \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{HgP}$ | $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{HgBr}_{3}$ | 24A-2 | 179 |
    | BrH | ${ }_{\mathrm{H} \cdot \mathrm{Br}}{ }^{\text {a }}$ | 24A-3 | 180 |
    | BrSSb | SbSBr | 35-12 | 203 |
    | BrSbSe | SbSeBr | 10A-1 | 122 |
    |  |  | 10A-3 | 124 |
    | $\mathrm{C}_{9} \mathrm{CaCl}_{2} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$ | $\left(\mathrm{CH}_{3} \mathrm{NHCH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{CaCl}_{2}$ |  |  |
    | $\mathrm{C}_{18} \mathrm{Ca}_{2} \mathrm{H}_{30} \mathrm{O}_{12} \mathrm{~Pb}$ | $\mathrm{Ca}_{2} \mathrm{~Pb}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{8}{ }^{\text {a }}$ | 32A-1 | 192 |
    | $\mathrm{C}_{18} \mathrm{Ca}_{2} \mathrm{H}_{80} \mathrm{O}_{12} \mathrm{Sr}$ | $\mathrm{Ca}_{2} \mathrm{Sr}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{6}$ | 26A-2 | 183 |
    | $\mathrm{C}_{4} \mathrm{Cl}_{3} \mathrm{H}_{12} \mathrm{HgN}$ | ${ }^{\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \cdot \mathrm{HgCl}_{3}}$ | 26A-1 | 182 |
    | $\mathrm{C}_{4} \mathrm{Cl}_{2} \mathrm{H}_{10} \mathrm{MnN}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{2} \cdot \mathrm{MnCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 24A-1 | 178 |
    | $\mathrm{C}_{4} \mathrm{Cl}_{2} \mathrm{H}_{44} \mathrm{MnN}_{2} \mathrm{O}_{6}$ | ${ }_{\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{2} \cdot} \cdot \mathrm{MnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | $31 \mathrm{~A}-1$ | 192 |
    | $\mathrm{C}_{2} \mathrm{ClH}_{6} \mathrm{NO}_{2}$ | $\mathrm{CH}_{2} \mathrm{ClCOONH}_{4} \mathrm{MnC2}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 31A-1 | 192 |
    | $\mathrm{C}_{4} \mathrm{Cl}_{2} \mathrm{H}_{8} \mathrm{NO}_{4}$ | $\left(\mathrm{CH}_{2} \mathrm{ClCOO}\right){ }_{2} \mathrm{H}^{4} \cdot \mathrm{NH}$ | 27A-1 | 184 |
    | $\underline{C C r H}{ }_{6} \mathrm{NO}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 27A-2 | 184 |
    | $\mathrm{CCrH}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Cr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 18A-6 | 160 |
    | $\mathrm{CCrH}_{30} \mathrm{NO}_{20} \mathrm{~S}_{2}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 19A-2 | 164 |
    | $\mathrm{CCrH}_{18} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{~S}_{2}$ | ${ }^{\mathrm{CH}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Cr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}}$ | 18A-6 | 160 |
    | $\mathrm{CCrH}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Se}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | $\left.{ }^{\mathrm{C}}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Cr}(\mathrm{SeO})_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-2 | 164 |
    | $\mathrm{CCrH}_{18} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{Se}_{8}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Cr}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-6 | 167 |
    | $\mathrm{C}_{2} \mathrm{CuH}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{Cu}(\mathrm{HCOO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 19A-6 | 167 |
    | $\mathrm{C}_{2} \mathrm{CuH}_{10} \mathrm{O}_{8}$ | $\mathrm{Cu}(\mathrm{HCOO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 25A-1 | 180 |
    | $\mathrm{C}_{6} \mathrm{FeH}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{O}_{3}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 25A-1 | 180 |
    | $\mathrm{CFeH}_{6} \mathrm{NO}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $22 \mathrm{~A}-2$ | 174 |
    | $\mathrm{CFeH}_{30} \mathrm{NO}_{20} \mathrm{~S}_{2}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-7 | 160 |
    | $\mathrm{C}_{6} \mathrm{FeK}_{4} \mathrm{~N}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 18A-7 | 160 |
    | CGaH ${ }_{6} \mathrm{NO}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Ga}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 22A-2 | 174 |
    | $\mathrm{CaH}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | C( $\left.\mathrm{NH}_{2}\right)_{3} \mathrm{Ga}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 18A-5 | 160 |
    | $\mathrm{GaH}_{18} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{~S}_{2}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Ga}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-3 | 165 |
    | $\mathrm{GaH}_{50} \mathrm{NO}_{20} \mathrm{~S}_{2}$ | ${ }^{\left(\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Ga}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right.}$ | 19A-3 | 165 |
    | CGaH $\mathrm{N}_{3} \mathrm{O}_{8} \mathrm{Se}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | ( ${ }^{\text {che }}{ }_{3} \mathrm{NH}_{3} \mathrm{Ga}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-5 | 160 |
    | $\mathrm{CGaH}_{18} \mathrm{~N}_{3} \mathrm{O}_{41} \mathrm{Se}_{2}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Ga}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-7 | 167 |
    | $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{HgI}_{3} \mathrm{~N}^{1}$ | $\mathrm{C}_{( }\left(\mathrm{CH}_{3}\right)_{4} \mathrm{HgI}_{3}{ }^{\text {a }}$ | 19A-7 | 167 |
    | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~K}_{4} \mathrm{MnN}_{0} \mathrm{O}_{3}$ | $\mathrm{K}_{4} \mathrm{Mn}(\mathrm{CN})_{0} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 24A-4 | 180 |
    | ${ }_{6} \mathrm{H}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Os}^{3}$ |  | 22A-1 | 174 |
    | ${ }_{6} \mathrm{H}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Ru}$ |  | 22A-4 | 176 |
    | ${ }_{4} \mathrm{H}_{4} \mathrm{KNaO}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaKC} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 22A-3 | 176 |
    | $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{KNaO}_{10}$. | $\mathrm{NaKC} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $33 \mathrm{~A}-1$ | 193 |
    | $\mathrm{H}_{8} \mathrm{LiNO}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{LiNH}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | 33A-1 | 193 |
    |  | ${ }^{-1 N} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | 34A-1 | 199 |

    V Substanzenverzeichnis

    | Gross formula | Chemical formula | Nr. | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{LiNO}_{7}$ | $\mathrm{LiNH}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | 34A-1 | 199 |
    | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{LiO}_{6} \mathrm{Tl} \cdot \mathrm{H}_{2} \mathrm{O}$ | LiTIC4 $\mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | 34A-2 | 199 |
    | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{LiO}_{7} \mathrm{Tl}$ | LiTIC4 $\mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | 34A-2 | 199 |
    | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NNaO}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33A-2 | 197 |
    | $\mathrm{C}_{4} \mathrm{H}_{18} \mathrm{NNaO}_{10}$ | $\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33A-2 | 197 |
    | $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{7}$ | $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{2} \cdot \mathrm{HNO}_{3}$ | 30A-1 | 191 |
    | $\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}$ | $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$ | 28A-1 | 185 |
    | $\mathrm{CH}_{6} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{~V} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{~V}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-8 | 161 |
    | $\mathrm{CH}_{6} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S} 2 \mathrm{~V} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{~V}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-4 | 166 |
    | $\mathrm{CH}_{18} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{~V}$ | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{~V}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 19A-4 | 166 |
    | $\mathrm{CH}_{30} \mathrm{NO}_{20} \mathrm{~S}_{2} \mathrm{~V}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{~V}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-8 | 161 |
    | $\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Se}$ | $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{SeO}_{4}$ | 28A-2 | 190 |
    | $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}$ | $\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}$ | 23A-1 | 177 |
    | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NaO}_{6} \mathrm{Rb} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaRbC} \mathrm{C}_{4} \mathrm{H}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33A-3 | 198 |
    | $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NaO}_{10} \mathrm{Rb}$ | $\mathrm{NaRbC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33A-3 | 198 |
    | $\mathrm{CH}_{6} \mathrm{InNO}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{In}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{8} \mathrm{O}$ | 18A-9 | 161 |
    | $\mathrm{CH}_{30} \mathrm{InNO}_{20} \mathrm{~S}_{2}$ | $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{In}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-9 | 161 |
    | $\mathrm{C}_{6} \mathrm{~K}_{4} \mathrm{MnN}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Mn}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{8} \mathrm{O}$ | 22A-1 | 174 |
    | $\mathrm{C}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{Os} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Os}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22A-4 | 176 |
    | $\mathrm{C}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{Ru} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Ru}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22A-3 | 176 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}$ | 1A-5 | 44 |
    | $\mathrm{CaO}_{3} \mathrm{Zr}$ | $\mathrm{CaZrO}_{3}$ | 1A-10 | 60 |
    | $\mathrm{Cd}_{2} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{3}$ | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cd}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ | 16A-1 | 156 |
    | $\mathrm{Cd}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Cd}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B3-xvii | 70 |
    | $\mathrm{Cd}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Cd}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B3-xvii | 70 |
    | $\mathrm{Cd}_{2} \mathrm{Nb}_{8} \mathrm{O}_{7}$ | $\mathrm{Cd}_{2} \mathrm{Nb}_{3} \mathrm{O}_{7}$ | 6A-1 | 105 |
    | $\mathrm{Cd}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Cd}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$ | 184-iii | 71 |
    | $\mathrm{Cd}_{1 / 2} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Cd}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B2-ii | 65 |
    | $\mathrm{CdO}_{3} \mathrm{Ti}$ | $\mathrm{CdTiO}_{3}$ | 1A-7 | 50 |
    | $\mathrm{Cl}_{3} \mathrm{CsGe}$ | $\mathrm{CsGeCl}_{3}$ | 35-21 | 208 |
    | ClH | HCl | 35-11 | 202 |
    | CIK | KCl | 35-28 | 211 |
    | $\mathrm{CoCrH}_{5} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{Co}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{HCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-11 | 161 |
    | $\mathrm{CoCrH}_{29} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{~S}_{2}$ | $\mathrm{Co}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{HCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-11 | 161 |
    | Colemanite | $\mathrm{Ca}_{2} \mathrm{~B}_{6} \mathrm{O}_{11} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CaB}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | $21 \mathrm{~A}-1$ | 173 |
    | $\mathrm{Co}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Co}_{2 / 4} \mathrm{Mn}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B3-xvii | 70 |
    | $\mathrm{Co}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Co}_{1 / 4} \mathrm{Mn}_{1 / 4} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ | 183-xvii | 70 |
    | $\mathrm{Co}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{CO}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$ | 1B4-iv | 71 |
    | $\mathrm{Co}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B3-iv | 68 |
    | $\mathrm{Co}_{1 / 3} \mathrm{O}_{3} \mathrm{PbTa}_{2 / 3}$ | $\mathrm{Pb}\left(\mathrm{Co}_{1 / 3} \mathrm{Ta}_{2 / 3}\right) \mathrm{O}_{3}$ | 1B4-vii | 72 |
    | $\mathrm{Co}_{1 / 2} \mathrm{O}_{3} \mathrm{PbTa}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B3-xiii | 70 |
    | $\mathrm{Co}_{1 / 2} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Co}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B2-iv | 66 |
    | $\mathrm{Cr}_{1 / 4} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{PbSc}_{1 / 4}$ | $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 4} \mathrm{Cr}_{1 / 4} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | 183-xvii | 70 |
    | $\mathrm{CsH}_{2} \mathrm{O}_{4} \mathrm{P}$ | $\mathrm{CsH}_{2} \mathrm{PO}_{4}$ | 13A-3 | 141 |
    | $\mathrm{CsH}_{3} \mathrm{O}_{6} \mathrm{Se}_{2}$ | $\mathrm{CsH}_{8}\left(\mathrm{SeO}_{3}\right)_{2}$ | 20A-3 | 172 |
    | $\mathrm{CsNO}_{3}$ | $\mathrm{CsNO}_{3}$ | 12A-3 | 134 |
    | Deoxyribonucleic acid | Deoxyribonucleic acid | 35-33 | 212 |
    | DNA | Deoxyribonucleic acid | 35-33 | 212 |
    | $\mathrm{ErMnO}_{3}$ | $\mathrm{ErMnO}_{3}$ | 4A-2 | 95 |
    | $\mathrm{Eu}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $\mathrm{Eu}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ | 35-2 | 200 |
    | $\mathrm{F}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{P}$ | $\mathrm{NH}_{4} \mathrm{PF}_{6} \mathrm{NH}_{4} \mathrm{~F}$ | 35-24 | 210 |
    | $\mathrm{FeH}_{4} \mathrm{NO}_{8} \mathrm{~S}_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NH}_{4} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-1 | 157 |
    | $\mathrm{FeH}_{28} \mathrm{NO}_{20} \mathrm{~S}_{2}$ | $\mathrm{NH}_{4} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 18A-1 | 157 |
    | $\mathrm{Fe}_{4} \mathrm{Nb}_{6} \mathrm{Nd}_{6} \mathrm{O}_{30}$ | $\mathrm{Nd}_{6} \mathrm{Fe}_{4} \mathrm{Nb}_{6} \mathrm{O}_{30}$ | 5C-i1 | 104 |
    | $\mathrm{Fe}_{3} \mathrm{Nb}_{3} \mathrm{Nd}_{4} \mathrm{O}_{30} \mathrm{~Pb}_{2}$ | $\mathrm{Pb}_{2} \mathrm{Nd}_{4} \mathrm{Fe}_{3} \mathrm{Nb}_{3} \mathrm{O}_{30}$ | 5C-h3 | 104 |
    | $\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B3-iii | 67 |
    | $\mathrm{FeNb}_{5} \mathrm{O}_{30} \mathrm{Sr}_{5} \mathrm{Se}_{5}$ | $\mathrm{Sr}_{6} \mathrm{FeNb}_{9} \mathrm{O}_{30}$ | 5C-f2 | 104 |
    | $\mathrm{Fe}_{2} \mathrm{Nb}_{8} \mathrm{O}_{80} \mathrm{Sr}_{4} \mathrm{Yb}_{2}$ | $\mathrm{Sr}_{4} \mathrm{Yb}_{8} \mathrm{Fe}_{2} \mathrm{Nb}_{8} \mathrm{O}_{30}$ | 5C-g5 | 104 |
    | $\mathrm{Fe}_{1 / 2} \mathrm{O}_{3} \mathrm{PbTa}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ | 183-xii | 69 |
    | $\mathrm{Fe}_{1 / 2} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{~W}_{1 / 2} \mathrm{O}_{3}\right.$ | 1B3-xvi | 70 |
    | $\mathrm{Fe}_{2 / 3} \mathrm{O}_{3} \mathrm{PbW}_{1 / 3}$ | $\mathrm{Pb}\left(\mathrm{Fe}_{2 / 3} \mathrm{~W}_{1 / 3}\right) \mathrm{O}_{3}$ | 1B5-ii | 73 |

    ## $V$ Index of substances

    

    V Substanzenverzeichnis

    | Gross formula | Chemical formula | Nr. | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{MnO}_{2}$ | $\mathrm{MnO}_{2}$ | 35-31 | 212 |
    | $\mathrm{Mn}_{1 / 2} \mathrm{O}_{3} \mathrm{PbRe}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{Re}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B2-v | 66 |
    | $\mathrm{Mn}_{1 / 2} \mathrm{O}_{3} \mathrm{PbTa} \mathrm{P}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ | 183-xi | 69 |
    | $\mathrm{Mn}_{1 / 2} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ | 1B2-iii | 66 |
    | $\mathrm{Mn}_{2 / 3} \mathrm{O}_{3} \mathrm{PbW}_{1 / 3}$ | $\mathrm{Pb}\left(\mathrm{Mn}_{2 / 3} \mathrm{~W}_{1 / 3}\right) \mathrm{O}_{3}$ | 1B5-i | 73 |
    | $\mathrm{MnO}_{3} \mathrm{Tm}$ | $\mathrm{TmMnO}_{3}$ | 4A-4 | 96 |
    | $\mathrm{MnO}_{3} \mathrm{Y}$ | $\mathrm{YMnO}_{3}$ | 4A-1 | 94 |
    | $\mathrm{MnO}_{3} \mathrm{Yb}$ | $\mathrm{YbMnO}_{3}$ | 4A-5 | 96 |
    | $\mathrm{MO}_{3} \mathrm{O}_{18} \mathrm{Sm}_{2}$ | $\mathrm{Sm}_{2}\left(\mathrm{MOO}_{4}\right)_{3}$ | 35-1 | 200 |
    | $\mathrm{MO}_{3} \mathrm{O}_{12} \mathrm{~Tb}_{2}$ | $\mathrm{Tb}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ | 35-4 | 201 |
    | $\mathrm{NNaO}_{2}$ | $\mathrm{NaNO}_{2}$ | 11A-1 | 128 |
    | $\mathrm{NO}_{3} \mathrm{Rb}$ | $\mathrm{RbNO}_{3}$ | 12A-2 | 133 37 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}$ | 1A-1 | 37 40 |
    | $\mathrm{NaO}_{3} \mathrm{Ta}$ | $\mathrm{NaTaO}_{3}$ | 1A-3 | 40 |
    | $\mathrm{NaO}_{3} \mathrm{~V}$ | $\mathrm{NaVO}_{3}$ | 35-19 | 208 |
    | $\mathrm{Nb}_{1 / 2} \mathrm{Ni}_{1 / 2} \mathrm{O} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Ni}_{1 / 2} \mathrm{Nb}_{2 / 2}\right) \mathrm{O}_{3}$ | 1B3-v | 68 |
    | $\mathrm{Nb}_{2 / 3} \mathrm{Ni}_{1 / 3} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Ni}_{1} / \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}$ | 1B4-v $5 \mathrm{~A}-1$ | 72 97 |
    | $\mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{~Pb}$ | $\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5A-1 | 97 106 |
    | $\mathrm{Nb}_{2} \mathrm{O}_{7} \mathrm{~Pb}_{2}$ | $\mathrm{Pb}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | 6A-2 | 106 |
    | $\mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{PbSc}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ $\mathrm{~Pb}\left(\mathrm{Yb}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3}\right.$ | 1B3-i | 67 |
    | ${ }_{\text {Nb }}{ }^{\mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{PbYb}_{1 / 2}} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \mathrm{PbZn}_{1 / 3}$ | $\mathrm{Pb}\left(\mathrm{Yb}_{1 / 2} \mathrm{Nb}_{1 / 2}\right)^{\text {O }} \mathrm{O}_{3}$ $\mathrm{~Pb}\left(\mathrm{Zn}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3}\right.$ | 1B4-ii | 71 |
    | $\mathrm{Nb}_{5} \mathrm{O}_{15} \mathrm{RbSr}_{2}$ | $\mathrm{RbSr} \mathrm{S}_{2} \mathrm{Nb}_{5} \mathrm{O}_{15}$ | $5 \mathrm{C}-\mathrm{b4}$ | 103 |
    | $\mathrm{Ni}_{1 / 3} \mathrm{O}_{3} \mathrm{PbTa}_{2} / 3$ | $\mathrm{Pb}\left(\mathrm{Ni}_{1 / 3} \mathrm{Ta}_{2 / 3}\right) \mathrm{O}_{3}$ | 1B4-viii | 73 |
    | $\mathrm{O}_{3} \mathrm{PbSc}_{1 / 2} \mathrm{Ta}_{1 / 2}$ | $\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ | 183-x | 69 210 |
    | $\mathrm{O}_{8} \mathrm{~Pb}_{4} \mathrm{Si}^{1 / 2}$ | $\mathrm{Pb}_{4} \mathrm{SiO}_{5}{ }^{\text {P }}$ | 35-26 | 210 98 |
    | $\mathrm{O}_{6} \mathrm{PbTa}_{2}$ $\mathrm{O}_{3} \mathrm{PbTa}_{1 / 2} \mathrm{Yb}_{1 / 2}$ | ${ }_{\text {PbTa }} \mathrm{Pb}_{6} \mathrm{~Pb}_{6} \mathrm{Yb}_{1 / 2} \mathrm{Ta}_{2 / 2} \mathrm{O}_{3}$ | 5A-4 1B3-xiv | 98 70 |
    | ${ }_{\mathrm{O}} \mathrm{O}_{3} \mathrm{PbTa}_{1 / 2} \mathrm{~Pb}_{1 / 2}$ | ${ }^{\mathrm{Pb}\left(\mathrm{Yb}_{1 / 2} \mathrm{Ta}_{1 / 2} \mathrm{O}_{3}\right.}$ | 1A-9 | 59 |
    | $\mathrm{O}_{8} \mathrm{~Pb}_{3} \mathrm{~V}_{2}$ | $\mathrm{Pb}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ | 35-25 | 210 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}$ | 1A-13 | 61 |
    | $\mathrm{O}_{3} \mathrm{RbTa}$ | $\mathrm{RbTaO}_{3}$ | 35-17 | 207 |
    | $\mathrm{O}_{2} \mathrm{Sn}$ | $\mathrm{SnO}_{2}$ | 35-32 | 212 |
    | $\mathrm{O}_{6} \mathrm{SrTa}_{2}$ | $\mathrm{SrTa}_{2} \mathrm{O}_{6}$ | 5A-2 | 98 |
    | $\mathrm{O}_{7} \mathrm{Sr}_{2} \mathrm{Ta}_{2}$ | $\mathrm{Sr}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ | 6A-3 | 106 45 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{SrTiO}_{3}$ | 1A-6 | 65 |
    | $\mathrm{O}_{3} \mathrm{Sr} Z \mathrm{r}$ | $\mathrm{SrZrO}_{3}$ | $1 \mathrm{~A}-11$ $35-30$ | 61 212 |
    | $\mathrm{O}_{2} \mathrm{Ti}$ | $\mathrm{TiO}_{2}$ | 35-30 | 12 88 |
    | $\mathrm{O}_{3} \mathrm{~W}$ | $\mathrm{WO}_{3}$ | 2A-1 | 88 |
    | p-azoxyanisule | $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ | $37-1$ $37-2$ | 215 215 |
    | p-azoxyphenetole | $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ | $37-2$ $37-3$ | 215 215 |
    | p-butoxybenzoic acid | $\mathrm{C}_{31} \mathrm{H}_{10} \mathrm{O}_{3}$ | $1 \mathrm{~A}-5$ | 44 |
    | Perovskite p-methoxycinnamic acid |  | 37-4 | 216 |
    | Pyrolusite | $\mathrm{MnO}_{2}$ | 35-31 | 212 |
    | Rochelle salt | $\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33A-1 | 193 |
    | RS | $\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $33 \mathrm{~A}-1$ $35-30$ | 193 212 |
    | Rutile | $\mathrm{TiO}_{2}$ | 35-30 | 212 |
    | Seignette salt | $\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |  | 193 |
    | SiV SnTe |  | $36-4$ $36-2$ | 214 213 |
    | SnTe | SnTe |  |  |
    | TGS Tri-glycine tellurate | $\left.{ }^{\text {( }} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ | $\begin{aligned} & 28 \mathrm{~A}-1 \\ & 28 \mathrm{~A}-4 \end{aligned}$ | 185 190 |

    

    V Substanzenverzeichnis

    | Gross formula | Chemical formula | Nr. | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{BaO}_{3} \mathrm{Ti}$ | $\mathrm{BaTiO}_{3}-\mathrm{LaInO}_{3}-\mathrm{La} \mathrm{YO}_{3}-\mathrm{SrTiO}_{3}$ | 1C-f12 | 88 |
    | $\mathrm{BaO}_{8} \mathrm{Ti}$ | $\mathrm{BaTiO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{BaNb}_{2} \mathrm{O}_{6}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 1C-f19 | 88 |
    | $\mathrm{BaO}_{3} \mathrm{Ti}$ | ( $\mathrm{Ba}-\mathrm{Ca}$ ) $(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3}$ | 1C-f15 | 88 |
    | $\mathrm{BaO}_{3} \mathrm{Ti}$ | $(\mathrm{Ba}-\mathrm{Pb})(\mathrm{Ti}-\mathrm{Sn}) \mathrm{O}_{3}$ | 1C-f18 | 88 |
    | $\mathrm{BaO}_{3} \mathrm{Ti}$ | $(\mathrm{Ba}-\mathrm{Pb})(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3}$ | 1C-f17 | 88 |
    | $\mathrm{BaO}_{3} \mathrm{U}$ | $\mathrm{BaUO}_{3}-\mathrm{BaTiO}_{3}$ | 1C-a26 | 77 |
    | $\mathrm{BaO}_{8} \mathrm{Zr}$ | $\mathrm{BaZrO}_{3}-\mathrm{BaNb}_{2} \mathrm{O}_{6}$ | 5C-j2 | 105 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $\mathrm{BaZrO}_{3}-\mathrm{BaTiO}_{3}$ | 1 C -a23 | 77 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $\mathrm{BaZrO}_{3}-\mathrm{CaZrO}_{3}$ | 1C-a12 | 76 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $\mathrm{BaZrO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-b9 | 82 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $\mathrm{BaZrO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-a 15 | 76 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $(\mathrm{Ba}-\mathrm{Ca})(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ | 1C-f15 | 88 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $(\mathrm{Ba}-\mathrm{Pb})(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ | 1C-f17 | 88 |
    | $\mathrm{BaO}_{3} \mathrm{Zr}$ | $\mathrm{BaZr}_{0.25} \mathrm{Nb}_{1.5} \mathrm{O}_{5.25}$ | $5 \mathrm{C}-\mathrm{j} 3$ | 105 |
    | $\mathrm{BeF}_{4} \mathrm{H}_{8} \mathrm{~N}_{2}$ | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ | 14B-1 | 154 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{BaTiO}_{3}$ | $1 \mathrm{C}-\mathrm{c} 9$ | 84 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{-aAlO}_{3}$ | $1 \mathrm{C}-\mathrm{b} 11$ | 83 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{-aCrO}_{3}$ | 1C-b12 | 83 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{LaFeO}_{3}$ | 1C-a33 | 82 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | $1 \mathrm{C}-\mathrm{d} 23$ | 85 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}$ | $1 \mathrm{C}-\mathrm{c} 13$ | 84 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-c14 | 84 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{SrFeO}_{3}$ | 1C-c16 | 84 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{Sr}\left(\mathrm{Sn}_{1 / 3} \mathrm{Mn}_{2 / 3}\right) \mathrm{O}_{3}$ | 1C-d22 | 85 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{SrSnO}_{3}$ | 1C-c15 | 84 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{SrTiO}_{3}$ | $1 \mathrm{C}-\mathrm{c} 7$ | 83 |
    | $\mathrm{BiFeO}_{3}$ | $\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}$ | 1--f6 | 87 |
    | $\mathrm{Bi}_{5} \mathrm{GaO}_{15} \mathrm{Ti}_{3}$ | $\mathrm{Bi}_{5} \mathrm{Ti}_{3} \mathrm{GaO}_{15}-\mathrm{Bi}_{4} \mathrm{PbTi}_{4} \mathrm{O}_{15}$ | 7B-7 | 114 |
    | BiIS | BiSI-SbSI | 10B-5 | 128 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{~K}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\mathrm{BaTiO}_{3}$ | $1 \mathrm{C}-\mathrm{d} 3$ | 84 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{~K}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}$ | 1C-d20 | 85 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{~K}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-d5 | 84 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{~K}_{1 / 2} \mathrm{O}_{3} \mathrm{Zr}$ | $\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-d17 | 85 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{Na}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}$ | 1C-d20 | 85 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{Na}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\mathrm{PbTiO}_{3}$ | $1 \mathrm{C}-\mathrm{d} 4$ | 84 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{Na}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-d21 | 85 |
    | $\mathrm{Bi}_{1 / 2} \mathrm{Na}_{1 / 2} \mathrm{O}_{3} \mathrm{Zr}$ | $\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-d16 | 85 |
    | $\mathrm{BiNbO}_{6}$ | $\mathrm{Bi}(\mathrm{Nb}-\mathrm{Ti}) \mathrm{O}_{6}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5B-14 | 102 |
    | $\mathrm{Bi}_{2} \mathrm{Nb}_{6} \mathrm{O}_{18}$ | $\mathrm{Bi}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{Nb}_{2} \mathrm{O}_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5B-13 | 102 |
    | $\mathrm{Bi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9} \mathrm{~Pb}$ | $\mathrm{Bi}_{2} \mathrm{PbNb}_{2} \mathrm{O}_{9}-\mathrm{Bi}_{3} \mathrm{TiNbO}_{9}$ | 7B-1 | 113 |
    | $\mathrm{Bi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9} \mathrm{~Pb}$ | $\mathrm{Bi}_{2} \mathrm{PbNb}_{2} \mathrm{O}_{9}-\mathrm{BaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{3}$ | 7B-5 | 114 |
    | $\mathrm{Bi}_{3} \mathrm{NbO}_{18} \mathrm{PbTi}_{2}$ | $\mathrm{Bi}_{3} \mathrm{PbTi}_{2} \mathrm{NbO}_{12}-\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ | 7B-2 | 113 |
    | $\mathrm{Bi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9} \mathrm{Sr}$ | $\mathrm{Bi}_{2} \mathrm{SrNb}_{2} \mathrm{O}_{9}-\mathrm{Bi}_{3} \mathrm{TiNbO}_{9}$ | 7B-1 | 113 |
    | $\mathrm{Bi}_{3} \mathrm{NbO}_{12} \mathrm{SrTi}_{2}$ | $\mathrm{Bi}_{3} \mathrm{SrTi}_{2} \mathrm{NbO}_{12}-\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ | 7B-2 | 113 |
    | $\mathrm{Bi}_{3} \mathrm{NbO}_{9} \mathrm{Ti}$ | $\mathrm{Bi}_{3} \mathrm{TiNbO}_{9}-\mathrm{Bi}_{2} \mathrm{BaNb}_{2} \mathrm{O}_{9}$ | 7B-1 | 113 |
    | $\mathrm{Bi}_{3} \mathrm{NbO} \mathrm{S}_{9} \mathrm{Ti}$ | $\mathrm{Bi}_{3} \mathrm{TiNbO}_{9}-\mathrm{Bi}_{2} \mathrm{PbNb}_{2} \mathrm{O}_{9}$ | 7B-1 | 113 |
    | $\mathrm{Bi}_{3} \mathrm{NbO}_{9} \mathrm{Ti}$ | $\mathrm{Bi}_{3} \mathrm{TiNbO}_{9}-\mathrm{Bi}_{2} \mathrm{SrNb}_{2} \mathrm{O}_{9}$ | 7B-1 | 113 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{15} \mathrm{PbTi}_{4}$ | $\mathrm{Bi}_{4} \mathrm{PbTi}_{4} \mathrm{O}_{15}-\mathrm{Bi}_{5} \mathrm{Ti}_{3} \mathrm{GaO}_{15}$ | 7B-7 | 114 |
    | $\mathrm{BiO}_{8} \mathrm{Ti}$ | $\mathrm{Bi}(\mathrm{Ti}-\mathrm{Nb}) \mathrm{O}_{6}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5B-14 | 102 |
    | $\mathrm{Bi}_{2} \mathrm{O}_{9} \mathrm{Ti}_{3}$ | $\mathrm{Bi}_{2} \mathrm{O}_{5} \cdot 3 \mathrm{TiO}_{2}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5B-14 | 102 |
    | $\mathrm{Bi}_{2} \mathrm{O}_{9} \mathrm{Ti}_{3}$ | $\mathrm{Bi}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{TiO}_{2}-\mathrm{SrTiO}_{3}$ | 1C-e8 | 86 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{12} \mathrm{Ti}_{3}$ | $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}-\mathrm{BaTiO}_{3}$ | 7B-6 | 114 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{18} \mathrm{Ti}_{3}$ | $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}-\mathrm{Bi}_{3} \mathrm{BaTi}_{2} \mathrm{NbO}_{12}$ | 7B-2 | 113 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{12} \mathrm{Ti}_{3}$ | $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}-\mathrm{Bi}_{3} \mathrm{PbTi}_{2} \mathrm{NbO}_{12}$ | 7B-2 | 113 |
    | $\mathrm{Bi}_{4} \mathrm{O}_{12} \mathrm{Ti}_{3}$ | ${ }^{\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}-\mathrm{Bi}_{3} \mathrm{SrTi}_{2} \mathrm{NbO}_{12}}$ | $7 \mathrm{~B}-2$ | 113 |
    | BrSSb | $\mathrm{SbSBr}-\mathrm{SbSI}$ | 10B-3 | 127 |
    | $\mathrm{C}_{6} \mathrm{FH}_{17} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{P}$ | $\begin{aligned} & \left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{PO}_{3} \mathrm{~F}- \\ & \left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ | 28B-2 | 191 |
    | $\mathrm{C}_{6} \mathrm{FeH}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{O}_{3}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Fe}(\mathrm{CN})_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-1 | 176 176 |
    | $\mathrm{C}_{6} \mathrm{FeH}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{O}_{3}$ $\mathrm{C}_{8} \mathrm{FeH}_{6} \mathrm{~K}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{Rb}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $\left.\mathrm{K}, \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{Tl} \mathrm{F}_{4} \mathrm{CN}\right)_{8} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-2 | 176 |
    | $\mathrm{C}_{6} \mathrm{FeH}_{6} \mathrm{~K}_{4} \mathrm{~N}_{6} \mathrm{O}_{3}$ $\mathrm{C}_{6} \mathrm{FeH}_{16} \mathrm{~N}_{10} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | K $\mathrm{Ke}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{Tl}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $22 \mathrm{~B}-3$ $22 \mathrm{~B}-1$ | 177 176 |
    | $\mathrm{C}_{6} \mathrm{FeH}_{22} \mathrm{~N}_{10} \mathrm{O}_{3}$ | $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{K} 4 \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-1 | 176 |

    V Index of substances

    | Gross formula | Chemical formula | Nr. | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{C}_{6} \mathrm{FeH}_{6} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Rb}_{4}$ | $\mathrm{Rb}_{4} \mathrm{Fe}(\mathrm{CN})_{8} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-2 | 176 |
    | $\mathrm{C}_{6} \mathrm{FeH}_{6} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Tl}_{4}$ | $\mathrm{Tl}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{K} 4 \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-3 | 177 |
    | $\mathrm{C}_{6} \mathrm{FeK}_{4} \mathrm{~N}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-1 | 176 |
    | $\mathrm{C}_{6} \mathrm{FeK}_{4} \mathrm{~N}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{Rb}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-2 | 176 |
    | $\mathrm{C}_{6} \mathrm{FeK}_{4} \mathrm{~N}_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{Tl}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-3 | 177 |
    | $\mathrm{C}_{6} \mathrm{FeN}_{6} \mathrm{Rb}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{Rb}_{4} \mathrm{Fe}(\mathrm{CN})_{5} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{K} 4 \mathrm{Fe}(\mathrm{CN})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-2 | 176 |
    | $\mathrm{C}_{6} \mathrm{FeN}_{6} \mathrm{Tl}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{Tl}_{4} \mathrm{Fe}(\mathrm{CN})_{8} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{8} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 22B-3 | 177 |
    | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaKC} 4 \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{8} \mathrm{O}-\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-1 | 198 |
    | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}_{6}-4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaKC} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{8} \mathrm{O}-\mathrm{NaTlC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-2 | 198 |
    | $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{KNaO}_{10}$ | $\mathrm{NaKC} 4 \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-1 | 198 |
    | $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{KNaO}_{10}$ | $\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaTlC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-2 | 198 |
    | $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NNaO}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-1 | 198 |
    | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NNaO}_{10}$ | $\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-1 | 198 |
    | $\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}$ | $\begin{aligned} & \left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}-\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} . \\ & -\mathrm{H}_{2} \mathrm{PO}_{3} \mathrm{~F} \end{aligned}$ | 28B-2 | 191 |
    | $\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}$ | $\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}-\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot$ | 28B-1 | 191 |
    | $\mathrm{C}_{6} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Se}$ | $\begin{aligned} & \left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{SeO}_{4}-\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)_{3} \end{aligned}$ | 28B-1 | 191 |
    | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NaO}_{6} \mathrm{Tl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $\mathrm{NaTlC} \mathrm{C}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-2 | 198 |
    | $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NaO}_{10} \mathrm{Tl}$ | $\mathrm{NaTlC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 33B-2 | 198 76 |
    | $\mathrm{CaHfO}_{3}$ | $\mathrm{CaHfO}_{3}-\mathrm{PbHfO}_{3}$ | ${ }_{\text {1 }}^{\text {5B-a }} 16$ | 76 |
    | $\mathrm{CaNb}_{2} \mathrm{O}_{6}$ | $\mathrm{CaNb}_{2} \mathrm{O}_{6}-\mathrm{BaNb}_{2} \mathrm{O}_{6}$ | 5B-1 | 89 |
    | $\mathrm{CaNb}_{2} \mathrm{O}_{6}$ | $\mathrm{CaNb}_{2} \mathrm{O}_{6}-\mathrm{NaNbO}_{3}$ | 1C-e3 | 86 99 |
    | $\mathrm{CaNb}_{8} \mathrm{O}_{6}$ | $\mathrm{CaNb}_{2} \mathrm{O}_{6}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | $5 \mathrm{~B}-2$ $5 \mathrm{~B}-15$ | -99 |
    | $\mathrm{CaNb}_{2} \mathrm{O}_{6}$ |  | 6B-1 | 106 |
    | $\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ $\mathrm{CaO}_{3} \mathrm{Sn}$ | $\mathrm{Ca}_{2} \mathrm{NbO}_{2} \mathrm{O}_{7}-\mathrm{Cd}_{2} \mathrm{ND}_{2} \mathrm{O}_{7}$ | 1C-b6 | 82 |
    | $\mathrm{CaO}_{3} \mathrm{Sn}$ | $\mathrm{CaSnO}_{3}-\mathrm{SrSnO}_{3}$ | 1C-a 19 | 76 |
    | $\mathrm{CaO}_{3} \mathrm{Sn}$ | $\mathrm{CaSnO}_{3}-\mathrm{SrSnO}_{3}-\mathrm{BaSnO}_{3}$ | 1C-f13 | 88 |
    | $\mathrm{CaO}_{6} \mathrm{Ta}_{2}$ | $(\mathrm{Ca}-\mathrm{Ba}-\mathrm{Pb})(\mathrm{Ta}-\mathrm{Nb})_{2} \mathrm{O}_{6}$ | 5B-15 | 102 |
    | $\mathrm{Ca}_{2} \mathrm{O}_{7} \mathrm{Ta}_{2}$ | $\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}-\mathrm{Sr}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ | 6B-6 | 106 |
    | $\mathrm{CaO}_{3} \mathrm{Ii}$ | $\mathrm{CaTiO}_{3}-\mathrm{BaTiO}_{3}$ | 1C-a7 | 74 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}-\mathrm{CaZrO}_{3}$ | 1C-a22 | 76 83 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}-\mathrm{NaNbO}_{3}$ | 1C-C1 | 83 75 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-a8 | 75 74 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}-\mathrm{SrTiO}_{3}$ | 1C-a6 | 74 87 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}-\mathrm{BaTiO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-f2 | 87 |
    | $\mathrm{CaO}_{3} \mathrm{Ti}$ | $\mathrm{CaTiO}_{3}-\mathrm{BaTiO}_{3}-\mathrm{SrTiO}_{3}$ | 1C-f15 | 88 |
    | CaO $\mathrm{CaO} \mathrm{Ti}^{\text {Zr }}$ | ${ }_{\text {( }}^{(\mathrm{Ca}-\mathrm{Ba})(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3}}$ | 1C-a12 | 76 |
    | ${ }_{\text {CaOs }} \mathrm{CaO}_{3} \mathrm{Zr}$ | $\mathrm{CaZrO}_{3}-\mathrm{CaTiO}_{3}$ | 1C-a22 | 76 |
    | $\mathrm{CaO}_{3} \mathrm{Zr}$ | $\mathrm{CaZrO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-b5 | 82 |
    | $\mathrm{CaO}_{3} \mathrm{Zr}$ | $\mathrm{CaZrO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-a13 | 76 |
    | $\mathrm{CaO}_{3} \mathrm{Zr}$ | $(\mathrm{Ca}-\mathrm{Ba})(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ | 1C-f15 | 88 |
    | $\mathrm{CdNb}_{8} \mathrm{O}_{6}$ | $\mathrm{CdNb}_{2} \mathrm{O}_{6}-\mathrm{NaNbO}_{3}$ | $1 \mathrm{C}-4$ | 86 |
    | $\mathrm{CdNb}_{2} \mathrm{O}_{6}$ | $\mathrm{CdNb}_{2} \mathrm{O}_{6}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5B-10 | 101 |
    | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}-\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | 6B-1 | 106 |
    | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}-\mathrm{Cd}_{8} \mathrm{Ta}_{2} \mathrm{O}_{7}$ | 6B-3 | 106 |
    | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}-\mathrm{Mg}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | 6B-4 | 106 |
    | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}-\mathrm{Pb}_{3} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | 6B-2 | 106 |
    | $\mathrm{Cd}_{2} \mathrm{O}_{7} \mathrm{Ta}_{2}$ | $\mathrm{Cd}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}-\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | 6B-3 | 106 |
    | $\mathrm{CdO}_{3} \mathrm{Ti}$ | $\mathrm{CdTiO}_{3}-\mathrm{LiNbO}_{3}$ | $1 \mathrm{C}-\mathrm{e} 7$ | 86 |
    | $\mathrm{CdO}_{3} \mathrm{Ti}$ | $\mathrm{CdTiO}_{3}-\mathrm{LiTaO}_{3}$ | 1C-e7 | 86 |
    | $\mathrm{Ce}_{1 / 2} \mathrm{Li}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{Li}_{1 / 2} \mathrm{Ce}_{1 / 3}\right) \mathrm{TiO}_{3}-\mathrm{PbTiO}_{3}$ | 1--d8 | 85 |
    | $\mathrm{CoLaO}_{3}$ | $\mathrm{LaCoO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{LaMnO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{CO}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Co}_{2} \mathrm{Nb}_{8} \mathrm{O}_{7}-\mathrm{BaTiO}_{3}$ | 1C-el1 | 87 |
    | $\mathrm{Co}_{2} \mathrm{O}_{3} \mathrm{Ta}_{2}$ | $\mathrm{CO}_{2} \mathrm{Ta}_{2} \mathrm{O}_{3}-\mathrm{BaTiO}_{3}$ | 1C-b12 | 83 |
    | $\mathrm{CrLaO}_{3}$ | $\xrightarrow{\mathrm{LaCrO}_{3}-\mathrm{BiFeO}_{3}} \mathrm{LaCrO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{LaMnO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{CsNO}_{3}$ | $\mathrm{CsNO}_{3}-\mathrm{RbNO}_{3}{ }^{\text {3 }}$ | 12B-4 | 134 |
    | $\mathrm{Eu}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $(\mathrm{Eu}-\mathrm{Gd})_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ | 35-5 | 201 |
    | $\mathrm{Eu}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $(\mathrm{Eu}-\mathrm{Tb})_{2}\left(\mathrm{MoO}_{6}\right)_{3}$ | 35-6 | 201 |

    ## V Substanzenverzeichnis

    | Gross formula | Chemical formula | Nr . | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{FeLaO}_{3}$ | $\mathrm{LaFeO}_{3}-\mathrm{BiFeO}_{3}$ | 1C-a33 | 82 |
    | $\mathrm{FeLaO}_{3}$ | $\mathrm{LaFeO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-c12 | 84 |
    | $\mathrm{FeLaO}_{3}$ | $\mathrm{LaFeO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{LaMnO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{FeLaO}_{3}$ | $\mathrm{LaFeO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-f5 | 87 |
    | $\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3}-\mathrm{BiFeO}_{3}\right.$ | 1 C -d23 | 85 |
    | ${ }^{\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{~N}_{3} \mathrm{O} \mathrm{Pb}}$ |  | ${ }_{1 C-58}$ | 87 |
    | ${ }^{\text {Fe }}$ |  | 1C-d11 | 85 |
    | $\mathrm{FeO}_{3} \mathrm{Sr}$ | $\mathrm{SrFeO}_{3}-\mathrm{BiFeO}_{3}$ | ${ }_{1}^{1 C-d 15}$ | 85 |
    | $\mathrm{Fe}_{1 / 2} \mathrm{O}_{3} \mathrm{SrTa}_{2 / 2}$ | $\mathrm{Sr}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}-\mathrm{SrTiO}_{3}$ | 1C-d1 | 84 |
    | $\mathrm{Gd}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $(\mathrm{Gd-Eu})_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ | 35-5 | 201 |
    | $\mathrm{Gd}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $(\mathrm{Gd}-\mathrm{Nd})_{2}(\mathrm{MoO})_{3}$ | 35-8 | 202 |
    | $\mathrm{Gd}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $(\mathrm{Gd-Tb})_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ | 35-9 | 202 |
    | $\mathrm{Gd}_{2} \mathrm{Mo}^{3} \mathrm{O}_{12}$ | $(\mathrm{Gd}-\mathrm{Y})_{2}(\mathrm{MoO})_{3}$ | 35-7 | 202 |
    | $\mathrm{Gd}_{2} \mathrm{Mo}_{3} \mathrm{O}_{12}$ | $\left.\mathrm{Cd}_{2}(\mathrm{Mo}-\mathrm{W}) \mathrm{O}_{4}\right)_{3}$ | 35-10 | 202 |
    | $\mathrm{Gd}_{2} \mathrm{O}_{12} \mathrm{~W}_{3}$ | $\mathrm{Gd}_{2}\left(\mathrm{~W}-\mathrm{MO}^{\text {O }} \mathrm{O}_{4}\right)_{3}$ | 35-10 | 202 |
    | GeTe | GeTe-SnTe | 36-3 | 214 |
    | $\mathrm{H}_{2} \mathrm{KO}_{4} \mathrm{P}$ | $\mathrm{KH}_{2} \mathrm{PO}_{4}-\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ | 13B-1 |  |
    | $\mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$ | $\mathrm{NH}_{4} \mathrm{NO}_{3}-\mathrm{KNO}_{3}$ | 12B-1 | 134 |
    | $\mathrm{H}_{6} \mathrm{NO}_{4} \mathrm{P}$ | $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}-\mathrm{KH}_{2} \mathrm{PO}_{4}$ | 13B-1 | 148 |
    | $\mathrm{H}_{6} \mathrm{NO}_{4} \mathrm{P}$ | $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}-\mathrm{TlH}_{2} \mathrm{PO}_{4}$ | 13B-2 | 148 |
    | $\mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeFF}_{4}$ | 14B-1 | 154 |
    | ${ }_{\text {H2 }}^{\mathrm{H}_{2} \mathrm{O}_{4} \mathrm{PTl}}$ | $\mathrm{TlH}_{2} \mathrm{PO}_{4}-\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ | 138-2 | 148 |
    | $\mathrm{HfO}_{3} \mathrm{~Pb}$ HfO Pb | ${ }^{\mathrm{PbHfO}}{ }^{\text {PbHfO }}$ - $\mathrm{BaHfO}_{3}$ | 1C-a 18 | 76 |
    | $\mathrm{HfO}_{3} \mathrm{~Pb}$ <br> HfO | $\mathrm{PbHfO}_{8}-\mathrm{CaHfO}_{3}$ | 1C-a16 | 76 |
    |  | $\mathrm{PbHfO}_{3}-\mathrm{Pb}\left(\mathrm{Sc}_{2} / \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}$ | $1 \mathrm{C}-\mathrm{d} 18$ | 85 |
    | ${ }_{\mathbf{H f O}}^{\mathbf{H}}$ | $\mathrm{PbHfO}_{3} \mathrm{PbbZO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-a29 | 82 |
    | ${ }_{\mathrm{HfO}}^{3} \mathrm{~Pb}$ | $\mathrm{PbHfO}_{3}-\mathrm{SrHfO}_{3}$ | 1C-a17 | 76 |
    | ${ }_{\mathbf{H f O}}^{\mathbf{H f}}$ | $\mathrm{PbHfO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{PbO}: \mathrm{SnO}_{2}$ | 1C-64 | 87 |
    | $\mathrm{HfO}_{3} \mathrm{Sr}$ | $\mathrm{SrHfO}_{3} \mathrm{PbHfO}_{3}$ | 1C-a17 | 76 |
    | IK | $\mathrm{KI}-\mathrm{KNO}_{3}$ | 12B-3 | 134 |
    | IOSb | SbOI-SbSI | 10B-2 | 127 |
    | ISSb | SbSI-AsSI | 10B-1 | 127 |
    | ISSb | SbSI-BiSI | 10B-5 | 128 |
    | ISSb | SbSI-SbOI | 108-2 | 127 |
    | ISSb | SbSI-SbSBr | 10B-3 | 127 |
    | ISSb | SbSI-SbSeI | 108-4 | 128 |
    | ISbSe | SbSeI-SbSI | 10B-4 | 128 |
    | $\mathrm{InLaO}_{3}$ | $\mathrm{LaInO}_{3}-\mathrm{BaTiO}_{3}-\mathrm{LaYO}_{3}-\mathrm{SrTiO}_{3}$ | 1C-f12 | 88 |
    | $\mathrm{KNO}_{3}$ | $\mathrm{KNO}_{3}-\mathrm{KI}$ | 12B-3 |  |
    | $\mathrm{KNO}_{3}$ | $\mathrm{KNO}_{3}-\mathrm{NH}_{4} \mathrm{NO}_{3}$ | 12B-1 | 134 |
    | $\mathrm{KNO}_{3}$ | $\mathrm{KNO}_{3}-\mathrm{RbNO}_{3}$ | 12B-2 | 134 |
    | $\mathrm{KNbO}_{3}$ | $\mathrm{KNbO}_{3}-\mathrm{BaTiO}_{3}$ | 1--c5 | 83 |
    | $\mathrm{KNSOO}_{\mathbf{K}}$ | $\mathrm{KNbO}_{3} \mathrm{KTHO}_{3}$ | 1C-a4 | 74 |
    | $\mathrm{KNbO}_{3}$ KNbO | $\mathrm{KNbO}_{3}-\mathrm{NaNbO}_{3}$ | 1C-a1 | 73 |
    | $\mathrm{KNbO}_{3}$ | $\mathrm{KNbO}_{3} \mathrm{PbTHO}_{3}$ | 5B-11 | 101 |
    | $\mathrm{KNbO}_{3}$ | $\mathrm{KNbO}_{3}-\mathrm{SrNb}_{2} \mathrm{O}_{6}$ | 5-b6 | 103 |
    | $\mathrm{KNbO}_{3}$ | ( $\mathrm{K}-\mathrm{Na}$ ) $\left(\mathrm{Nb}-\mathrm{Ta}\right.$ ) $\mathrm{O}_{3}$ | 1C-f14 | 88 |
    | $\mathrm{KNbO}_{3}$ | $\mathrm{K}_{0.6} \mathrm{Li}_{0.4}\left(\mathrm{Nb}_{0.3} \mathrm{Ta}_{0.7}\right) \mathrm{O}_{3}$. | $5 \mathrm{C}-\mathrm{k} 2$ | 105 |
    | $\mathrm{KNbO}_{3}$ | $\mathrm{K}\left(\mathrm{Nb}_{0.65} \mathrm{Ta}_{0} .85\right) \mathrm{O}_{3}(\mathrm{KTN})$ | 1C-25 | 74 |
    | ${ }_{\text {KO}} \mathrm{KO}_{\mathbf{S}}^{\mathbf{S b}}$ | $\mathrm{KSbO}_{3}-\mathrm{NaNbO}_{3}$ | 1C-b2 | 82 |
    | ${ }^{\mathrm{KO}_{3} \mathrm{Ta}}$ | $\mathrm{KTaO}_{3}-\mathrm{KNbO}_{3}$ | 1- ${ }_{\text {1-a }}$ | 74 82 |
    | $\mathrm{KO}_{3} \mathrm{Ta}$ | $\mathrm{K}^{\left(\mathrm{Ta}_{0.35} \mathrm{Nb}_{0.65} \mathrm{O}_{8}(\mathrm{KTN})\right.}$ | 1--a5 | 82 74 |
    | ${ }^{\mathrm{KO}} \mathrm{KO}_{3} \mathrm{Ta}$ |  | 1--f14 | 88 |
    | $\mathrm{KO}_{\mathrm{KTN}} \mathrm{Ta}$ |  | 5C-k2 | 105 |
    | KTN | $\mathrm{K}\left(\mathrm{Ta}_{0.35} \mathrm{Nb}_{0.05}\right) \mathrm{O}_{3}$ | 1-a5 | 74 |

    V Index of substances

    | Page |
    | :---: |
    | 82 |
    | 84 |
    | 87 |
    | 87 |
    | 85 |
    | 87 |
    | 85 |
    | 85 |
    | 84 |
    | 84 |
    | 201 |
    | 202 |
    | 202 |
    | 202 |
    | 202 |
    | 202 |
    | 214 |
    | 148 |
    | 134 |
    | 148 |
    | 148 |
    | 154 |
    | 148 |
    | 76 |
    | 76 |
    | 85 |
    | 82 |
    | 82 |
    | 76 |
    | 87 |
    | 76 |
    | 134 |
    | 127 |
    | 127 |
    | 128 |
    | 127 |
    | 127 |
    | 128 |
    | 128 |
    | 88 |
    | 134 |
    | 134 |
    | 134 |
    | 83 |
    | 74 |
    | 73 |
    | 101 |
    | 83 |
    | 103 |
    | 88 |
    | 105 |
    | 74 |
    | 82 |
    | 74 |
    | 82 |
    | 74 |
    | 88 |
    | 105 |
    | 74 |


    | Gross formula | Chemical formula | Nr . | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{LaFeO}_{3}$ | $\mathrm{LaFeO}_{3}-\mathrm{PbTiO}_{3}$ |  |  |
    | $\mathrm{La}_{1 / 2} \mathrm{Li}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{Li}_{1 / 2} \mathrm{La}_{1 / 2} \mathrm{TiO}_{3}-\mathrm{PbTiO}_{3}\right.$ | ${ }_{\text {1 }}^{1 \mathrm{C}-\mathrm{c} 12}$ | 84 84 |
    | $\mathrm{LaMnO}_{3}$ | $\mathrm{LaMnO}_{3} \mathrm{PbTiO}_{3}$ | ${ }_{\text {1 }}^{1 \mathrm{C}-\mathrm{d}-\mathrm{c} 11}$ | 84 84 |
    | $\mathrm{LaMnO}^{\text {LaMnO }}$ | $\mathrm{LaMnO}_{3}-\mathrm{LaCoO}_{3}-\mathrm{PbTiO}_{3}$ | ${ }_{\text {1C-f11 }}^{\text {C-f11 }}$ | 84 87 |
    | ${ }^{\mathrm{LaMnO}_{3}}$ | $\mathrm{LaMnO}_{3}-\mathrm{LaCrO}_{3} \mathrm{PbTHO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{LaMnO}_{3}$ | $\mathrm{LaMnO}_{3}-\mathrm{LaFeO}_{3}-\mathrm{-LbTiO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{LaMnO}_{3}$ | $\mathrm{LaMnO}_{3}-\mathrm{PbTiO}_{3}-\mathrm{SrTiO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{La}_{2 / 2} \mathrm{Na}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | $\left(\mathrm{Na}_{1 / 2} \mathrm{La}_{1 / 2} \mathrm{TiO}_{3}-\mathrm{PbTiO}_{3}\right.$ | 1C-f10 | 87 |
    | $\mathrm{La}_{2} \mathrm{Nb}_{6} \mathrm{O}_{18}$ | $\mathrm{La}_{2} \mathrm{O}_{8} \cdot 3 \mathrm{Nb}_{2} \mathrm{O}_{5} \mathrm{PbND}_{2} \mathrm{O}_{6}$ | ${ }_{5 B-12}$ | 85 |
    | $\mathrm{LaNiO}_{3}$ | $\mathrm{LaNiO}_{3}-\mathrm{LaMnO}_{3}-\mathrm{PbTiO}_{3}$ | 5B-12 | 101 |
    | $\mathrm{LaO}_{3} \mathrm{Y}$ | $\mathrm{LaYO}_{3}-\mathrm{BaTiO}_{3}-\mathrm{LaInO}_{3}-\mathrm{SrTiO}_{3}$ | ${ }_{\text {1 }}^{1 \mathrm{C}-\mathrm{fr11}}$ | 87 |
    | $\mathrm{LiNbO}_{3}$ |  | $1 \mathrm{C}-\mathrm{f12}$ | 88 |
    | $\mathrm{LiNbO}_{3}$ | $\mathrm{LiNbO}_{3} \mathrm{LiTaO}_{3}$ | 38-1 | 86 |
    | $\mathrm{LiNbO}_{3}$ | $\mathrm{LiNbO}{ }_{3}-\mathrm{NaNbO}_{3}$ | 3B-1 | 94 |
    | $\mathrm{LiNbO}_{3}$ | $\mathrm{LiNbO}_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 5-11 | 86 |
    | $\mathrm{LiNbO}_{3}$ |  | $5 \mathrm{SB}-11$ | 101 |
    | $\mathrm{Li}_{1 / 2} \mathrm{Nd}_{1 / 2} \mathrm{O}_{3} \mathrm{Ti}$ | ${ }^{\text {Liom }}$ | 5C-k2 | 105 |
    | $\mathrm{LiO}_{3} \mathrm{Ta}$ | $\mathrm{LiTaO}_{3} \mathrm{CdTiO}_{3}$ | $1 \mathrm{C}-\mathrm{d} 9$ | 85 |
    | $\mathrm{LiO}_{3} \mathrm{Ta}$ | $\mathrm{LiTaO}_{3}-\mathrm{LiNbO}_{3}$ | 1--27 | 86 |
    | $\mathrm{LiO}_{3} \mathrm{Ta}$ | $\mathrm{Li}_{0.4} \mathrm{~K}_{0.6}\left(\mathrm{Ta}_{0.7} \mathrm{Nb}_{0.3}\right) \mathrm{O}_{3}$ | ${ }_{5 C-12}$ | 94 |
    | $\mathrm{Mg}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Mg}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}-\mathrm{Cd}_{3} \mathrm{Nb}_{2} \mathrm{O}_{7}$ |  |  |
    | $\mathrm{Mg}_{1 / 8} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{3}-\mathrm{Pb}\left(\mathrm{Mg}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}\right.$ | ${ }^{6 \mathrm{~B}-4} \mathrm{C}$ - 19 | $\begin{array}{r}106 \\ 85 \\ \hline\end{array}$ |
    | ${ }^{\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3} \mathrm{O}_{\mathbf{3}} \mathrm{Pb}}$ | $\mathrm{Pb}\left(\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3} / \mathrm{O}_{3}-\mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3}\right.$ | 1C-d19 | 85 87 |
    | $\mathrm{Mg}_{1 / 2} \mathrm{O}_{3} \mathrm{PbW}{ }^{1 / 2}$ |  | 1C-d19 | 87 85 |
    | $\mathrm{Mg}_{1 / 2} \mathrm{O}_{3} \mathrm{PbW}_{1 / 2}$ |  | 1C-d19 | 85 |
    | $\mathrm{Mn}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3} \mathrm{~Pb}$ | $\mathrm{Pb}\left(\mathrm{Mn}_{2} \mathrm{Nb}^{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3}-\mathrm{PbTiO}_{3}\right.$ | ${ }_{\text {1 }}^{1 \mathrm{C}-\mathrm{d}-\mathrm{d} 11}$ | ${ }_{85}^{85}$ |
    | $\mathrm{Mn}_{2 / 3} \mathrm{O}_{3} \mathrm{Sn}_{1 / 3} \mathrm{Sr}$ | $\mathrm{Sr}\left(\mathrm{Sn}_{1 / 3} \mathrm{Mn}_{2 / 3} / \mathrm{O}_{3}-\mathrm{BiFeO}_{3}\right.$ | ${ }_{1}^{1 C-d 13}$ | 85 85 85 |
    | $\mathrm{Mn}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | $\mathrm{Mn}_{2} \mathrm{Nb}_{2} \mathrm{O}_{3}-\mathrm{BaTiO}_{3}$ | 1C-e-11 | 85 87 |
    | $\mathrm{Mn}_{2} \mathrm{O}_{3} \mathrm{Ta}_{2}$ | $\mathrm{Mn}_{2} \mathrm{Ta}_{2} \mathrm{O}_{2}-\mathrm{BaTiO}_{3}$ | 1C-e11 | 87 |
    | $\mathrm{Mo}_{3} \mathrm{Nd}_{2} \mathrm{O}_{12}$ | $(\mathrm{Nd}-\mathrm{Gd})_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ | 35-8 | $\begin{array}{r}87 \\ 202 \\ \hline\end{array}$ |
    |  | $\left.{ }_{(T b-E u}\right)_{2}(\mathrm{MoO})_{3}$ | 35-6 | 201 |
    | $\mathrm{MO}_{3} \mathrm{O}_{18} \mathrm{Y}_{2}$ | $\left.{ }_{(1 \mathrm{Y}-\mathrm{Gd})_{8}(\mathrm{MoO}}^{4}\right)^{(1)}$ | 35-9 | 202 |
    | $\mathrm{NO}_{3} \mathrm{Rb}$ | $\mathrm{RbNO}_{3}-\mathrm{CsNO}$ |  |  |
    | $\mathrm{NO}_{3} \mathrm{Rb}$ | $\mathrm{RbNO}_{3} \mathrm{KNO}_{3}$ | 12B-4 | 134 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}$ - $\mathrm{BaTiO} \mathrm{S}_{3}$ | 12B-2 | 134 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}{ }_{3} \mathrm{CaNb}_{2} \mathrm{O}_{6}$ | $1 \mathrm{C}-\mathrm{c} 2$ | 83 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}-\mathrm{CaTiO}_{3}$ | 1C-e3 | 86 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}-\mathrm{CdNb}_{2} \mathrm{O}_{6}$ | $1 \mathrm{C}-\mathrm{c} 1$ | 83 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3} \mathrm{KNbO}_{3}$ | $1 \mathrm{C}-\mathrm{e} 4$ | 86 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}{ }_{3}-\mathrm{KSbO}_{3}$ | 1C-a1 | 73 |
    | $\mathrm{NaNbO}_{3}$ |  | 1C-b2 | 82 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}-\mathrm{LiNbO}_{3}$ | 1C-b1 | 82 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}-\mathrm{NaVO}_{3}$ | 1C-e1 | 86 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}-\mathrm{NaSbO}_{3}$ | $1 C-e 2$ $16-23$ | 86 74 |
    | $\mathrm{NaNbO}_{3}$ | $\mathrm{NaNbO}_{3}-\mathrm{NaTaO}_{3}$ | 1C-a3 | 74 74 |
    | $\mathrm{NaNbO}{ }_{3}$ | $\mathrm{NaNbO}{ }_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 10-66, | 74 86 |
    | $\mathrm{NaNbO}_{3}$ |  | 5B-11 | 101 |
    | $\mathrm{NaNbO}_{3}$ | $\stackrel{\text { NaNbO }}{3}$ | 1C-c3 | 83 |
    | $\mathrm{NaNbO}_{3}$ |  | $1 \mathrm{C}-4$ | 83 |
    | $\mathrm{NaNbO}_{3}$ | ${ }_{\text {( } \mathrm{Na}-\mathrm{K})(\mathrm{Nb}-\mathrm{Ta}) \mathrm{O}_{3}}$ | 1- -5 | 86 |
    | $\mathrm{NaO}_{3} \mathrm{Sb}^{3}$ | $\mathrm{NaSbO}_{3}-\mathrm{NaNbO}{ }_{3}$ | 1C-f14 | 88 74 |
    | $\mathrm{NaO}_{3} \mathrm{Ta}$ |  | $1 \mathrm{C}-\mathrm{a3}$ $1 \mathrm{C}-\mathrm{a}$ | 74 74 |
    | $\mathrm{NaO}_{3} \mathrm{Ta}$ NaO V | ${ }^{(N a-K)(T a-N b) O_{3}}$ | ${ }_{\substack{1 \mathrm{C} \\ 1 \mathrm{C}-\mathrm{f} 14 \\ \text { 2 }}}$ | 74 88 |
    | $\mathrm{Nb}_{2} \mathrm{Ni}_{2} \mathrm{O}_{7}$ | ${ }^{\mathrm{NaVO}_{3}} \mathrm{Na}_{2} \mathrm{NaNbO}_{3}$ | 1C-e2 | 86 |
    | $\mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{~Pb}^{2}$ | ${ }_{\mathrm{PbNa}}^{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ - $\mathrm{BaTiO}_{3}$ | 1--11 | 87 |
    | $\mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{~Pb}$ | ${ }^{\mathrm{PbNH}} \mathrm{Pb}^{2} \mathrm{O}_{6}-\mathrm{BaNb}_{2} \mathrm{O}_{6}$ | 5B-5 | 100 |
    | $\mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{~Pb}$ | $\mathrm{PbNb}_{2} \mathrm{O}_{6}-\mathrm{Ci}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{Nb}_{5} \mathrm{O}_{5}$ | 5B-13 | 102 |
    | $\mathrm{Nb}_{3} \mathrm{O}_{6} \mathrm{~Pb}$ | ${ }_{\text {abe }}{ }^{\text {PbNb }}$ | 58-14 | 102 |
    |  | $\mathrm{PbNb}_{2} \mathrm{O}_{6}$ - $\mathrm{CaNb}_{2} \mathrm{O}_{6}$ | 5B-2 | 99 |

    V Substanzenverzeichnis
    

    V Index of substances

    | Page |
    | ---: |
    | 101 |
    | 101 |
    | 101 |
    | 101 |
    | 86 |
    | 101 |
    | 101 |
    | 101 |
    | 101 |
    | 101 |
    | 87 |
    | 101 |
    | 101 |
    | 100 |
    | 101 |
    | 102 |
    | 88 |
    | 102 |
    | 102 |
    | 106 |
    | 85 |
    | 85 |
    | 85 |
    | 101 |
    | 101 |
    | 99 |
    | 103 |
    | 86 |
    | 100 |
    | 102 |
    | 106 |
    | 87 |
    | 101 |
    | 76 |
    | 82 |
    | 101 |
    | 82 |
    | 82 |
    | 87 |
    | 87 |
    | 88 |
    | 101 |
    | 87 |
    | 102 |
    | 102 |
    | 102 |
    | 83 |
    | 75 |
    | 82 |
    | 84 |
    | 82 |
    | 75 |
    | 82 |
    | 84 |
    | 83 |
    | 84 |
    | 84 |
    | 84 |
    | 85 |
    | 84 |


    | Gross formula | Chemical formula | Nr. | Page |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{NaNbO}_{8}$ |  |  |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta}_{1 / 2}\right) \mathrm{O}_{3}$ | $1 \mathrm{C}-\mathrm{c} 3$ $1 \mathrm{C}-\mathrm{d} 11$ | 83 85 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{PbHfO}_{3}$ | 1C-d11 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Mg}_{1 / 2} \mathrm{~W}_{1 / 2}\right) \mathrm{O}_{3}$ | 1C-a29 | 82 85 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Mn}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3}\right.$ | 1C-d13 | 85 85 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ <br> PbTiO | 5B-7 | 101 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | ${ }^{\mathrm{PbTiO}_{3}-\mathrm{PbO}} \mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Sc}_{1 / 2} \mathrm{Nb}_{2}{ }_{1 / 2}\right) \mathrm{O}$ | 1C-a 30 | 82 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{PbZrO}_{3} \mathrm{~Pb}_{1 / 2} \mathrm{PO}_{3}$ | 1C-d12 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ |  | 1C-a27 | 77 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{SrTiO}_{3}$ | 1C-b8 | 82 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ |  | 1C-a 10 | 75 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{ABO}_{3}-\mathrm{PbZrO}$ | 1C-b7 | 82 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ |  | 1C-f9 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | - ${ }^{\text {PbTiO }}{ }_{3}-\mathrm{BiFeO}_{3}-\mathrm{PbZ2O} \mathrm{~Pa}_{3}$ | 1C-f2 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{LaCoO}_{3}-\mathrm{LaMnO}_{3}$ | 1C-f6 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{LaCrO}_{3}-\mathrm{LaMnO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{LaFeO}_{3}-\mathrm{LaMnO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{LaFeO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{LaMaO}_{3}-\mathrm{LaNiO}_{3}$ | 1C-f5 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{LaMnOO}_{3}-\mathrm{SaNiO}_{3}$ | 1C-f11 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{3}-\mathrm{Nb}_{3} \mathrm{O}_{3}\right.$ | 1C-f10 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{PbH}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}-\mathrm{PbZrO}_{3}$ | 1C-f8 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Mg}_{3}-\mathrm{NbO}: \mathrm{SnO}_{2}{ }^{\text {a }}\right.$ | 1C-f4 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{PbTiO}_{3}-\mathrm{Pb}\left(\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3}\right) \mathrm{O}_{3}-\mathrm{PbZrO}_{3}$ | 1C-f7 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | ${ }^{\mathrm{PbTiO}}-\mathrm{PbO}: \mathrm{SnO}_{2}-\mathrm{PbZrO}_{3}{ }^{\text {a }}$ | 1C-f3 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $(\mathrm{Pb}-\mathrm{Ba})(\mathrm{Ti}-\mathrm{Sn})^{\left(\mathrm{O}_{3}\right.}$ | 1C-f19 | 88 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | ${ }_{(\mathrm{Pb}-\mathrm{Ba})(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3}}$ | 1C-f18 | 88 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $\mathrm{Pb}(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3} \mathrm{Cl}^{\text {a }}$ | 1C-f17 | 88 |
    | $\mathrm{O}_{3} \mathrm{PbTi}$ | $(\mathrm{Pb}-\mathrm{Sr})(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3}$ | 1C-a28 | 78 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{BaTiO}_{3}$ | 1C-f16 | 88 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{BaZrO}_{3}$ | 1C-b3 | 82 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{BiFeO}_{3}$ | 1C-a15 | 76 |
    | $\mathrm{O}_{3} \mathrm{PbZ}{ }^{\text {r }}$ | $\mathrm{PbZrO}_{3}-\mathrm{CaZrO}_{3}$ | 1C-c14 | 84 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\left(\mathrm{K}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}$ | 1C-a13 | 76 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{TiO}_{3}$ | 1C-d17 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\left(\mathrm{Na}_{1 / 2} \mathrm{Bi}_{1 / 2}\right) \mathrm{ZrO}_{3}$ | 1C-d21 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{NaNbO}_{3}{ }^{\text {N }}$. | 1C-d16 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Ta} \mathrm{ra}_{1 / 2}\right) \mathrm{O}_{3}$ | 1C-c4 | 83 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{PbHfO}_{3}{ }^{\text {a }}$ | 1C-d15 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{PbNb}_{2} \mathrm{O}_{6}$ | 1C-a31 | 82 101 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ |  | 1C-e12 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{PbO}: \mathrm{SnO}_{2}$ $\mathrm{PbZrO}-\mathrm{Pb}\left(\mathrm{Sc}_{1} \mathrm{Nb}^{2}\right.$ | 1C-a32 | 82 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | ${ }^{\mathrm{PbZrO}_{3}-\mathrm{Pb}\left(\mathrm{Sc}_{1 / 8} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}}$ | 1C-d14 | 85 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{PbTa}_{2} \mathrm{O}_{6}$ | 1C-e13 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbZ} \mathrm{Pr}^{\text {r }}$ | $\mathrm{PbZrO}_{3}-\mathrm{SrZrO}_{3}$ | 1C-a27 | 77 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{Pb}(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}(\mathrm{PZT})$ | 1C-a14 | 76 |
    | $\mathrm{O}_{8} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{ABO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-a28 | 78 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{BiFeO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-f9 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{LaFeO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-f6 | 87 |
    | $\mathrm{O}_{3} \mathrm{PbZr}$ | $\stackrel{\mathrm{PbZrO}_{3}-\mathrm{LaFeO}_{3}-\mathrm{PbTiO}_{3}}{\mathrm{PbZrO}}$ | 1C-f5 | 87 |
    | $\mathrm{O}_{8} \mathrm{PbZZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{Pb}\left(\mathrm{Fe}_{1 / 2} \mathrm{Nb}_{1 / 2}\right) \mathrm{O}_{3}-\mathrm{PbTiO}_{8}$ | 1C-f8 | 87 |
    | $\mathrm{O}_{8} \mathrm{PbZr}$ | $\mathrm{PbZrO}_{3}-\mathrm{Pb}\left(\mathrm{Mg}_{1 / 3} \mathrm{Nb}_{2 / 3}\right)^{3} \mathrm{O}_{3}-\mathrm{PbTiO}_{3}$ $\mathrm{PbZrO}-\mathrm{PbO}=\mathrm{SnO}_{2} \mathrm{PbiO}$ | 1C-f7 | 87 |
    | $\mathrm{O}_{8} \mathrm{PbZr}$ | $(\mathrm{Pb}-\mathrm{Ba})(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}-\mathrm{PbTiO}_{3}$ | 1C-f3 | 87 |
    | $\mathrm{O}_{8} \mathrm{PbZ} \mathrm{P}$ | ${ }_{(2 b-S r}(\mathrm{Pb}-\mathrm{Br}-\mathrm{Ti}) \mathrm{O}_{3}$ | 1C-f17 | 88 |
    | $\mathrm{O}_{3} \mathrm{SnSr}$ | ${ }_{\mathrm{SrSnO}}^{3} \mathrm{-BaSnO}{ }_{3}$ | 1C-f16 | 88 |
    | $\mathrm{O}_{3} \mathrm{SnSr}$ | $\mathrm{SrSnO}_{3}-\mathrm{BaSnO}_{3}$ | 1C-a20 | 76 |
    | $\mathrm{O}_{3} \mathrm{SnSr}$ | $\mathrm{SrSnO}_{3}-\mathrm{BiFeO}_{3}$ | 1C-c15 | 84 |
    | $\mathrm{O}_{3} \mathrm{SnSr}$ | $\mathrm{SrSnO}_{3}-\mathrm{CaSnO}_{3}$ | 1C-a19 | 76 |
    | $\mathrm{O}_{3} \mathrm{SnSr}$ | $\mathrm{SrSnO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-b8 | 82 |
    | $\mathrm{O}_{6} \mathrm{SrTa}_{2}$ | $\mathrm{SrSnO}_{3}-\mathrm{BaSnO}_{3}-\mathrm{CaSnO}_{3}$ | 1C-f13 | 88 |
    | $\mathrm{O}_{6} \mathrm{SrTa}_{2}$ | ( $\mathrm{Sr}-\mathrm{Ba}-\mathrm{Pb}$ ) $\mathrm{Ta}_{2} \mathrm{O} \mathrm{O}_{6}{ }^{\text {a }}$ | 5B-16 | 102 |
    | $\mathrm{O}_{7} \mathrm{Sr}_{2} \mathrm{Ta}_{2}$ | $\stackrel{(\mathrm{Sr}-\mathrm{Ba}-\mathrm{Pb})(\mathrm{Ta}-\mathrm{Nb})_{2} \mathrm{O}_{6}}{\mathrm{Sr}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}-\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}}$ | 5B-15 | 102 |
    |  | $\mathrm{Sr}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}-\mathrm{Ca}_{2} \mathrm{Ta}_{2} \mathrm{O}_{7}$ | 6B-6 | 106 |

    V Substanzenverzeichnis

    | Gross formula | Chemical formula |  |  |
    | :---: | :---: | :---: | :---: |
    | $\mathrm{O}_{7} \mathrm{Sr}_{2} \mathrm{Ta}_{2}$ |  | Nr . | Page |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{Sr}_{8} \mathrm{Ta}_{2} \mathrm{O}_{7}-\mathrm{Sr}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ $\mathrm{SrTiO}_{8}-\mathrm{BaTiO}_{3}$ | 6B-5 | 106 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ $\mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{SrTiO}_{3}-\mathrm{BiFeO}_{3}$ | 1--a9 | 75 83 |
    | ${ }^{\mathrm{O}_{2} \mathrm{SrTi}} \mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{SrTiO}_{3}-\mathrm{Bi}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{TiO}_{2}$ | 1C-c7 | 83 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{SrTiO}_{3}-\mathrm{CaTiO}_{3}$ | $1 \mathrm{C}-\mathrm{e} 8$ | 86 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $\stackrel{\mathrm{SrTiO}_{3}-\mathrm{PbTiO}_{3}}{ }$ | ${ }_{1}^{1 C-a 6}$ | 74 75 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ |  | 1C-d1 | 84 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{SrTiO}_{3}-\mathrm{LaMnO}_{3}-\mathrm{PbTiO}_{3}$ | 1C-f1 | 87 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $\mathrm{SrTiO}_{3}-\mathrm{BaTiO}_{3}-\mathrm{LaInO}_{3}-\mathrm{LaYO}$ | 1C-f10 | 87 |
    | $\mathrm{O}_{3} \mathrm{SrTi}$ | $(\mathrm{Sr}-\mathrm{Pb})(\mathrm{Ti}-\mathrm{Zr}) \mathrm{O}_{3} \mathrm{LaInO}-\mathrm{LaYO}_{2}$ | 1C-f12 | 88 |
    | $\mathrm{O}_{3} \mathrm{Sr} \mathrm{Sr}$ |  | 1C-f16 | 88 |
    | $\mathrm{O}_{3} \mathrm{SrZr}$ | $\mathrm{Sr} 2 \mathrm{rO}_{3}-\mathrm{PbZrO}_{3}$ | 1C-b7 | 82 |
    | $\mathrm{O}_{8} \mathrm{Sr} 2 \mathrm{r}$ | $(\mathrm{Sr}-\mathrm{Pb})(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ | 1C-a14 | 76 |
    | PZT |  | 1C-f16 | 88 |
    | PZI | $\mathrm{Pb}(\mathrm{Zr}-\mathrm{Ti}) \mathrm{O}_{3}$ |  |  |
    | SnTe | $\mathrm{SnTe}-\mathrm{GeTe}$ | 1--a28 | 78 |
    |  |  | 36-3 | 214 |

    ## BRIEF ATTACHMENT Q

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    ## For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:
    
    CONTENTS
    

    | 3. The CsCi Type and Related Structures |
    | :---: |
    | 3.1. $\mathrm{CsCl}, \mathrm{B} 2$ |
    | 3.2. Cuprite, C3 |
    | 3.3a. Rutile, C4 |
    | 3.3b. Trirutile |
    | 3.4. $\mathrm{CaB}_{6}, \mathrm{D} 2_{1}$ |
    | 3.5. $\mathrm{BiF}_{3}, \mathrm{DO}_{3}$ |
    | 3.6. Discussion |
    | 4. The NaCl Type and Related Structures |
    | 4.1. $\mathrm{NaCl}, \mathrm{B} 1$ |
    | 4.2. $\mathrm{FeS}_{2}, \mathrm{C} 2$ |
    | 4.3. $\mathrm{CaC}_{2}, \mathrm{Cl1}$ |
    | 4.4. $\mathrm{Cu}_{2} \mathrm{AlMn}, \mathrm{L2}_{1}$ |
    | 4.5. Discussion |
    | 5. ZnS Type and Related Structures |
    | 5.1. Diamond Cubic, A4 |
    | 5.2. ZnS, Zinc Blende, B3 |

    163
    cell is elongated in the $c$ direction; the lead atoms are displaced vertically PEROVAKITE TYPE AND RELATED STRUCTURES downwards in the front and back faces and upwards in the side faces. This arrangement corresponds to placement of the atoms in the following special
    positions in space group $P 4 / \mathrm{nmm}$ :
    2 Pb at (2c): $0, \frac{1}{2}, z ; \frac{1}{2}, 0, \bar{z}$ with $z=0.2385 ;$
    2 O at (2a) $: 0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0$.
    In this structure both the lead and ox In this structure both the lead and oxygen atoms are in fourfold co-
    ordination with atoms of the other type. The oxygen atoms are in a tetrahadron of lead atoms, while the lead atoms are at the vertex of a square pyramid with oxygen atoms at the base. In the horizontal oxygen sheets, the atoms are in square planar coordination or roughly cubic packing. This structure is illustrated in Fig. 7.1. Other compounds which adopt this structure are listed in Table 7.1.
    
    a
    
    
    

    ## BRIEF ATTACHMENT R

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Date: March 1, 2005
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT R

    4
    

    INTERSCIENCE PUBLISHERS
    a division of John Wiley \& Sons, New York • London • Sydney * Toronto
    Copyright © © 1951, 1953, 1959, 1980 by Interscience Publishers, Inc.
    Copyright (©) 1988 by John Wiley \& Sons, Inc.
    ALL RIGHTS RESERVED
    No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

    | Atom | Position | $x$ | $y$ | $z$ |
    | :---: | :---: | :---: | :---: | :---: |
    | Pb | (4a) | 0 | 0 | 0.500 |
    | Bi | (8c) | 0 | 0.50 | 0.200 |
    | Nb | (8c) | 0 | 0.50 | 0.422 |
    | O(1) | (4a) | 0 | 0 | 0.00 |
    | O(2) | (8b) | 1/6 | 1/4 | 0.25 |
    | O(3) | (8b) | 1/1 | $1 / 4$ | 0.079 |
    | O(4) | (8b) | $1 /$ | $1 / 4$ | -0.079 |
    | O(5) | (8c) | 0 | 0.50 | 0.158 |
    | with the parameters of Table XI,45. <br> This structure, like those of $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$ ( $\mathrm{IX}, \mathrm{f12}$ ) and $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{25}(\mathrm{XI}, 13)$ is built up of alternating $\mathrm{Bi}_{2} \mathrm{O}_{2}$ and perewskite-like layers. <br> The following compounds are isostructural: |  |  |  |  |
    |  |  |  |  |  |
    |  |  |  |  |  |
    |  |  |  |  |  |
    | Cryatal |  | $a_{0}, \mathrm{~A}$. | $b_{0}, \mathrm{~A}$. | $c_{0}, \mathrm{~A}$. |
    | $\mathrm{BaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{4}$ |  | 5.533 | 5.533 | 25.55 |
    | $\mathrm{BiaTaTH}_{3}$ |  | 5.402 | 5.436 | 25.15 |
    | $\mathrm{Bi}_{8} \mathrm{TiN} \mathrm{SO}_{8}$ |  | 5.409 | 5.453 | 25.16 |
    |  | $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{6}$ | 5.435 | 5.485 | 24.87 |
    |  | $\mathrm{CaBia}_{3} \mathrm{Ta}_{2} \mathrm{O}_{\mathrm{y}}$ | 5.4355.504 | 5.488 | 24.97 |
    |  | $\mathrm{SrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{4}$ |  | 5.504 | 25.05 |
    | $\mathrm{SrBi}_{3} \mathrm{Ta}_{4} \mathrm{O}_{0}$ |  | 5.504 5.509 | 5.509 | 25.08 |
    |  | $\mathrm{KBi}_{3}\left(\mathrm{Nb}_{2} \mathrm{O}_{3}\right)_{3}{ }^{*}$ | 5.508 | 5.508 | 25.26 |
    |  | $\mathrm{NaBib}_{6}\left(\mathrm{Nb}_{4} \mathrm{O}_{3}\right)_{2}{ }^{*}$ | 5.47 | 5.47 | 28.94 |

    At elevated temperatures $a_{0}$ approaches $b_{0}$ and the symmetry of these
    compounds becomes tetragonal.
    $\mathrm{XI}, 78$. The oxychloride mineral perite, $\mathrm{PbBiO}_{2} \mathrm{Cl}$, is orthorhombic with a tetramolecular unit of the edge lengths:
    
    Its space group is $\mathrm{V}_{\mathrm{h}}{ }^{17}$ ( Bmmb ) with atoms in the positions:
    with $u=0.385$ $\mathrm{Pb}:(4 c) \quad \pm(01 / 4 u ; 1 / 2,1 / 4, u+1 / 2)$ Bi: (4c) with $u=0.090$

    Cl: (4c) with $u=0.75$
    O: (8e) $\quad \pm(u 00 ; u 1 / 20 ; u+1 / 2,0,1 / 2 ; u+1 / 2,1 / 2,1 / 2)$

    | Compound | Paragraph | Literature |
    | :---: | :---: | :---: |
    | $\mathrm{AgC}(\mathrm{CN})$ s | 2 | 1986: K\&B |
    | $\mathrm{AgCN} \cdot 2 \mathrm{AgNO} \mathrm{O}_{3}$ | 1 | 1965: B\&D |
    | $\mathrm{Ag}_{1-\mathrm{m}} \mathrm{V}_{4} \mathrm{O}_{3}$ | 3 | 1965: A |
    | $\mathrm{Ag}_{2} \mathrm{O} \cdot 4 \mathrm{Br}_{2} \mathrm{O}_{3}$ | 4 | 1865: KM |
    | $\mathrm{AlBr}_{3} \cdot \mathrm{H}_{2} \mathrm{~S}$ | 6 | 1856: W,P\&W |
    | Als, ${ }^{\text {c }}$ | 7 | 1963: J\&S |
    | $\underset{\text { (simpsonite) }}{\mathrm{Al}_{1} \mathrm{Ta}_{3} \mathrm{O}_{13}(\mathrm{~F}, \mathrm{OH})}$ | 9 | 1982: B\&B |
    | $\begin{gathered} \mathrm{Al}_{1} \mathrm{~B}_{6}(\mathrm{OH})_{>} \mathrm{O}_{15} \\ \text { (jeremejevite) } \end{gathered}$ | 5 | 1034: G\&K; 1938: S; 1955: G,B\&B |
    | $\mathrm{Al}_{0} \mathrm{C}_{4} \mathrm{~N}_{3}$ | 8 | 1963: J\&W; 1966: J\&W |
    | $\mathrm{Al}_{7} \mathrm{C}_{3} \mathrm{~N}_{3}$ | 8 | 1963: J\&W |
    | $\mathrm{Al}_{8} \mathrm{C}_{3} \mathrm{~N}_{4}$ | 8 | 1983: J\&W; 1968: J\&W |
    | $\mathrm{Br}_{2} \mathrm{~S}_{3} \mathrm{Br}_{3}$ | 10 | 1958: Z |
    | $\mathrm{B}_{1} \mathrm{H}_{1} \mathrm{I}$ | 11 | 1965: H,B\&P |
    | $\mathrm{BaB4} \mathrm{O}_{7}$ | 12 | 1885: B\&P |
    | $\mathrm{BaBi}_{3} \mathrm{Nb}_{4} \mathrm{O}_{9}$ | 77 | 1949: A |
    | $\mathrm{BaBiaTi} \mathrm{O}_{15}$ | 13 | 1950: A |
    | $\mathrm{Ba} 3_{4} \mathrm{TiNb}_{4} \mathrm{O}_{18}$ | 14 | 1985: S |
    | $\mathrm{Ba}_{3} \mathrm{Bi}_{4} \mathrm{O}_{4}$ | 15 | 1948: A |
    | $\mathrm{Bi}_{2} \mathrm{TaTiO}$ | 77 | 1949: A |
    | $\mathrm{Bi}_{3} \mathbf{T i N b O}{ }_{4}$ | 77 | 1949: A; 1960: I |
    | $\mathrm{Bi}_{3} \mathrm{RO}{ }_{y} \mathrm{X}$, | 16 | 1938: 8; 1939: 8; 1940: 8; 1941: B; S\&GH; 1942: $\mathbf{S}_{\text {; }}$ S\&J; 1943: A; 1952: A |
    | $\mathrm{CaB}_{2} \mathrm{O}_{4}(\mathrm{OH})$ | 17 | 1082: C,C\&A |
    | $\mathrm{CaBran}_{2} \mathrm{Nb}_{3} \mathrm{O}$ | 77 | 1949: A; 1960: 1 |
    | $\mathrm{CaBia}_{3} \mathrm{Ta}_{5} \mathrm{O}_{4}$ | 77 | 1960: I |
    | $\mathrm{Ca}_{12} \mathrm{Be}_{4} \mathrm{O}_{30}$ | 18 | 1986: H\&Y |
    | $\mathrm{Ca}_{4} \mathrm{Bi}_{5} \mathrm{O}_{5}$ | 15 | 1943: A |
    | $\mathrm{CdB4}_{4}$ | 19 | 1966: I\&KM |
    | $\mathrm{CBB}_{12} \mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{O}_{13}$ (rhodizite) | 20 | 1938: $\mathrm{S}_{\text {; 1866: }}$ B\&T |
    | $\mathrm{Cb}_{3} \mathrm{Re}_{2} \mathrm{Br}_{11}$ | 21 | 1985: E\&P; 1986: E\&P |
    | $\mathrm{Cs}_{3} \mathrm{UO}_{2} \mathrm{Br}_{4}$ | 22 | 1965: M, K\&K |
    | $\mathrm{Ca}_{8} \mathrm{UO}_{4} \mathrm{Cl}_{4}$ | 23 | 1966: H,R\&W |
    | $\mathrm{Cb}_{3} \mathrm{RhCl}_{6} \cdot \mathrm{NH}_{4} \mathrm{NO}_{3}$ | 35 |  |
    | $\mathrm{Cbs}_{8}\left(\mathrm{UO}_{3}\right) \mathrm{OCl}_{4}$ | 24 | 1084: A\&W |
    | $\mathrm{CuCN} \cdot \mathrm{N}_{2} \mathrm{H}_{4}$ | 26 | 1966: C,L\&R |
    | $\mathrm{CuPb}_{12} \mathrm{sb}_{7} \mathrm{~B}_{24}$ (meneghinite) | 27 | 1938: H; P,R\&W; 1960: E\&H |

    ## BRIEF ATTACHMENT S

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995
    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT S

    
    
    Ferroelectric Ceramic Oxides
    More complex compounds exhibliting the tungsten bronze
    
    
     was reported to be a ferroelectric and ferromagnetic ceramic, but investigations with similar ceramics showed that the weak magnetic properties were due to the presence of a second phase, barium hexaferrite.
    C. LAYER STRUCTURE OXIDES AND COMPLEX COMPOUNDS
    A large number of layer structure compounds of general
    formula $\left.\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)^{2^{+}\left(A_{x-1}\right.}{ }^{\mathrm{B}} \mathrm{x}_{3 x+1}\right)^{2-}$ have been reported
     $\mathrm{Ba}, \mathrm{Pb}$, etc., $\mathrm{B}=\mathrm{Tl}, \mathrm{Nb}, \mathrm{Ta}$ and $\mathrm{x}=2,3,4$ or 5. The structure had been previously investigated by Aurivillius (1949) who described them in terms of alternate $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)^{2^{+}}$ layers and perovskite layers of oxygen octabedra. Few have been found to be ferroelactric and include $\mathrm{SrBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}$ $\left(T_{c}=583^{\circ} \mathrm{K}\right), \mathrm{PbBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{\mathrm{g}}\left(\mathrm{T}_{c}=703{ }^{\circ} \mathrm{K}\right)$, $\mathrm{BiBi}_{3} \mathrm{Ti}_{2} \mathrm{TiO}_{12}$ or $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}\left(\mathrm{~T}_{\mathrm{c}}=948^{\circ} \mathrm{K}\right), \mathrm{Ba}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}\left(\mathrm{~T}_{\mathrm{c}}=598^{\circ} \mathrm{K}\right)$ and $\mathrm{Pb}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}\left(\mathrm{~T}=583^{\circ} \mathrm{K}\right)$. Only bismuth titanate $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ has been investigated in dotail in the single crystal form
     because of its unique ferroelectric-optical switching properties. The ceramics of other mambers have some interest because of their dielectric properties.
    More complex compounds and solid solutions are
    realisable in these layer structure oxides but none have significant practical application.
    n
    More complex compounds exhibiting the tungsten bronze
    structure were reported by Roth and Fang (1960), Ainger et
    al. (1970) and Isupov (1964). One of the more interesting
    compounds, barium gadolinium iron niobate, $\mathrm{Ba}_{4} \mathrm{Gd}_{2} \mathrm{Fe}_{2} \mathrm{Nb}_{8} \mathrm{O}_{30}$,
    was reported to be a ferroelectric and ferromagnetic ceramic,
    but investigations with similar ceramics showed that the
    weak magnetic properties were due to the presence of a
    second phase, barium hexaferrite.

    ## sannoawos xatawos any saaixo manionais yaxvt o

    
    formula $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)^{2+}\left(\mathrm{A}_{\mathrm{x}-1} \mathrm{~B}_{3} \mathrm{O}_{3 x+1}\right)^{2-}$ have been reported
    (Smolenskil et al. 1961; Subbarao, 1962), where $\mathrm{A}=\mathrm{Ca}, \mathrm{Sr}$, $\mathrm{Ba}, \mathrm{Pb}$, etc., $\mathrm{B}=\mathrm{Ti}, \mathrm{Nb}, \mathrm{Ta}$ and $\mathrm{x}=2,3,4$ or 5. The structure had been previously investigated by Aurivillius (1949) who described them in terms of alternate $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)^{2+}$ layers and perovskite layers of oxygen octahedra. Few have been found to be ferroelectric and include $\mathrm{SrBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}$ ( $\left.T_{c}=583^{\circ} \mathrm{K}\right), \mathrm{PbBi}_{2} \mathrm{Ta}_{2} \mathrm{O}_{9}\left(T_{c}=703^{\circ} \mathrm{K}\right)$, $\mathrm{BiBi}_{3} \mathrm{Ti}_{2} \mathrm{TiO}_{12}$ or $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}\left(\mathrm{~T}_{\mathrm{c}}=948^{\circ} \mathrm{K}\right), \mathrm{Ba}_{2} \mathrm{Bi}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}\left(\mathrm{~T}_{\mathrm{c}}=598^{\circ} \mathrm{K}\right)$ and
     has been investigated in detail in the single crystal form and is finding applications in optical stores (Cummins, 1967) because of its unique forroelectric-optical switching properties. The ceramics of other members have some interest because of their dielectric properties.

    More complex compounds and solid solutions are
     significant practical application.
    154

    ## F. W. Ainger

    Both the non-polar high temperature and polar phases can be either orthorhombic and/or tetragonal. It is the single crystal form of the tungsten bronze type ferroelectric compounds which has been primarily studied for both ferroelectric and electro-optic properties.
    The first compound of this crystal class reported to be ferroelectric was lead metaniobate, $\mathrm{Pb}_{5} \mathrm{Nb}_{10} \mathrm{O}_{30}$ (Goodman, 1953), with both orthorhombic a and b axes polar, an exception to the rule for these compounds. Lead metaniobate has a high Curie temperature, $843^{\circ} \mathrm{K}$, and was developed as a piezoelectric ceramic for use over a wide temperature range.
     piezoelectric activity and very low mechanical Q. This last point is a serious drawback for many applications but is of considerable use in ultrasonic flow detection where it helps to suppress the phenomenon known as ringing. A number of solid solutions of lead metaniobate have been studied in the polycrystalline ceramic form but the only one of any practical significance is $\left(\mathrm{Pb}_{5-x} \mathrm{Ba}_{\mathrm{x}}\right) \mathrm{Nb}_{10} \mathrm{O}_{30}$. The optimum piezoelectric properties are found near a phase boundary occurring at $x=2$, which separates two ferroelectric orthorhombic phases. Subbanao (1960) found that for $x /<2$ the polarisation was in the <110> direction whilst for $5>x>2$ the polarisation was parallel to the co01> direction indicating marked influence of the highly polarisable lead ion on the polar axis. Compositions
     ture coefficient of the resonance frequency, high mechanical Q and moderately strong piezoelectric activity which renders
     frequency stability with temperature.

    ## BRIEF ATTACHMENT T

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Date: March 1, 2005

    Serial No.: 08/479,810
    Filed: June 7, 1995
    Docket: YO987-074BZ

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT T

    ## LANDOLT-BÖRNSTEIN

    ## Numerical Data and Functional Relationships in Science and Technology

    New Series

    Editor in Chief: K.-H. Hellwege

    ## Group III: Crystal and Solid State Physics

    Volume 3<br>Ferro- and Antiferroelectric Substances<br>by Toshio Mitsui and<br>R. Abe . Y. Furuhata . K. Gesi • T. Ikeda . K. Kawabe<br>Y. Makita • M. Marutake • E. Nakamura . S. Nomura<br>E. Sawaguchi • Y. Shiozaki •I.Tatsuzaki • K. Toyoda

    Editors: K.-H. Hellwege and A.M. Hellwege
    

    ## 7 Layer-structure oxides

    7A Pure compounds of simple type
    Nr. 7A-1 $\mathrm{Bi}_{\mathrm{g}}$ TiNbO,

    |  | Dielectric anomaly associated with a phase transition was reported by Ismanzzade in 1960. |  |  | 6011 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | phase | 11 | I |  |
    |  | state |  | $\mathrm{P}^{\text {a }}$ ) | ${ }^{2} 6011$ |
    |  | crystal system | orthorhombic ${ }^{\text {b }}$ | tetragonal ${ }^{\text {b }}$ ) | 2) 62517 |
    |  | space group | Fmm2-C ${ }^{29}$ | 14/mmm-D ${ }_{\text {ch }}$ |  |
    |  | $\begin{aligned} & \theta^{*} \\ & e=6.4 \cdot 10^{2} \mathrm{~kg} \\ & \sigma=5.40 \AA, b= \end{aligned}$ | $\begin{aligned} & \quad 900 \cdots \\ & \mathrm{~m}^{-3} . \\ & =5.44 \AA, c=25.1 \end{aligned}$ | $50^{\circ}{ }^{\circ}$ ) <br> A at RT. | 62517 |
    | 4 | Temperature de Linear thermal | pendence of latti expansion: Fig. | $\text { parameters: Fig. } 868 .$ <br> 9. |  |
    | 53 | Dielectric const $x \approx 100$ at RT. The dielectric co cause of high co solution system perature betwee | ant: Fig. 870. <br> nstant was not nductivity. Ex obtained by the n $900^{\circ}$ and $950^{\circ}$ | easured in the vicinity of the transition point beapolation of the Curie temperatures of the solid ielectric measurements indicates a transition temfor $\mathrm{Bi}_{3} \mathrm{TiNbO}_{0}$. | 61S11 |

    

    | $\begin{array}{r} 1 \mathrm{a} \\ \mathrm{~b} \end{array}$ | Phase transition similar to that of $\mathrm{Bi}_{\mathbf{3}} \mathrm{TiNbO}$, was reported by Subbarao in 1962.phase II |  |  | 62517 |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |
    |  | state |  | $\mathbf{P}$ |  |
    |  | crystal system | orthorhombic | tetragonal |  |
    |  | space group | Fmm2-C ${ }^{28}$ | 14/mmm-D ${ }_{\text {dib }}$ |  |
    |  | $\begin{aligned} & \mathrm{\theta} \\ & \mathrm{e}=8.5 \cdot 10^{3} \mathrm{~kg} \\ & a=5.39 \mathrm{~A}, b / a \\ & \hline \end{aligned}$ | $\begin{aligned} & 87 \\ & \mathrm{~m}^{-3} . \\ & =1.007, c=2 \end{aligned}$ | A at $1 \times 2$. | 62517 |
    | 4 | Linear thermal | xpansion: see F | 869. |  |
    | 53 | Dielectric consta | nt: $x \approx 140$ at |  | $62 S 17$ |

    Nt. 7A-3 $\mathrm{CaBi}_{8} \mathrm{Nb}_{2} \mathrm{O}_{9}$

    | 1a <br> b | Dielectric anomaly associated with a phase transition was discovered by Ismallzade in 1960. |  |  | 6011 |
    | :---: | :---: | :---: | :---: | :---: |
    |  | phase | II | I |  |
    |  | state |  | P |  |
    |  | crystal system | orthorhombic | tetragonal |  |
    |  | space group | Fmm2-Ce ${ }_{\text {di }}^{18}$ | 14/mmm-D ${ }_{\text {ch }}^{17}$ |  |
    |  | $\begin{aligned} & \theta \\ & \varrho=5.0 \cdot 10^{2} \mathrm{~kg} \\ & a=5.39 \AA, b / a \end{aligned}$ | $\begin{aligned} & \mathrm{m}^{-8} \\ & =1.006, c=25 \end{aligned}$ | ${ }^{\circ} \mathrm{C}$ $5 \AA \text { at RT. }$ | $\begin{aligned} & 6011 \\ & 62 S 17 \end{aligned}$ |
    | 4 | Temperature d | ndence of latt | parameters: |  |
    | 53 | Dielectric const | t: Fig. 871. x | 80 at RT. | $62 S 17$ |

    Figuren S. 376
    II 7 Oxide mit Schichtstruktur
    

    Figures p. 376ff.
    

    Figuren S. 377 ff.
    II 7 Oxide mit Schichtstruktur
    

    II 7 Layer-structure oxides
    Figures p. 379
    

    Figuren S. 379ff.
    II 7 Oxide mit Schichtstruktur
    

    II 7 Layer-structare oxides
    Figures p. 380ff.
    

    Thermal parameter $B=0.33 \AA^{2}$ for all atoms. Coordinates and standard deviations in cell fractions.
    7B Complex compounds and solid solutions
    

    | 1b | Lattice parameter: Fig. 905. <br> Transition temperature: Fig. 906. |
    | :--- | :--- |
    | 5 | Dielectric constant: Fig. 907. |
    | 1b | Lattice parameter: Fig. 908. |
    |  | Transition temperature: Fig. 909. |
    | 5 | Dielectric constant: Fig. 910. |

    Figuren S. 382 ff .
    II 7 Oxide mit Schichtstraktur
    

    ## BRIEF ATTACHMENT U

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT U

    

    Page 141 of 159
    
    

    Page 143 of 159
    
    
    
    
    

    Page 148 of 159
    

    Page 149 of 159
    
    
    
    

    Page 153 of 159
    

    Page 154 of 159
    

    Page 155 of 159
    

    Page 156 of 159
    

    Page 157 of 159

    ## BRIEF ATTACHMENT V

    ## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

    In re Patent Application of
    Date: March 1, 2005
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    # For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION 

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT V

    # Mixed bismuth oxides with layer lattices 

    ## I. The structure type of $\mathrm{CaNb}_{2} \mathrm{Bi}_{2} \mathrm{O}_{\mathbf{9}}$

    By Beingt Aurivilitus

    With 6 figures in the text

    In the course of a comprehensive investigation of mixed bismuth oxides, :the system $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{TiO}_{2}$ was studied. At about 40 atomic $\%$ of $\mathrm{TiO}_{2}$ a phase with a body-centered pseado-tetragonal unit cell with $a=3.84$ and $c=32.8 \AA$ was found. X-ray analysis (to be published later) seemed to show that the structure was built up of $\mathrm{Bi}_{2} \mathrm{O}_{2}^{2+}$ layers paralell to the basal plane, and sheets of composition $\mathrm{Bi}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}^{2}$. The atomic arrangement within the $\mathrm{Bi}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}^{2-}$ sheets seemed to be the same as in structures of the perowskite type and the structure could then be described as consisting of $\mathrm{Bi}_{2} \mathrm{O}_{2}^{2+}$ layers between which double perowakite layers are inserted.
    An attempt was then made to synthesize compounds where the $\mathrm{Bi}_{2} \mathrm{O}_{2}^{2+}$ layers alternate with single perowskite layers. The general formula for such compounds could be expected to be: $(\mathrm{MeBi})_{8} \mathrm{R}_{4} \mathrm{O}_{18}$. In actual fact compounds with this structure could be prepared with $\mathrm{Me}: \mathrm{Na} \mathrm{K} \quad \mathrm{Ca} \mathrm{Ba} \mathrm{Sr} \mathrm{Pb} \mathrm{R}$ : Ti Nb Ta .
    Procedure: Weighed amounts of the appropriste oxides or carbonates were mixed and heated in platinum. or gold crucibles to about $1000^{\circ} \mathrm{C}$. A number of compounds with the general formula ( $\mathrm{Bi}, \mathrm{Me})_{6} \mathrm{R}_{4} \mathrm{O}_{18}$ were prepared. Out of these the following were foand to have a body-centered tetragonal or pseadotetragonal unit cell. The real unit cells, however, appeared to be face-centeredorthorhombic.

    | Composition | Orthorhomabic description |  |  | Pseudo-tetragonal description |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $a$ | $b$ | 0 | $a$ | $c$ |
    |  |  | Б. 442 |  | 3.836 |  |
    | $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$ - | 5.405 5.402 | 5.442 | 25.15 | 3.832 | 25.15 |
    |  | 5.435 | 6.485 | 24.87 | 3.860 | 24.87 |
    | $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ $8 \mathrm{rrin} \mathrm{Nb}_{2} \mathrm{O}_{2}$ | 5.504 | 5.504 | 25.05 | 3.892 | 25.05 |
    | $\mathrm{CrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{2}$ | 5.604 5.509 | 5.509 | 25.06 | 8.895 | 25.06 |
    |  | 5.633 | 5.533 | 25.55 | 3.812 | 25.65 |
    | ${ }^{\mathrm{BaBi}_{2} \mathrm{Nb}_{3} \mathrm{O}_{9}}$ | 6. 5.492 | 6.503 | 25.53 | 3.887 | 25.53 |
    | ${ }^{\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}} \mathrm{KBi}_{5} \mathrm{Nb}_{4} \mathrm{O}_{18}$. | 5.492 $\mathbf{5 . 5 0 6}$ | 5.506 | 25.26 | 3.893 | 25.26 |
    | $\mathrm{KBi}_{6} \mathrm{Nb}_{4} \mathrm{O}_{18}$ $\mathrm{NaBin}_{48} \mathrm{Nb}_{4} \mathrm{O}_{18}$. | 5.506 5.47 | \$. 5.47 | 26.94 | 8.87 | 26.94 |

    47
    B. aURIVInLIUS, Mixed bismuth oxides with layer latticus

    Single orystals were prepared from the $\mathrm{PbBi}_{8} \mathrm{Nb}_{8} \mathrm{O}_{9}$ and $\mathrm{Bi}_{8} \mathrm{NbTiO}_{9}$ phases. Weissenberg photographs of $0 k l$ and $1 k l$ (pseudo-tetragonal cell) were taken. In the powder photographs of $\mathrm{Bi}_{3} \mathrm{NbTHO}_{9}$ (Table 6a) the reflections 110,211 ; 215,220 and 310 were clearly split up. No cleavage was found for the reflections $106,20 l$, and $30 l$, (in all cases pseudo-tetragonal indices). From this it was concluded that the structure might be described by means of orthorhombic unit cells, having the same $c$ ases as the pseudo-tetragonal cells; and $a$ and $b$ axes equal to the diagonals of the pseudo-tetragonal cells. Using orthorhombic units the Weissenberg photographs register $h h l$ and $h, h+2, l$ : In Table 6a the $\sin ^{2} \theta$ of $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$ are calculated on the assumption of an orthorhombic anit cell.
    A few discrepancies occur between the intensities of the spots as found in the Weissenbarg photographs (first layer) and in the powder photograyhs. In the Weissenberg photographs ( $h, h+2, l$ ), no difference was found between reflections $h k l$ and $k h l$. From the powder photographs it is seen that 024 might be $<204$ and that $311<131$ and $3111<1311$. The reason might be the orientation of the powder.

    ## $\mathrm{PbBi}_{\mathbf{2}} \mathrm{Nb}_{\mathbf{2}} \mathrm{O}_{\mathbf{9}}$ phase $^{\text {Phen }}$

    The powder photographs of $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ (Table 6b) could be explained assuming a tetragonal cell with $a=3.887 \AA$ and $c=25.53 \AA$, but for two lines being split up, which indicated an orthorhombic unit cell with axes $a=5.492$ $b=5.503$ and $c=25.53 \AA$. As in $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$, it was thus assumed that the real symmetry is $\mathrm{D}_{2 h}-9 \mathrm{~mm}$, though nothing in the Weissenberg photographs indicated a lower Laue symmetry than $\mathrm{D}_{4 \mathrm{~h}}-4 / \mathrm{mmm}$. The observed density was 7.91 , thus allowing 4 formula units/onit cell ( $d_{\text {oala }}=8.22$ ).

    With the exception of the criterion for face-centering that $h k l$ occuring only. with $h, k, l$ all odd or all even, no systematic extinctions were found. This is characteristic of the space groups $D_{2 h}^{23}, D_{2}^{7}$ and $C_{20}^{28}$.

    ## Positions of the metal atoms

    As the scattering factors for the Pb and the Bi atoms are almost the same it makes no difference in the intensity calculations whether the Pb and the Bi atoms occupy separate positions or are mixed at random. Therefore no difference will be made between Pb and Bi ; they will both be denoted by Me ,

    The intensities of the reflections seemed to depend mainly on the value of (see Table la). It therefore seemed probable that at least the Me and the Nb atoms are placed along the lines: $\left(000 ; \frac{1}{2} \frac{1}{2} 0 ; \frac{1}{2} 0 \frac{1}{2} ; 0 \frac{1}{2} \frac{1}{2}\right)+00 z$. The sum of $\sum_{l} X_{00 l} \cos 2 \pi l z$ and $\sum_{i} I_{11 l} \cos 2 \pi l z$ will under such conditions represent the
    Patterson function along 00 z . In Fig. 1 a these sums are plotted as functions of $z$. It is seen from the graph that high maxima occur for $z=0.20$ and: $z=0.40$.

    The unit cell of $\mathrm{PbBi}_{2} \mathrm{Nb}_{9} \mathrm{O}_{9}$ contains 12 Me atoms and 8 Nb atoms.
    If the space groups are assumed to be $D_{2 k}^{2 g}, D_{2}^{7}$ or $C_{20}^{18} a$ or $b$, the only way of placing 12 Me atoms on the lines $00 z$ is in one 4 -fold and one 8 -fold position. With these assumptions the only 4 -fold positions possible are 000 or $00 \frac{1}{8}$
    hases.
    taken
    211 , or the From ans of 1 cells,
    Using $1+2$, of an
    and in
    18. In reflec might ght be
    ed as o lines $=5.492$ lat the graphs ity was
     This is
     bave been denoted by: $003,02 l$ or $20 l, 22 l, 13 l$ or 311 .

    The crystals form very thin plates, and therefore considarable absorption occurs. Spote in the vicinity of the lines desaribed by Wesirs (2) will therefore be weakened. The regions of maximum absorption are denoted by dotted lines. In the tables 1,2 and 3 pserudotetragonal indices are used, and observed and calculated intansities for the refleotions: 001 , $10 l, 11 t, 20 l$, and 211 are given. With orthorhombic desoription these reflections would
    

    ## B. Aumrvilutus, Mixed bismuth oxides with layer lattices

    Table 1b.
    Weissenberg Photographs of $\mathrm{PbBi}_{8} \mathrm{Nb}_{2} \mathrm{O}_{9}$

    | Zerolayer |  |  |  | Firat leyer |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 001 | $\mathrm{I}_{1}^{\prime}$ | $\mathrm{I}_{\text {oba }}$. | $r_{2}^{\prime}$ | 216 | $\mathrm{I}_{1}^{\prime}$ | $\bar{I}_{\text {obe }}$ | $\mathrm{I}_{2}^{\prime}$ |
    | 4 | 11 | $\mathrm{m}^{-}$ | 32 | 1 | 1.7 | - | 14 |
    | 6 | 1.4 | VVW | 1.4 | 3 | 18 | V\%W | 4.8 |
    | 8 | 28 | $\mathrm{m}^{-}$ | 14 | 5 | 830 | 日t | 340 |
    | 10 | 360 | vst | 360 | 7 | 18 | - | 0.4 |
    | 12 | 45 | w | 11 | 9 | 23 | W | 67 |
    | 14 | 50 | $\mathrm{m}^{+}$ | 88 | 11 | 4.8 | - | 3.6 |
    | 16 | 6.3 | VW | 5.8 | 13 | 26 | VW\% | 28 |
    | 18 | 70 | .m | 38 | 15 | 300 | w | 280 |
    | 20 | 280 | st | 230 | 17 | 13 | - | 0.3 |
    | 22 | 25 | $\square$ | 0.4 | 19 | 42 | $\mathbf{W}^{+}$ | 150 |
    | 24 | 58 | $\mathrm{m}^{+}$ | 250 | 21 | 14 | - | 7.8 |
    | 28 | 21 | w- | 10 | 23 | 66 | $\mathrm{w}^{+}$ | 36 |
    | 28 | 85 | $\mathrm{m}^{-}$ | 21 | 25 | 210 | m | 170 |
    | 30 | 240 | m | 120 | 27 | 23 | - | 2.8 |
    | 32 | 17 | W | 6.8 |  |  |  |  |
    | 101 | $I_{1}^{\prime}$ | $\mathrm{I}_{\text {obs }}$ | $I_{8}^{\prime}$ | 112 | $r_{1}^{\prime}$ | $\mathrm{I}_{\text {obs }}$ | $x_{2}^{\prime}$ |
    | 1. | 1.0 | m | 8.4 | 2 | 18 | V\% | 1.2 |
    | 3 | 14 | $\mathrm{m}^{-}$ | 4.0 | 4 | 9.0 | m | 34 |
    | 5 | 820 | vit | 340 | 6 | 0.1 | m | 8.4 |
    | 7 | 16 | - | 0.5 | 8 | 25 | w | 14 |
    | 0 | 24 | m | 67 | 10 | 350 | m+ | 340 |
    | 11 | 8.3 | - | 2.0 | 12 | 19 | - | 0.2 |
    | 18 | 24 | w | 24 | 14 | 36 | VW | 100 |
    | 15 | 810 | 8t | 280. | 16 | 9.6 | - | - 4.8 |
    | 17 | 13 | - | 0.5 | 18 | 45 | w | 81 |
    | 19 | 42 | m+ | 150 | 20 | 280 | $\mathrm{m}^{+}$ | 230 |
    | 21 | 14 | VWW | 7.8 | 22 | 22 | - | 0.0 |
    | 23 | 64 | m | 38 | 24 | 71 | m | 200 |
    | 25 | 210 | m | 170 | 26 | 27 | vow | 14 |
    | 27 | 23 | - | 2.9 | 28 | 85 | W | 26 |
    | 29 | 81 | $\mathrm{m}^{+}$ | 220 | 30 | 190 | m | 130 |
    | 31 | 32 | W | 24 |  |  |  |  |
    | 202 | $\mathrm{I}_{1}^{\prime}$ | $\mathrm{I}_{\text {obs }}$ | $I_{2}^{\prime}$ |  |  |  |  |
    | 2 | 12 | VW | 1.4 |  |  |  |  |
    | 4 | 10 | W | 36 |  |  |  |  |
    | 6 | 0.5 | - | 4.8 |  |  |  |  |
    | 8 | 31 | $\mathbf{W}^{-}$ | 14 |  |  |  |  |
    | 10 | 350 | m | 350 |  |  |  |  |
    | 12 | 41 | - | 7.8 |  |  |  |  |
    | 14 | 50 | ${ }^{-}$ | 88 |  |  |  |  |
    | 16 | 6.3 | - | 6.3 |  |  |  |  |
    | 18 | 69 | w | 40 |  |  |  |  |
    | 20 | 280 | $\mathrm{m}^{+}$ | 230 |  |  |  |  |
    | 22 | 25 | - | 0.4 |  |  |  |  |
    | 24 | 59 | $\mathrm{m}^{+}$ | 240 |  |  |  |  |
    | 26 | 20 | VW | 11 |  |  |  |  |
    | 28 | 85 | w |  |  |  |  |  |

    Of
    It
    Usi
    ibilit
     Full curve: $\sum_{l} I_{00 l} \cos 2 \pi l z$ Dotted curve: $\sum_{l} \mathrm{I}_{11 l} \cos 2 \pi l z$ (orthorhombic indices).
    
    Figure 1 b . Patterson function of $\mathrm{Bis}_{8} \mathrm{NbTiO}_{9}$ alung 002
    Of 8 -fold positions only $\pm 00 z$ is possible.
    It was assumed arbitrarily that 4 Me occupy the position 000.
    Using the distances found with the aid of the Patterson function, two possibilities for placing the Nb atoms arose:

    1. 8 Nb in $\pm 000.20$
    4 Me in 000
    8 Me in $\pm 000.40$
    2. 8 Nb in $\pm 000.40$
    4 Me in 000
    8 Me in $\pm 000.20$
    The two curves on the graph were added and the areas under the peaks at 0.20 and 0.40 calculated. The ratio $1.5: 1$ was found for $0.20 / 0.40$.
    In case 1 , the ratio was calculated to be $0.91: 1$ and in case 2, 1.1:1 if the ratio $f_{\mathrm{mp}} / f_{\mathrm{m}}$ was assumed to be 0.46 . These figures cannot be compared directly with the observed ratio 1.5:1 since the zero level in figure 1 is of course uncertain. Case 2 agreas slightly better insofar as the paak at 0.20 is actually higher. It seemed, however, that the uncertainty in determining the areas was so large that case 1 could not be excluded by these measurements alone.

    B．Adrivimuvs，Mixed bismuth oxides with layer Lattices

    ## Case 1

    In calculating the structure amplitudes $z_{\mathrm{ND}}$ was varied around 0.20 and $z_{\mu_{0}}$ around 0．40．The average ratio $f_{\text {so }} / f_{\mathrm{Mo}}$ was assumed to be 0.46 ．The intensities were compared with calculated values of $\mathrm{A}^{\mathrm{a}}$ ：
    $A=10\left(\cos 2 \pi l z_{\mathrm{mag}}+0.46 \cos 2 \pi l z_{\mathrm{Nb}}+0.5\right)=10 F / 4 f_{\mathrm{ma}_{0}}$ ．In this way the best values for the parameters were found to be：
    $z_{\mathrm{Me}}=0.397 \pm 0.002$ and $z_{\mathrm{Nb}}=0.192 \pm 0.004$ ．In Table $1 \mathrm{a} \mathrm{I}_{\text {cavo．}}$ is compared with the observed intensities．

    ## Case 2

    $z_{\mathrm{MD}}$ was varied about 0.40 and $z_{\text {Me }}$ around 0.20 ．The best values were found to be $z_{\mathrm{Nb}}=0.412 \pm 0.004$ and $z_{\mathrm{sco}}=0.202 \pm 0.002$ ．
    The observed and calculated values are compared in Table $1 a$.
    It was found that arrangement 2 accounted slightly better for the experi－ mental data than 1．It must，however，be borne in mind that the intensity ratios of weak spots might be changed through the influence of the oxygen atoms and that this influence was neglected in the calculations．The differences did not seem to be as large as to allow a decision between 1 and 2 ．It was therefore tried to find possible oxygen positions both for 1 and 2 ．The results were then compared．

    ## Case 1．Positions of the oxygen atoms

    The positions of the metal atoms were assumed to be：$\left(000 ; 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} 0 \frac{1}{2}\right.$ ； $\left.\frac{1}{2} \frac{1}{8} 0\right)+000\left(4 \mathrm{Me}_{1}\right) \pm 000.397\left(8 \mathrm{Me}_{2}\right) \pm 000.192(8 \mathrm{Nb})$ ．Since all point positions of $\mathrm{D}_{2 h}^{28}$ can be described by positions of $\mathrm{D}_{2}^{7}$ or $\mathrm{C}_{80}^{\mathrm{de}} a$ ，only $\mathrm{D}_{2}^{7}$ and $\mathrm{C}_{20}^{18} a \cdot$ have bean considered．

    At first only $\mathrm{D}_{8}^{7}$ will be discussed．If the interatomic distances $0-0, \mathrm{Me}-\mathrm{O}$ and $\mathrm{Nb}-\mathrm{O}$ should not be smaller than $2.5,2.2$ and $1.8 \AA$ ．oxygen atoms could only be situated in the following positions：

    $$
    0
    $$

    An attempt was made to find positions for the oxygen atoms giving ap－ proximately regular octahedra around Nb ，since from known stractures containing $\mathrm{Nb}^{5+}$ and $\mathrm{O}^{2-}$ this seemed to be the normal configuration $\mathrm{Nb}^{5+}-0^{2-}$ ． The maximam distance of contact $\mathrm{Nb}-0$ was assumed to be $2.5 \AA$ ．

    With these assumptions $8(g)$ and $8(h)$ are the only positions where oxygen atoms in contact with Nb can be situated．
    With oxygan atoms in three 8 －fold positions $8(h)$ the distances $0-0$ would be too short．It then only remains to consider the case of oxygen atoms in two 8 －fold positions $8(g)$ and two 8 fold positions $8(h)$ ．For the oxygen

    $$
    \begin{aligned}
    & 4 \text { (b) } 00 \frac{1}{2} \\
    & 4 \text { (c) } れ \text { な } \\
    & 4 \text { (d) } 4 \frac{1}{4} \\
    & 8(g) \pm 00 z \\
    & 8(h) \frac{14}{4} z ; \frac{1}{4} \frac{1}{2}-z \\
    & 0.039 \leq|x| \leq 0.061 \\
    & 0.086 \leq z \leq 0.122 \\
    & 0.148 \leq|z| \leq 0.201 \\
    & 8 \text { (i) } \frac{1}{4} y \frac{1}{4} ; \frac{1}{2}-y \frac{1}{4} \\
    & y=0 \\
    & 8 \text { (j) } x \frac{3}{4} \text {; }
    \end{aligned}
    $$

    atoms in contact with Nb , reasonable interatomic distances were obtained assuming: $8.0_{2}$ in $8(g) z_{2}=0.100 \quad 8 O_{3}$ in $8(g) z_{3}=0.2648 O_{4}$ in $8(h) z_{4}=0.168$
    1.20 and $z_{\mathrm{x}_{0}}$ ze intensities
    this way the is compared
    s were found
    : the experithe intensity : the oxygen le diffarences d 2. It was
    The results
    ; $0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} 0 \frac{1}{2} ;$ nce all point $D_{2}^{7}$ and $C_{80}^{18} a$ :
    $0-0, \mathrm{Me}-\mathrm{O}$ atoms could

    ```
 3
 `0.122
 =0.311
    ```

    :s giving apwn structures ${ }^{1} \mathrm{Nb}^{5+}-\mathrm{O}^{2-}$. A.
    where oxygen
    $0-0$ woald sxygen atoms r the oxygen $8 O_{6}$ in $8(h) z_{5}=-0.168$. Even if small adjustments of these parameters are admitted for the remaining 40 there is room only in the position $00 \frac{1}{2}\left(\mathrm{O}_{1}\right)$.

    With these assumptions the distances would be:

    $$
    \begin{array}{lll}
    \mathrm{Me}_{1}-4 \mathrm{O}_{1}=2.75 \\
    \mathrm{Me}_{1}-2 \mathrm{O}_{2}=2.55 \\
    & \mathrm{Me}_{2}-4 \mathrm{O}_{2} 2.75 & \mathrm{Nb}-\mathrm{O}_{2}=2.34 \\
    \mathrm{O}_{4}-4 \mathrm{O}_{5}=2.74 & \mathrm{Me}-2 \mathrm{O}_{4} 2.55 & \mathrm{Nb}-2 \mathrm{O}_{4}=2.04 \\
    \mathrm{O}_{3}-2 \mathrm{O}_{4}=2.60 & & \mathrm{Ne}-2 \mathrm{O}_{5} 2.55 \\
    \mathrm{O}_{3}-2 \mathrm{O}_{5}=2.60 & \mathrm{Nb}-\mathrm{O}_{5}=2.04 \\
    \mathrm{O}_{1}-2 \mathrm{O}_{2}=2.55 & & \mathrm{Nb}-\mathrm{O}_{3}=1.84 \\
    & &
    \end{array}
    $$

    It is seen that the positions given might equally well be described by $\mathrm{D}_{2 h}^{23}$ or if the pseudo-tetragonal unit cell $(a=3.89 c=25.53 \AA)$ is chosen by $D_{2 h}^{17}$.

    As $a \sim b$ and the positions of the oxygen atoms mast be ohosen from space considerations, the discossion will be the same for $C_{20 a}^{28}$ as for $C_{200}^{18}$. For $C_{2 v a}^{19}$ it is found that the oxygen atoms can be only in the planes $y=0 y=0.25 \pm 0.03 y=\frac{1}{8}$ and $y=0.75 \pm 0.03$. For $y=0$ or $\frac{1}{2}, z$ must either be 0 or $\frac{1}{2}$ or lie between the limite $0.049<|z|<0.451$, otherwise the distance $0-0$ will be $<2.5 \AA$. For $y=\frac{1}{4}$ or $\frac{3}{4}, z$ must have the values $0, \frac{1}{8}, \frac{1}{4}$ or $\frac{9}{4}$ or lie between the limits $\quad 0.049<|z|<0.201 \quad 0.299<|k|<0.451$.
    In figure 2 a sections of the unit cell are made for $y=0$ and $y=4$. Possible regions with space group $\mathrm{C}_{20}^{18}$ a are denoted in the figure by abaded areas. For these areas the distances $0-0 \geq 2.5 . \mathrm{Me}-0 \geq 2.2$ and $\mathrm{Nb}-0 \geq 1.8 \AA$.

    With space group $\mathrm{C}_{88 \mathrm{a}}^{18}$ it thus seems that no basically new atomic positions are obtained, although this symmetry allows the atoms to be slightly shifted from the positions of $D_{2}^{\dagger}$.
    In Table 1 the intensities have been calculated from the parameters found and compared with the observed ones. (The calc. intensities are denoted by $\mathrm{I}_{1}^{\prime}$ ). The mode of calculation is shown by the calculation of $I_{002} . I=A^{2}$.
    $\mathrm{A}=10\left(0.5+\cos 2 \pi l z_{\mathrm{Ma}_{0}}+\left(f_{\mathrm{Na}} / f_{\mathrm{Ma}_{0}}\right) \cos 2 \pi l z_{\mathrm{Nb}}+\left(f_{0} / f_{\mathrm{Ma}_{0}}\right)\left(0.5+\cos 2 \pi l z_{2}+\right.\right.$ $\left.+\cos 2 \pi l z_{3}+2 \cos 2 \pi i z_{4}\right)$. Since the ratios $f_{\mathrm{Mb}} / f_{\mathrm{mo}}$ and $f_{\mathrm{o}} / f_{\mathrm{Me}}$ vary with sin $\theta / \lambda$ thes were interpolated from values given in the International Tables (1).

    ## Case 2. Positions of the oxygen atoms

    The positions of the metal atoms were assumed to be: $\left(000 ; \frac{1}{2} \frac{1}{2} 0 ; 0 \frac{1}{8} \frac{1}{2} ; \frac{1}{8} 0 \frac{1}{2}\right)+$ $+000\left(4 \mathrm{Me}_{1}\right) \pm 000.202\left(8 \mathrm{Me}_{2}\right) \pm 000.412(8 \mathrm{Nb})$.
    With $\mathrm{D}_{2}^{7}$ the following positions are available for the oxygen atoms 4 (b) $00 \frac{1}{2}$

    $$
    \begin{aligned}
    & 8(g) \pm 00 z \\
    & 0.086 \leq z \leq 0.116 \\
    & 8(h) \frac{1}{4} z, 4 \frac{1}{2}-z \\
    & 0.288 \leq z \leq 0.342
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & 16 \text { (k) } x y z, \bar{x} \bar{y} z, x \bar{y} \bar{z}, \bar{x} y \bar{z} \\
    & x=0 \quad x=0.25 \pm 0.03 \\
    & y=0.25 \pm 03 \text { or } y=0 \\
    & z \sim 0.135 \text {. }
    \end{aligned}
    $$

    B. Adrivillids, Mixed bismuth oxides woith layer lattices
    
    
    $y=0$
    

    Figure 2 a (see Case 1 in the text.)
    The projection of the positions of the $\mathrm{Nb}, \mathrm{Me}_{2}$ and Me atoms on the planes $y=0$ $y=\frac{t}{t}$ are donoted by: bleck circles, white aircles and double aircles respectively.
    

    Figure 2 b (see Case 2 in the text.)
    It was found that oxygen atoms in the positions $4(c), 4(d)$ or $16(k)$ could not be part of an octahedron around Nb . With 0 in the remaining positions, $4(b), 8(g)$ and $8(h)$, octahedra around Nb might be achieved in the following ways: ( $1.8 \leq \mathrm{Nb}-0 \leq 2.5$ ).
    With oxygen atoms in three 8 -fold positions $8(h)$, it seemed impossible to find positions for the remaining 12 oxygen atoms giving $0-0$ distances $\leq 2.5 \AA$

    With two 8 -fold positions $8(h)+4(b)+$ one 8 -fold position $8(g)$ the following positions were assumed for axygen atoms in contact with Nb :

    $$
    \begin{aligned}
    & 4 \mathrm{O}_{1} \text { in } 4(b) \quad 80_{2} \text { in } 8(g) \quad z=0.324 \\
    & 80_{3} \text { in } 8(h) \quad z=0.088 \quad 80_{4} \text { in } 8(h) \quad z=-0.088 .
    \end{aligned}
    $$

    For the remaining 8 oxygen atoms there was only room in the positions 4 (c) and $4(d) .\left(\mathrm{O}_{5}, \mathrm{O}_{6}\right)$.
    With the above assumptions the distances would be:

    $$
    \begin{array}{lll}
    \mathrm{Me}_{1}-4 \mathrm{O}_{1}=2.75 & \mathrm{Me}_{2}-2 \mathrm{O}_{5}=2.29 & \mathrm{Nb}-\mathrm{O}_{1}=2.24 \\
    \mathrm{Me}_{1}-4 \mathrm{O}_{3}=2.96 & \mathrm{Me}_{2}-2 \mathrm{O}_{6}=2.29 & \mathrm{Nb}-2 \mathrm{O}_{3}=1.94 \\
    \mathrm{Me}_{1}-4 \mathrm{O}_{4}=2.96 & \mathrm{Me}_{2}-4 \mathrm{O}_{2}=2.82 & \mathrm{Nb}-2 \mathrm{O}_{4}=1.94 \\
    & & \mathrm{Nb}-\mathrm{O}_{2}=2.24 \\
    & & \mathrm{O}_{5}-4 \mathrm{O}_{6}=2.75 \\
    \mathrm{O}_{2}-2 \mathrm{O}_{6}=2.70 & \mathrm{O}_{2}-2 \mathrm{O}_{3}=2.96 \\
    \mathrm{O}_{3}-4 \mathrm{O}_{4}=2.75 & \mathrm{O}_{2}-2 \mathrm{O}_{6}=2.70 & \mathrm{O}_{2}-2 \mathrm{O}_{4}=2.96 \\
    & \mathrm{O}_{1}-4 \mathrm{O}_{3}=2.96 &
    \end{array}
    $$

    The above positions might be equally well desoribed by $D_{2 i}^{23}$ or if a pseudotetragonal unit cell is assumed ( $a=3.89 c=25.53$ ) by $\mathrm{D}_{4 h}^{77}$.

    Se. In Figare 2 b sections are made of the unit coll for $y=0$ and $y=\frac{1}{4}$ showing the posiFand possible for the oxygen atoms if the space group $C_{20}^{18}$ is assamed. Possible regions gide denoted by shaded areas. It was found that only with oxyger atoms situated near the ripositions given above, could ootahedra of O around all Nb atoms and ressonable distances
    

    Thus no new arrangements were found when space group $C_{20 a}^{88}$ was assumed. In Table 1 the intensities are calculated from the parameters given above. WThe calculated intensities are denoted by $I_{2}^{\prime}$. The mode of calculation is the frime as was used in case 1. It is seen from the Table that both 1 and 2, Sin which cases the influence of the oxygen atoms was neglected, account fairly FFrell for the experimental data. From this follows that the calculated intensities WI $I_{1}$ and $I_{2}^{\prime}$, where regard was taken to the 0 atoms, do not differ much either. fallthough the ratio $211: 213$ (see Table 1 (peeudo-tetragonal indices)) is best alesoribed by $1^{\prime}, 2^{\prime}$ on the whole seemed to satisfy the observed intensities best (8ee for instance the intensity ratios 112:114 116:118 202:204 101:103 and 2107:109). No definite conalusions could however be drawn from the stady of $4 \mathrm{PbBi}_{2} \mathrm{NbO}_{9}$ alone.

    ## $\mathrm{Bi}_{9} \mathrm{NbTiO}_{9}$

    Just as for $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$, there was nothing in the Weissenberg photographs to indicate a lower Laue symmetry than $\mathrm{D}_{4 n}-4 / \mathrm{mmm}$. From the powder photographs (Table 6a) it is however seen that the actual unit cell is orthorhombic voud. 5 . 5 with with axes $a=5.405 \quad b=5.442 \quad c=25.11 \AA$.
    A. 4 Nb in 000

    8 BiTi in $\pm 00 z_{1}$
    8 BiTl in $\pm 00 z_{2}$
    $\mathrm{C}_{2} 4 \mathrm{Bi}$ in 000
    8 NbTi in $\pm 00 z_{2}$
    8 Bi in $\pm 00 z_{1}$
    The areas under the peaks at 0.20 and 0.40 were calculated as for $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ and the ratio $0.20 / 0.40$ was found to be 1.4. The calculated ratios for $\mathrm{A}, \mathrm{B}$, $C_{1}$ and $C_{2}$ were 1.0, 1.0, 0.84 and 1.2. The area ratio for $C_{2}$ agreed best with the observed one. The differences are however small, so that all alternatives were considered. The intensities were calculated as for $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$. The ratios $f_{\mathrm{Ta}} / f_{\mathrm{Barb}} f_{\mathrm{No}} / /_{\mathrm{BdTl}}$ and $f_{\mathrm{NbT} 4} / \mathrm{Bi}_{\mathrm{Bi}}$ were assumed to be $0.26,0.57$ and 0.34 . The calculated and observed intensities for $A$ and $B$ are compared in Table 2. In these calculations the inflaence of the oxygen atoms was neglected. The best agreement was found for

    |  | $z_{1}$ | $z_{2}$ |
    | ---: | ---: | ---: |
    | A | 0.198 | 0.400 |
    | B | 0.196 | 0.400 |

    Table 2
    Weissenberg photographs of. $\mathrm{Big}_{9} \mathrm{NbTiO}_{8}$.

    | $\downarrow$ | $\mathrm{I}_{\text {A }}$ | $\mathrm{I}_{\mathrm{B}}$ | $\mathrm{I}_{001}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{obs}} \\ & \mathrm{I}_{11 l} \end{aligned}$ | $\mathrm{I}_{202}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 2 | 4.0 | 12 | - | vow | ** |
    | 4 | 7.3 | 22 | m | st | $\mathrm{m}^{+}$ |
    | 6 | 2.3 | 5.3 | w | st | m |
    | 8 | 7.3 | 22 | m | w | m |
    | 10 | 510 | 440 | st | st | st |
    | 12 | 1.4 | 2.6 | W | - | vw |
    | 14 | 15 | 52 | $\mathrm{m}^{+}$ | vw | w |
    | 16 | 0.2 | 0.0 | w | ** | - |
    | 18 | 11 | 30 | $\mathrm{m}^{+}$ | w | Vw |
    | 20 | 500 | 400 | st | 咟 | m+ |
    | 22 | 0.1 | 0.4 | - | - | - |
    | 24 | 27 | 04 | m | m | m |
    | 26 | 0.6 | 2.0 | w | $\mathrm{m}^{+}$ | $\mathrm{m}_{+}$ |
    | 28 | 14 | 31 | m | $\mathrm{m}^{+}$ | $\mathrm{m}^{+}$ |
    | 30 | 490 | 350 | m | m+ |  |
    | $\checkmark$ | $\mathrm{I}_{\Delta}$ | $\mathrm{I}_{\mathrm{B}}$ | $\mathrm{I}_{102}$ | $\mathrm{I}_{216}$ |  |
    | 1 | 4.4 | 12 | st. | $\mathrm{m}^{+}$ |  |
    | 3 | 5.8 | 17 | m | vw |  |
    | 5 | 520 | 450 | vat | vst |  |
    | 7 | ${ }_{11}^{2.6}$ | ${ }_{35}^{6.3}$ | $\bar{m}$ | - |  |
    | 11 | 0.8 | 1.4 | w | w |  |
    | 13 | 9.0 | 27 | w | w- |  |
    | 15 | 510 | 420 | st | ${ }^{\text {w }}$ |  |
    | 17 | 0.6 | 0.3 | - | - |  |
    | 18 | 20 | 70 | w | ${ }^{\text {w }}$ |  |
    | 21 | 0.0 | 0.5 | ${ }_{\text {w }}$ | w |  |
    | 23 | 12 | ${ }_{380}^{31 .}$ | $\mathrm{m}_{\mathrm{m}}{ }^{+}$ | $\stackrel{m}{\text { m }}$ |  |
    | 25 27 | ${ }_{0}^{500} 0$ | ${ }_{3} 3$ | - |  |  |
    | 29 | 34 | 120 | m |  |  |
    | 31 | 1.4 | 4.4 | m |  |  |

    One half notes the

    The ft 8 NbTi j following

    From Table 2 it is seen that A and B account quite well for the observed intensities.

    With A and $\mathrm{B}, \mathrm{Bi}$ and Ti or Bi and Nb would occupy the same point position. This seemed a priori unlikely and if it was assumed that $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$ and $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ were built up in the same way, arrangements A and B would: imply that $\mathrm{Pb}, \mathrm{Bi}$ and Nb were distributed over one point position, in $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$. Therefore, although arrangements A and B cannot be excluded from intensity discussions alone, they seem very improbable and will not be dealt with in the following.
    

    ## ARKIV FÖR KEMI, Bd 1 mr 54

    

    Figure 3.
    One half of the psoudo-tetragonal unit cell of $\mathrm{Bi}_{\mathbf{g}} \mathrm{NbTiO}_{8}$ (from $z \approx 0.25$ to $z \approx 0.75$ ). A denotes the porowrkitio layer $\mathrm{BiNbTiO}^{-}, \mathrm{C} \mathrm{Bi}_{2} \mathrm{O}_{2}$ layers and B the unit cell of a hypothetical
    

    ## Case $\mathrm{C}_{1}$

    The following pasitions were assumed: 4 Bi in $000,8 \mathrm{Bi}$ in $\pm 000.396$, 8 NbTi in $\pm 00$ 0.192. By the same arguments as used for $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ the following positions were arrived at:
    $4 \mathrm{O}_{1}$ in $00 \frac{1}{2}$
    $8 \mathrm{O}_{2}$ in $\pm 000.092$
    $80_{3}$ in $\pm 000.268$
    $8 \mathrm{O}_{4}$ in $\frac{1}{4} z$; $\frac{1}{4} \frac{1}{2}-z \quad z=0.164$
    $80_{5}$ in $\frac{1}{4} \frac{1}{4} z ; \frac{1}{4} \frac{1}{2} \frac{1}{2}-z=-0.164$.

    In Table 3 the intensities are calculated from these parameters.

    ## Case Cr

    4 Bi in $000,8 \mathrm{Bi}$ in $\pm 00 \quad 0.200$ and 8 NbTi in $\pm 000.412$ were assumed.

    NbTiO
    1 would ion, in scluded not be .

    3served
    point
    B. AURPMnirus, Mixed bismuth oxides with layer lattices

    Table 3
    Weissenberg photographs of $\mathrm{Bi}_{8} \mathrm{NbTiO}_{9}$

    | Zerolayer |  |  |  | Firstilayer |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 002 | $\mathrm{IC}_{1}$ | $\mathrm{I}_{\text {obs }}$ | $\mathrm{I}_{08}^{\prime}$ | 211 | $\mathrm{I}_{\mathrm{C}_{1}}$ | $\mathrm{I}_{\text {obs }}$ |  |
    | 4 | 13 | m | 36 | 1 | 2.6 | $\mathrm{m}^{+}$ | 22 |
    | 6 | 0.5 | w | 10 | 5 | 35 | Vw | 82.3 |
    | 8 | 48 | m | 16 | 7 | 290 | vst | 300 |
    | 10 | 310 | st | 330 | 7 | 18 | - | 1.0 |
    | 12 | 46 | W | . 12 | $\stackrel{8}{11}$ | 27 | m | 65 |
    | 14 | 38 | $\mathrm{m}^{+}$ | 59 | 11 | - 3.6 | w | 18 |
    | 16 | 2.6 | W | 29 | 13 | 52 | w | 26 |
    | 18 | 100 | $\mathrm{m}^{+}$ | 48 | 15 | 270 | W | 270 |
    | 20 | 240 | st | 240 | 17 | 6.8 | - | 0.8 |
    | 22 | 12 | - | 0.6 | 18 | 45 | w | 90.8 |
    | 24 | 42 | ma | 140 | 21 | 14 | $w$ | 40 |
    | 26 | $2 \theta$ | w | 42 | 23 | 110 | m | 48 |
    | 28 | 100 | m | . 35 | 25 | 200 | $\mathrm{m}^{+}$ | 200 |
    | 30 | 190 | m | 160 |  |  |  |  |
    | 102 | $I_{C 1}^{\prime}$ | $\mathrm{I}_{\text {obs }}$ | $\mathrm{I}_{0}$ | 111 | $I_{C_{1}^{\prime}}$ | $\mathrm{I}_{\text {obs }}$ | $\mathrm{I}_{\mathbf{C}}$ |
    | 1 | 2.0 | st | 17 | 2 | 34 | vow | 2.6 |
    | 3 | 28 | m | 5.3 | 4 | 2.9 | st | 41 |
    | 5 | 270 | - | 300 | 6 | 6.8 | st | 68 |
    | 7 | 17 | - | 1.2 | 8 | 62 | w | 22 |
    | 9 | 29 | m | 56 | 10 | 360 | st | 310 |
    | 11 | 5.8 | W | 15 | 12 | 14 | - | 1.0 |
    | 13 | 49 | WW | 28 | 14 | 29 | FW | 76 |
    | 15 | 270 | st | 270 | 16 | 10 | VW | 40 |
    | 17 | 5.3 | - | 0.6 | 18 | 64 | w | 16 |
    | 19 | 44 | W | 92 | 20 | 250 | st | 210 |
    | 81 | 16 | W | 38 | 22 | 21 | - | 0.0 |
    | 23 | 110 | m | 46 | 24 | 66 | m | 92 |
    | 25 | 200 | $\mathrm{m}^{+}$ | 200 | 26 | 32 | m | 61 |
    | 27 | 4.4 | - | - 1.2 | 28 | 130 | $\mathrm{m}^{+}$ | 27 |
    | 29 | 65 | m. | 110 | 30 | 150 | $\mathrm{m}^{+}$ | 200 |
    | 31 | 41 | m | 76 |  |  |  |  |
    | 201 | $I_{C}$ | $\mathrm{I}_{\text {obs }}$. | $\mathrm{I}_{0}$ |  |  |  |  |
    |  | 18 | Vw | 2.8 |  |  |  |  |
    | 4 | 12 | m+ | 37 |  |  |  |  |
    | 8 | 0.1 | m | 16 |  |  |  |  |
    | 8 | 48 | m |  |  |  |  |  |
    | 10 | 300 | st | 320 |  |  |  |  |
    | 12 | 33 | vw | 5.8 |  |  |  |  |
    | 14 | 37 | W | 58 |  |  |  |  |
    | 16 | 2.6 | - | 31 |  |  |  |  |
    | 18 | 100 | vw | 45 |  |  |  |  |
    | 20 | 240 | $\mathrm{m}^{+}$ | 240 |  |  |  |  |
    | 22 | 12 | - | 0.5 |  |  |  |  |
    | 24 | 42 | m | 140 |  |  |  |  |
    | 28 | 29 | m | 45 |  |  |  |  |
    | 28 | 100 | $\mathrm{m}^{+}$ | 35 |  |  |  |  |

    

    Table 5
    Powder photographs of $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ and $\mathrm{SrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$. Cr K radiation. Pseado tetragonal indices.

    | $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$ |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | hkl | $I_{\text {obxa }}$. | $I_{a}$ | $\mathbf{I}_{\boldsymbol{\beta}}$ | $I_{y}$ |
    | 006 | - | 8.4 | 0.8 | 0.01 |
    | 008 | m | 61 | 9.6 | 0.8 |
    | $114+0010$ | (m) | 230 | 230 | 230 |
    | 0012 | - | 0.5 | 19 | 47 |
    | 0014 | ** | 20 | 46 | 56 |
    | 0016 | vw | 2.6 | 0.6 | 4.0 |
    | 0018 | w | 100 | 34 | 13 |
    | 101 | - | 1.2 | 0.5 | 2.8 |
    | 103 | $8 t$ | 36 | 1.4 | 1.4 |
    | 105 | vit | 200 | 200 | 200 |
    | 107 | w | 21 | 0.3 | 7.8 |
    | 109 | VVW | 18 | 32 | 43 |
    | --10 11 | - | 7.0 | 0.2 | 0.5 |
    | . 1013 | $\mathrm{m}^{+}$ | 78 | 19 | 4.4 |
    | $2010+1015$ | (bt) | 160 | 160 | 160 |
    | $2111+1017$ | (w) | 22 | 0.2 | 8.0 |
    | 112 | - | 26 | 0.04 | 4.8 |
    | $0010+114$ | (m) | 4.4 | 14 | 22 |
    | 116 | W | 4.4 | 17 | 26 |
    | 118 | m | 69 | 13 | 1.7 |
    | $204+1110$ | (st) | 200 | 200 | 200 |
    | 201112 | ( | 22 | 0.1 | 8.4 |
    | 1114 | W | 41 | 61 | 72 |
    | 202 | W | 27 | 0.1 | 4.4 |
    | $1110+204$ | (st) | 3.6 | 13 | 20 |
    | 206 | $\mathbf{w}^{-}$ | 3.2 | 0.04 | 1.4 |
    | $215+208$. | (st) | 69 | 9.0 | 0.5 |
    | $1015+2010$ | (st) | 220 | 220 | 220 |
    | $2012$ | v* | 1.4 | 15 | 41 |
    | 211 | $\mathbf{w}^{-}$ | 0.1 | 2.3 | 6.3 |
    | 213 | W | 38 | 2.0 | 1.0 |
    | 208+215 | (st) | 210 | 210 | 210 |
    | 217 | ) | 21 | 0.3 | 7.8 |
    | 219 | VWw | 18 | 33 | 43 |
    | $1017+2111$ | (w) | 4.4 | 0.01 | 1.4 |

    $$
    \mathrm{SrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{0}
    $$

    | 006 008 $114+0010$ | $\begin{aligned} & \nabla w \\ & (\mathrm{~m}) \end{aligned}$ | $\begin{gathered} 3.2 \\ 45 \\ 260 \\ \hline \end{gathered}$ | $\begin{gathered} 0.1 \\ 11 \\ 260 \end{gathered}$ | $\begin{array}{r} 0.2 \\ 2.6 \\ 260 \\ \hline \end{array}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | 0012 | VW | 0.2 | 16 | 35 |
    | 0014 | m | 42 | 68 | 64 |
    | 0016 | - | 0.3 | 1.4 | 4.4 |
    | 0018 | w | 83 | 35 | 18 |
    | 0020 | st | 150 | 180 | 160 |

    

    One half of the pseudo-tetragonal unit cell is pictured in figure 3. As mentioned in the discussion on $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$, it was impossible in this phase to determine how Pb and Bi are distributed over the point positions 000 and 00 0.202. It therefore seemed of interest to try to determine the positions of $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and K in the' compounds $\mathrm{CaBi}_{2} \mathrm{Nb}_{8} \mathrm{O}_{9}, \mathrm{SrBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}, \mathrm{BaBi}_{2} \mathrm{Nb}_{8} \mathrm{O}_{9}$ and $\mathrm{KBi}_{5} \mathrm{Nb}_{4} \mathrm{O}_{18}$. As the cell dimensions of the $\mathrm{Pb}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and K componnds do not differ much it was assumed that the parameters of $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ are also valid for the other compounds. There were three extreme ways of distributing $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and K over the positions 000 and 000.202 :
    a Only Bi in 00202
    $\beta$ Random distribution
    $\gamma$ Only Bi in 000 .

    Table 6 a
    Powder photographs of $\mathrm{Bi}_{9} \mathrm{NbTiO}_{9}$. C. K radiation.
    Orthorhombic indices:

    | hkt | $10^{4} \sin ^{2} \theta_{\text {caulc }}$ | $10^{4} \sin ^{2} \theta_{\text {obs }}$ | $\mathrm{I}_{\text {cbad. }}$ | htl | $10^{4} \sin ^{2} \theta_{\text {calla }}$ | $10^{4} \sin ^{2} \theta_{\text {obs }}$. | $I_{\text {oba }}$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 111 | 0914 | 0909 | m | $\begin{array}{llll}02 & 1 & 4 \\ 20 & 1\end{array}$ | $\left.\begin{array}{l}5858 \\ 5878\end{array}\right\}$ | 5874 |  |
    | 113 | 1080 | 1072 | $\mathbf{w}^{+}$ | 2014 | 5878) | 5990 |  |
    | 008 | 1333 | 1319 | ${ }_{\text {w }}{ }^{+}$ | 189 | 6128 | 6129 |  |
    | 115 | 1414 | 1418 | vst | 189 | 6172 | 8175 |  |
    | 020 | 1774 | 1767 | $\mathrm{m}^{+}$ | 319 | $\stackrel{-172}{-}$ | 6250 | ${ }_{\sim}^{W+}$ |
    | 200 | 1796 | 1790 | m | 2212 | 6569 | 6573 | VVW |
    | 0010 204 | 2083 | 2078 | m | 0018 | 6747 | 6747 | Vw |
    | 2014 $\beta 1119$ | $\left.\begin{array}{l}2129 \\ 2136\end{array}\right\}$ | 2131 | W | 1311 | 6961 | 6961 | W |
    | 1118 |  | 2324 | vow | 040 | 7007 |  |  |
    | 026 | 2524 | 2530 | m | 0216 | 7105 | 7097 | m |
    | 206 | 2546 | 2546 | m | 2016 | 7180 |  |  |
    | 119 | 2580 | 2585 | m | 400 400 | 7185 | 7182 | m |
    | - | - | 2738 | Ww | P240 | 7357 |  |  |
    | 028 | 3107 ) | 3129 | W | $\beta 420$ | $7420\}$ | 7388 | W |
    | 208 | 3129 |  |  | $\bigcirc 44$ | 7430 |  |  |
    | 1111 | 3413 | 3415 | W | 2214 | 7652 | 7648 | w |
    | - | - | 3523 3578 | ${ }_{\text {c }} \mathbf{H}$ | 046 | 7847 | 7836 | Ww |
    | 220 | 3570 | 3578 | $8 t$ | 406 | 7935 |  |  |
    | 222 | 3653 3654 | 3648 | vw | 1313 | 7960 | 8005 | w |
    | -11 13 | 3654 |  |  | 3113 | 8004 | 8005 |  |
    | 0210 | 3857 \} | 3860 | st | 331 | 8054 |  |  |
    | 2010 | 3879 |  |  | 0020 | 8330 | 8330 | m. |
    |  | $\left.\begin{array}{l}4082 \\ 4103\end{array}\right\}$ | 4089 | w | 1119 | 8411 | 8409 | m |
    | - 135 | 4103 | 4236 | VW | 048 | 8430 |  |  |
    | 228 | 4320 | 4324 | w | 2018 | 8554 \} | 8568 | st |
    | 1113 | 4412 | 4414 | ${ }_{\text {W }}$ | 240 | 8887 \} | 8888 | m |
    | 131 | 4462 | 4454 | W | 2216 | 8901 \} | 8888 | m |
    | 311 | 4506 | 4504 |  | 420 | 8859 | 8963 | m |
    | B11 15 | ${ }_{4621}$ 462 | 4623 | w | 242 | 8970 | 9105 |  |
    | 133 | 4828 |  |  | $\begin{array}{llll}13 & 15\end{array}$ | 9127 | 9105 | st |
    | ${ }^{3} \begin{aligned} & 313 \\ & 822\end{aligned}$ | $\left.\begin{array}{l}4672 \\ 4678\end{array}\right\}$ | 4676 | w | 3115 | 9171 | 9156 | Vst |
    | $\beta 2210$ 228 | 4678 4903 |  |  | 0410 | 9180 | 9189 | m |
    | 228 135 | 4982 | 4956 | st | 4010 | 9268 \} | 9264 | m |
    | 315 | 5006 | 6006 | st | 424 428 | 9282 |  |  |
    | 1115 | 5579 | 5681 | st | 439 39 | 9720 | 9712 | w |

    The intensities were calculated for these possibilities by calculations similar to those for $\mathrm{PbBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$, and compared with the observed ones. See Table 5. It was found that in no case did $\gamma$ explain the observed intensities. For the $\mathrm{Sr}, \mathrm{Ba}$ and K compounds the observed intensities did not permit any decision between $\alpha$ and $\beta$. For $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$, however, only a seemed to give correct intensities. It was therefore concluded that the compounds discussed have the $a$ arrangement.

    \section*{$h k l$ <br> | hkl |
    | :---: |
    | 101 |
    | 103 |
    | 008 |
    | 105 |
    | 110 |
    | 0010 |
    | 114 |
    | $\beta 100$ |
    | 116 |
    | 108 |
    | $\beta 200$ |
    | 0012 |
    | 118 |
    | 1011 |
    | 200 |
    | 1110 |
    | 0014 |
    | 1013 |
    | 211 |
    | 208 |
    | 215 |
    | 1015 |
    | 2010 | <br> The struc $\mathrm{BiNbTiO}_{7}^{2-} 1$ skite struct

    view was was observe would allow $t$ is calculat. between the ssee Table <br> $t$ was calcul}

    In the calo ionic radii we $\mathrm{K}^{+} 1.33, \mathrm{Nb}^{6+}$ distributed ove
    $47 \dagger$

    Pseudo－tetragonal indices．

    | $\mathrm{I}_{\text {obs }}$ | knd | b 61 | $10^{4} \sin ^{2} \theta_{\text {casce }}$ | $10^{4} \sin ^{2} 0_{\text {obs }}$ | $\mathrm{I}_{\text {obss．}}$ | hkl | $10^{4} \sin ^{2} \theta_{\text {cata }}$ | $10^{4} \sin ^{2} \theta_{\text {obs }}$ | $\mathrm{I}_{\text {obs }}$ ． |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | \％ | 101 | 0889 | 0892 | \％ | 1114 | 5682 | 5699 | m |
    | m | 6） | 103 | 1050 | 1052 | Vow | 219 | 6974 | 5990 | m |
    | W | ， | 008 | 1288 | 1285 | vow | 0018 | 6520 | 6529 | W |
    | w＋ | ，湤 | 106 | 1372 | 1871 | vst | 0020 | ${ }_{6685}^{663}$ \} | 6664 | OVow |
    | $\mathrm{w}^{+}$． | 人洔： | 110 | 1738 | 1763 | m | 1017 | 68859 |  |  |
    | ruw |  | 0010 | 2012 | 2019 | m | 8305 16 | 68893 ¢ | 6924 | m |
    | Nw | － 3 | 114 | 2060 209 $\}$ | 2068 | vrw | 阝306 | 6903 | 8934 | m |
    | VW： | \％${ }^{\text {S }}$ | $\beta 109$ | 2089） |  |  | 220 | 6950 | 6976 | m |
    | W |  | 116 | 2462 |  | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m}^{-} \end{aligned}$ | 2014 | 7418 | 7435 | m |
    | m | Exame | 108 $\beta 200$ | 2498 |  |  | 2113 | 7744 | 7749 | m |
    | m | Ster | －2012 | 2898 \} | 2881 | m | 301 | 7839 | 7846 | Fw |
    | m | － | 118 | 3026 | 3028 | w | 0020 | 8049 | 8052 | m |
    |  | 区x | 1011 | 3304 | 3300 | VWW | 1019 | 81338 8238 | 8131 | $\mathrm{m}^{+}$ |
    | W | 7360 | 200 | 3475 | 3475 | st | 1118 | 8258 ） | 8268 | VW |
    |  | \％${ }^{3}$ | 1110 | 3750 | 376 | ${ }^{\mathbf{+}}$ | 305 | 8332 | 8339 | mr |
    | w | 1－605： | 10 10 13 | 4289 | 4270 | $\mathbf{w}^{+}$． | 310 | 8688 | 8673 \} | $\mathrm{m}^{+}$ |
    | vw | fextixe： | 211 | 4364 | 4355 | vyw |  | 8872 | 8874 | 日t |
    | $w$ |  | 208 | 4763 | 4770 | vvw | 2210314309 | $\left.\begin{array}{l} 8962 \\ 8010 \\ 9449 \end{array}\right\}$ | 8980 | $\begin{array}{r} \mathrm{m} \\ \mathrm{w} w \end{array}$ |
    |  |  | 215 | 4847 | 4850 | st |  |  |  |  |
    |  |  | 1015 | 5397 | 6416 | st |  |  | 9450 |  |
    |  |  | 2010 | 5487 | 5493 | st |  |  |  |  |

    The structure of $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$ is thus bailt up of $\mathrm{Bi}_{8} \mathrm{O}_{8}^{2+}$ layers between which $\mathrm{BiNbTiO}_{7}^{2}$ layers are inserted．The structure may be looked upon as a perow－ skite stracture where perowskite layers are separated by $\mathrm{Bi}_{2} \mathrm{O}_{2}^{3+}$ layers．This view was supported by the fact that in all cases where the above structure was observed the radii of the ions in the layers lying between the $\mathrm{Bi}_{2} \mathrm{O}_{2}^{3+}$ layers would allow for the formation of a perowalite structure．If the tolerance factor $t$ is calculated from the ionic radii of the elements constituting the layers between the $\mathrm{Bi}_{2} \mathrm{O}_{2}^{2+}$ layers，it is found to lie between the limits 0.9 and 1.1 （see Table 4），the same limits within which perowskite struotures are found to be stable．
    $t$ was caloulated from the formala： $1.06\left(R_{\Delta}+R_{0}\right)=0.95 ، \sqrt{2}\left(R_{B}+R_{00}\right)$ ．（See（3）．）

    $$
    \begin{aligned}
    & A=(\mathrm{K}+\mathrm{Bi}) / 2 \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba} \text { etc. } \\
    & \mathrm{B}=(\mathrm{Nb}+\mathrm{TI}) / 2(\mathrm{Ta}+\mathrm{Ti}) / 2 \mathrm{Nb} . \mathrm{Ta}_{\mathrm{a}}
    \end{aligned}
    $$

    In the calculations oase $a$ was assumed．For calculating $t$ the following values for the ionic radii were used： $\mathrm{Bi}^{9+} 1.00, \mathrm{Ba}^{2+} 1.39, \mathrm{gr}^{2+} 1.20, \mathrm{Ca}^{2+} 1.02, \mathrm{~Pb}^{2+} 1.28, \mathrm{Na}^{+} 0.97$ ， $\mathrm{K}^{+} 1.33, \mathrm{Nb}^{\mathrm{b}+} 0.69, \mathrm{Ta}^{\mathrm{b}+0.69}, \mathrm{Ti}^{4+} 0.66$ and $\mathrm{O}^{2-} 1.36$ ．If，for instance， $1 \mathrm{~K}+1 \mathrm{Bi}$ are distributed over one 2 －fold position the radius of $(\mathrm{K}, \mathrm{Bi})$ was taken as $\left(r_{\mathrm{I}}+r_{\mathrm{BI}}\right) / 2$ ．
    $47 \dagger$

    The structure proposed for $\mathrm{CaBi}_{8} \mathrm{Nb}_{2} \mathrm{O}_{9}$ reminds one of the structure of beyerite. $\mathrm{CaBi}_{2} \mathrm{O}_{8}\left(\mathrm{CO}_{3}\right)_{2}$ described by Lagercrantz and Suifin (4). The umit cell of beyerite is body-centered tetragonal with $a=3.767$ and $c=21.690 \AA$. The
    positions of the Ca and the Bi atoms in beyerite are $\mathrm{Ca} \cdot 000$ and $\mathrm{Bi} \pm 00010$. (space group $\mathrm{D}_{4 \mathrm{~L}}^{17}$ ). as compared with $a=3.860 \quad c=24.87$, Ca in 000 and Bi in $\pm 000.20$ for $\mathrm{CaBi}_{2} \mathrm{Nb}_{9} \mathrm{O}_{8}$.

    The "rotating" $\mathrm{CO}_{3}^{5}$ groups in beyerite correspond to octahedral sheet $\mathrm{Nb}_{4} \mathrm{O}_{7}^{-}$in $\mathrm{CaBi}_{8} \mathrm{Nb}_{2} \mathrm{O}_{9}$. Following the notations given by LaGmrCrantz and Siluen (4) the structure described above might also be denoted by $X_{11}$.

    ## SUMMARY

    A series of tetragonal or pseudo-tetragonal phases of general composition ( $\mathrm{Bi}, \mathrm{Me})_{6} \mathrm{R}_{4} \mathrm{O}_{18}$ have been investigated.
    $\mathrm{Me}: \mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Pb}$.
    $\mathrm{R}: \mathrm{Nb}, \mathrm{Ta}, \mathrm{Ti}$.
    The positions of the Me and $R$ atoms ware determined from the observed intensitios and the positions of the 0 atoms were deduced from space con-s siderations.

    The following structure is proposed: $\mathrm{D}_{2 \mu}^{29}-\mathrm{F} m \mathrm{~mm}$
    ( $\left.000 ; 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2} 0\right)+$
    4 Bi in 4 (a) 000
    8 Bi in $8(8) \pm 000.200$
    8 NbTi in $8(\mathrm{~g}) \pm 000.412$
    40 in 4 (b) $00 \frac{1}{8}$
    80 in 8 (i) $\pm 000.324$
    
    
    From intensity calculations it was found that Ca in $\mathrm{CaBi}_{2} \mathrm{Nb}_{8} \mathrm{O}_{9}$ and $\mathrm{Sr}, \mathrm{Ba}$ and $K$ in the corresponding compounds are probably situated in the position 000 . The proposed structure is built up of $\mathrm{Bi}_{2} \mathrm{O}_{2}^{2+}$ layers alternating with single perowskite layers. The resemblance to the structure of beyerite is pointed out.

    I wish to thank Professor L: G. Surwen for valuable discussions concerning this work.

    Stockholms Högskola, Institute of Inorganic and Physical Chemistry, June 1949.

    REFGRENCES. 1. Internationale Tabellen qur Bestimmung von Kristallotrukturan, Berlin 1935. - 2. Wells, A. F. Z. Krist. 96, 451, 1937. - 3. Stullwell, Gh. Crystal Ohemistry, New York and London, 1938, p. 272. - 4. Lagercrantz, A. and Sillén, L. G. Arkiv Kemai etc. 25, N:o 20, 1848.

    Tryckt den 31 december 1949
    Uppsala 1949. Almquist \& Wiksells Boltryckari AB

    ## BRIEF ATTACHMENT W

    ## in the united states patent and trademark office

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT W

    # Mixed bismuth oxides with layer lattices 

    II. Structure of $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$

    By Bengt Aurivinutus

    With 5 figures in the text

    By means of $X$ ray analysis it has been found that the crystal structures of a number of bismuth oxyhalides consist of $\mathrm{Bi}_{2} \mathrm{O}_{2}^{8+}$ layers alternating with layers of halogen ions (1, 2). In all these cases the symmetry was found to be tetragonal and the lengths of the $a$ axes almast constant $\approx 3.8 \AA$.
    On making an. $X$ ray study of the system $\mathrm{Bi}_{8} \mathrm{O}_{3}-\mathrm{TiO}_{2}$ a phase (of composition about 40 atomic $\% \mathrm{TiO}_{\mathrm{g}}$ ) was found, the powder photographs of which could be explained by assuming a pseudo-tetragonal call with $a=3.84$ and $c=32.8 \AA$. It seemed of interest to make a closer study of this phase since the cell dimensions and composition seemed to indicate a layer lattice with $\mathrm{Bi}_{2} \mathrm{O}_{8}^{2+}$ layers, bat of a type hitherto uninvestigated.

    Procedure: Weighed amounts of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ (puriss) and $\mathrm{TiO}_{2}$ (pariss) were mixed and heated to about $1100^{\circ} \mathrm{C}$ for some hours in a waighed platinum crucible. After cooling the cracible was weighed again and the composition calculated by assuming that the loss of weight could be ascribed to the volatility of $\mathrm{Bi}_{2} \mathrm{O}_{3}$. Powder photographs of various preparations in the system $\mathrm{Bi}_{2} \mathrm{O}_{8}-\mathrm{TiO}_{2}$ indicated that there is a phase with a body-centered pseudo-tetragonal unit cell with $a=3.841$ and $c=32.83 \AA$ at compositions about 40 mole $\% \mathrm{TiO}_{2}$. It was, however, impossible to get samples which were quite free from impurities so the powder photographs always contained a few extra lines.

    The lines $21 l, 22 l$ and $31 l$ were found to be split up. No cleavage was, however, found for the lines $10 l, 20 l$ and $30 l$. This could be explained by assuming a face-centered orthorhombic unit call with the same $o$ axis as the psendo-tetragonal cell and with its $a$ and $b$ axes equal to the diagonals ( $a \sqrt{2}$ ) of the pseado cell.

    The orthorhombic axes will be: $a=5.410 \quad b=5.448 \quad c=32.84 \AA$. The observed density ( $40 \mathrm{~mole} \% \mathrm{TiO}_{2}$ ) is 7.85 . If the composition is assumed to be $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$ ( 43 mole \% $\mathrm{TiO}_{2}$ ) and 4 formula units are assumed per unit cell the calculated density will be 8.04 which agrees fairly well with the obsarved value.
    Single crystals, thin plates, were picked out and Weissenberg photographs (zaro layer and first layer) wers taken around the 3.84 axes, thus registaring $h 0 l$ and $h 1 l$ (pseudo cell) or $h h l$ and $h, h+2, l$ (orthorhombic cell).
    B. AURIVIMLIUS, Mixed bismuth oxides with layer lattices. II

    Though there was nothing in the Weissenberg photographs to indicate lower Laue symmetry than $\mathrm{D}_{4 h}-4 / \mathrm{mmm}$, it was - as has already been men tioned - found from the powder photographs that the real symmetry was nof higher than orthorhombic (Laue symmetry $\mathrm{D}_{2 \mathrm{~h}}-\mathrm{mmm}$ ).

    Except for the extinctions following from the face-centering (hkl ocurrini only for $h, k, l$ all odd or even) no systematic extinctions were found, which is characteristic of the space groups $C_{20}^{18}, D_{2}^{7}$ and $D_{2 h}^{29}$.

    ## Positions of the bismuth atoms

    Since the intensities of $h k l$ with $h, k, l$ all odd on one side and the inteni sities of $h k l$ with $h, k, l$ all even on the other side appeared to vary in the same way with $l$ (see Table 1), it seemed probable that at least the bismath atoms are situated on the lines: $\left(000 ; \frac{1}{2} \frac{1}{2} 0 ; 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} 0 \frac{1}{2}\right)+00 z$. The sum o $\sum_{l} I_{00 l} \cos 2 \pi l z$ and $\sum_{l} I_{11 l} \cos 2 \pi l z$ will under such conditions represent the Patterson function along $00 z$. These two sums are pictured in figure $\dot{1}$ It is seen from the graph that high maxima ocour at $z=0.144,0.280$ and 0.428 . If $\mathrm{C}_{28}^{18} \mathrm{c}$ is not considered, only the following positions on the lines $0 \mathrm{O}_{\mathrm{z}}$

    Table 1
    Weissenberg Photographs of $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$. Cu $K_{\alpha}$ radiation

    |  |  | Iobs. |  |  |  | $l$ | I cata. | Iobs. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $l$ | Icalc. | 00 | $\begin{aligned} & 20 \\ & \text { or } \\ & 02 \end{aligned}$ | 22 | $\begin{aligned} & 42 \\ & \text { or } \\ & 24 \end{aligned}$ |  |  |  | $\begin{aligned} & 31 \\ & \text { or } \\ & 13 \end{aligned}$ | 33 |
    | 2 | 4.4 |  | - | vow | - | 1 | 130 | vst | m | m |
    | 4 | 20 |  | w |  | - | 3 | 14 | W | - | - |
    | 6 | 85 | m | m | m | w | 5 | 18 | $\mathrm{m}^{-}$ | vrw | - |
    | 8 | 180 | m | m | m | $\mathbf{w}^{+}$ | 7 | 380 | vst | $\mathrm{m}^{+}$ | $\mathrm{ma}^{+}$ |
    | 10 | 8.4 |  | $\mathrm{m}^{-}$ | NW | - | 8 | 0.01 | - | - | - |
    | 12 | 42 | m | $\mathrm{m}^{-}$ | W | - | 11 | 26 | w | Ww | VW. |
    | 14 | 360 | vat | m | m | $\underline{m}$ | 13 | 42 | w | Ww | vw |
    | 18 | 3.6 | $\mathrm{m}^{+}$ | m | VWW | 0 | 15 | 230 | W | VW | - |
    | 18 | 32 |  | w | VVW | - | 17 | 4.4 | - | - | - |
    | 20 | 12 | $\mathrm{m}^{-}$ | W | - | - | 18 | 74 | ma | FWW | Yw |
    | 22 | 260 | st | $8 t$ | m | m | 21 | 300 | st | m | w |
    | 24 | 2.0 | w | W | W | - | 23 | 14 | m | W | *W |
    | 26 | 110 | m | st | st | $\mathrm{m}^{+}$ | 25 | 37 | m | m | w |
    | 28 | 240 | m | st | st | et | 27 | 0.09 | - | - | - |
    | 30 | 27 | w | m | $\mathrm{m}^{-}$ | m | 29 | 280 | st | at | 8t |
    | 32 | 40 | $\mathrm{m}^{-}$ | 8t | m | st | 31 | 0.6 | w | W | - |
    | 34 | 7.8 | ** | w | VW |  | 33 | 150 | st | 咟 | st |
    | 38 | 280 | m | vst | vat |  | 35 | 170 | $8 t$ | st |  |
    | 38 | 0.1 | *W | w | vw |  | 37 | 41 | $m$ | m |  |
    | 40 | 190 | $m$ | vst |  |  | 38 | 40 | 8t |  |  |
    | 42 | 110 | m |  |  |  | 41 | 36 | m |  |  |

    are possib] 8-fold pos found that that the 1 three possi

    If the is will have

    If the tw culated, th these figus the zero le order of I
    

    Figure 1. Patterson fumotion of $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{11}$ along O 0 z
    Full curve: $\sum_{l} x_{00 l} \cos 2 \pi l z$
    Dotted curve: $\sum_{l} I_{11 l} \cos 2 \pi l_{z} \quad$ (orthorhombic indices)
    are possible for the Bi atoms: The two 4 -fold positions 000 and 00 支 and the 8-fold positions $\pm 00 \mathrm{z}$. Assuming that the unit cell contains 16 Bi it was found that the observed maxima in the graph could be explained by assuming that the 16 Bi atoms are situated in two 8 -fold positions $\pm 00 \mathrm{z}$. In this way three possibilities arose:
    a. $z_{1}=0.215 \quad z_{2}=0.356$
    b. $z_{1}=0.072 \quad z_{2}=0.356$
    c. $z_{1}=0.072 \quad z_{8}=0.215$.

    If the influence of the Ti and the 0 atoms is neglected the Patterson maxima will have the following relative weights:

    |  | $a$ | $b$ | 0 |
    | :---: | :---: | :---: | :---: |
    | 0.144 | 2 | 1 | 3 |
    | 0.280 | 1 | 3 | 2 |
    | 0.428 | 3 | 2 | 1 |

    If the two curves in figure 1 are added and the areas under the peaks calculated, the ratio of $(0.144):(0.280):(0.428)$ is found to be $4.4: 2.6: 1.0$. Now, these figures cannot be directly compared with the figares given above, since the zero level in the graph is unknown. It is, however, seen that the observed order of magnitude of the peaks ( 0.144 ) ( 0.280 ) and ( 0.428 ) is the same as

    ## B．AURIVILJIUS，Mixed bismuth oxides with layer lattices．II

    that calculated for c．Case o was therefore assumed，and $z_{1}$ and $z_{2}$ were varied around 0.072 and 0.215 ．The observed intensities were found to agree quit well with those calculated for $z_{1}=0.067 \pm 0.004$ and $z_{2}=0.211 \pm 0.004$ ． Table 1 the observed intengities are compared with intensities calculated follows：$I=A^{2} \quad A=10\left(\cos 2 \pi l_{z_{1}}+\cos 2 \pi l z_{2}\right)=10 \mathrm{~F} / 4 \mathrm{f}_{\mathrm{Bl}}$ ．In Table the lines of maximum absorption（see（4））are indicated by dotted lines． allowance is made for the polarisation factors and the absorption effect（ it is seen that for $h, k, l$ all odd the observed and calculated intensities agree quite well．For $h, k, l$ all even the calculated ratios of 0016：0018 and $2216: 2218$ are inversed in comparison with the observed ratios．This might be due to the influence of the Ti and the O atoms．

    ## Positions of the Ti atoms

    With the formula assumed the unit coll contains 12 Ti atoms．If the space group $\mathrm{C}_{20}^{19} c$ is not considered，the only 4 －fold positions possible are：
    4 （a）$x 00$ or $0 y 0\left(\mathrm{C}_{2 \mathrm{og}}^{88} a\right.$ or $b$ ），
    4 （a） 000
    4 （b） $00 \frac{1}{2}$
    （ $\left.\mathrm{D}_{4}^{7}, \mathrm{D}_{2 \mathrm{z}}^{2 \mathfrak{2}}\right)$ ，
    4 （c）$\frac{1}{4} \frac{1}{4}$
    4 （d）$\frac{1}{4} \frac{1}{4}\left(D_{2}^{7}\right)$

    The positions 000 ，なれな and $\ddagger \frac{1}{4}$ seemed very improbable since the distance $\mathrm{Bi}-\mathrm{Ti}$ would then be only $2.2-2.4 \AA$ ．For the remaining positions $00 \frac{1}{2}, x 00$ （or $0 y 0$ ）$x$（or $y$ ）must lie within the limits $0.38-0.62$ ，if the minimum distance $\mathrm{Bi}-\mathrm{Ti}$ is assumed to be $3.0 \AA$ ．If the distance Ti－ Ti is assumed to be $\geq 3.0 \AA$ ，only 4 Ti can be situated in 4 －fold positions and the remaining 8 Ti ． must occupy one 8 －fold position．Of 8 －fold positions the following seemed to be possible：

    8 （d）$x 0 z, x 0 \bar{z}$（or $0 y z, 0 y \bar{z}) C_{20}^{18} a$ or $b, 8(\mathrm{~g}) \pm 00 z\left(D_{z}^{7}, D_{2 h}^{2 z}\right)$ ，
    
    Thus there seemed to be two ways of arranging the $T i$ atoms：
    1． $4 \mathrm{Ti}_{1}$ in $00 \frac{1}{2}, 8 \mathrm{Ti}_{2}$ in $\frac{1}{4} \frac{1}{2}$ ，$\frac{1}{4} \frac{1}{2}-z \quad 0.133 \leq z \leq 0.147$
    2． $4 \mathrm{~T}_{1}$ in $00 \frac{1}{2}, x 00$（or $0 y 0$ ） $0.38 \leq x \leq 0.62$（or $0.32 \leq y \leq 0.68$ ）
    $8 \mathrm{Ti}_{\mathrm{g}}$ in $\pm 00 z 0.324 \leq z \leq 0.398, x 0 z, x 0 \bar{z}$（or $0 y z, 0 y \bar{z}$ ）
    $0.38 \leq x \leq 0.62$（or $0.38<y<0.62$ ） $0.102 \leq z \leq 0.176$
    Both for 1 and 2 the parameters are chosen as to make the distances $\mathrm{Bi}-\mathrm{Ti} \geq 3.0 \AA$ ．The region possible for the $\mathrm{Ti}_{2}$ atoms－assuming arrange－ ment 2 －is shown by the shaded area in figure 2.

    By calculating the intensities of $00 l$ for various $z_{\text {II }}$ values，it was found that the calculated ratio 0016：0018（see the discossion on the Bi positions） was best for $z \sim 0.13_{0}$ or $0.37_{0}$ ．

    Two regis

    No cor and oota structares

    The intensities of the spots in the Weissenberg photographs were then calculated for the arrangements 1 and 2 but no decision between 1 and 2 could be made by comparison with the observed intensities. It was therefore tried to find possible arrangements for the 0 atoms with both 1 and 2 .

    ## Case 1

    Space group $\mathbf{D}_{2}^{\gamma}$ and the following positions for the metal atoms were assamed:
    $8 \mathrm{Bi}_{1}$ in $8(\mathrm{~g}) z_{1}=0.067 \pm 0.004 \quad 8 \mathrm{Bi}_{2}$ in $8(\mathrm{~g}) z_{2}=0.211 \pm 0.004$
    $4 \mathrm{Ti}_{1}$ in 4 (b) $00 \frac{1}{2} \quad 8 \mathrm{Ti}_{2}$ in $8(\mathrm{~h}) 0.133 \leq z \leq 0.147$
    

    Figure 2.
    By assuming that the distances $\mathrm{Bi}-0 \geq 2.2, \mathrm{Ti}-0 \geq 1.8$ and $0-0 \geq 2.5 \AA$, the following positions were found possible for the 0 atoms:
    4 (8) 000
    4 (c) $\frac{1}{4} \frac{1}{4} \frac{1}{4}$
    4 (d) ${ }^{1} \frac{1}{2} \frac{8}{6}$
    8 (g) $\pm 00 z$
    8 (h) $\frac{1}{4} 2$; $\frac{1}{4} \frac{1}{2}$ - $z$
    $0.130 \leq z \leq 0.148$
    $0 \leq|z| \leq 0.040$
    $0.274 \leq z \leq 0.445$
    $-0.183 \leq z \leq-0.095$

    16 (k) $x y z ; \bar{x} \bar{y} z ; x \bar{y} \bar{z} ; \bar{x} y \bar{z}$

    $$
    \begin{array}{ll}
    x \approx 0 \\
    y=0.27
    \end{array} \text { or } \begin{aligned}
    & y \approx 0 \\
    & x=0.27
    \end{aligned}
    $$

    Two regions are possible:

    $$
    \left.z=0.113 \text { (for } z_{\mathrm{TI}}=0.147\right) \text { and } z=0.165 \text { (for } z_{\mathrm{TL}}=0.132 \text { ) }
    $$

    No combinations of these positions could be found giving reasonable distances and octahedra around the Ti atoms, as is the case in previously investigated structures containing $\mathrm{Ti}^{4+}$ and $\mathrm{O}^{2-}$. Arrangement 1 seemed therefore improbable.

    ## Case 2

    The positions of the metal atoms are assumed to be:
    $8 \mathrm{Bi}_{1}$ in $\pm 00 z_{1} z_{1}=0.067 \pm 0.0048 \mathrm{Bi}_{2}$ in $\pm 00 z_{2} z_{2}=0.211 \pm 0.004$
    $4 \mathrm{Ti}_{1}$ in $00 \frac{1}{2}, x 00$ (or $0 y 0$ ) $0.38 \leq x, y \leq 0.62$
    $8 \mathrm{Ti}_{2}$ in $\pm 00 z$, $0.324 \leq z \leq 0.398$
    $x 0 z ; x 0 \bar{z}$ (or $0 y z ; 0 y \bar{z}) \quad 0.38 \leq x, y \leq 0.62$
    $0.102 \leq z \leq 0.176$
    At first only space group $D_{2}^{7}$ was considered ( $\mathrm{Ti}_{1}$ in $00 \frac{1}{2}$ and $T \mathrm{~T}_{2}$ in $\pm 00 z$ ). The following positions were found possible for the 0 atoms making the same assumptions as in case 1:

    $$
    \begin{aligned}
    & 4 \text { (a) } 000 \\
    & 4 \text { (c) } \frac{1}{4} \frac{1}{4} \frac{1}{4} \\
    & 4 \text { (d) } 414 \\
    & 8 \text { (g) } \pm 00 z \\
    & 0.130 \leq z \leq 0.148 \\
    & 0.379 \leq z \leq 0.445 \\
    & 0.095<|z|<0.183 \\
    & 0.274 \leq z \leq 0.343 \\
    & 8 \text { (h) } \ddagger \downarrow 2 \text {; な } \downarrow \frac{1}{2}-z \\
    & 0<|z|<0.040 \\
    & 0.274 \leq z \leq 0.343 \\
    & 16(\mathrm{k}) x y z ; \bar{x} \bar{y} z ; x \bar{y} \bar{E} ; \bar{x} y \bar{z} \\
    & \begin{array}{l}
    x=0.25 \pm 0.02 \\
    y \sim 0
    \end{array} \text { or } \begin{array}{l}
    y=0.25 \pm 0.02 \\
    x \sim 0
    \end{array} \\
    & 0.114<z<0.163
    \end{aligned}
    $$

    It was tried to find positions for the 0 atoms so that $\mathrm{Ti}_{1}$ and $\mathrm{Ti}_{2}$ would be surrounded by regular or almost regular octahedra of 0 atoms with distances $1.8 \leq \mathrm{Ti}-0 \leq 2.5 \AA$. For 0 atoms in contact with $\mathrm{Ti}_{1}$, the following point positions are possible: 8 (h) $0<|z|<0.040,8$ (g) $0.424 \leq z \leq 0.445$. With 80 situated at $\downarrow \ddagger 0$; $\frac{14}{4} \frac{1}{2}$ and 80 at $\pm 000.442$ regular octahedra of 0 would surround $\mathrm{Ti}_{1}$. It, therefore, seemed probable that oxygen atoms axe situated near these positions.

    For oxygen atoms in contact with $\mathrm{Ti}_{8}$, the following positions are possible:

    $$
    \begin{array}{lr}
    8\left(\mathrm{~g}_{1}\right) 0.379 \leq z_{1} \leq 0.445 & 8(\mathrm{~h}) 0.095 \leq|z| \leq 0.183 \\
    8\left(\mathrm{~g}_{2}\right) 0.274 \leq z_{2} \leq 0.343 & 16 \text { (k) } 0.114 \leq z \leq 0.163
    \end{array}
    $$

    With one set of oxygen atoms situated at $8(\mathrm{~h})$ or $16(\mathrm{k})$, every $\mathrm{Ti}_{3}$ atom will be in contact with two oxygen atoms, while if oxygen atoms are situated at $8\left(\mathrm{~g}_{1}\right)$ or $8\left(\mathrm{~g}_{2}\right), \mathrm{Ti}_{2}$ will be in contact with only one oxygen atom. It was
    found that only one set of oxygen atoms conld occupy the positions $16(\mathrm{k})$ ， $8\left(\mathrm{~g}_{1}\right)$ and $8\left(\mathrm{~g}_{2}\right)$ ，while at most 32 oxygen atoms could be situated in posi－ ${ }_{6} 0$ are possible：
    a．$\quad 160(\mathrm{k})+80(\mathrm{~h})+80(\mathrm{~h})$
    b． $160(\mathrm{k})+80\left(\mathrm{~g}_{1}\right)+80\left(\mathrm{~g}_{2}\right)+8(\mathrm{~h})$
    c． $80(\mathrm{~h})+80(\mathrm{~h})+80(\mathrm{~h})$
    d． $80(\mathrm{~h})+80(\mathrm{~h})+80\left(\mathrm{~g}_{1}\right)+80\left(\mathrm{~g}_{2}\right)$
    With a and $b$ no combination of positions could be found，giving octahedra of oxygen atoms around $\mathrm{Ti}_{2}$ ．
    c．With 80 in $t \frac{1}{4} 0 ; \frac{1}{4} \frac{1}{2}, 80$ in 000.442 and 240 in positions 8 （h） $z_{1} \approx 0.102 \quad z_{2} \approx-0.139 \quad z_{3} \approx 0.177$ ）so as to form octahedra of oxygen atoms aronnd $\mathrm{Ti}_{1}$ and $\mathrm{Ti}_{2}$ ，there was room for the remaining 80 atoms only in the position $\pm 00 z z=0.274$ or in the positions 4 （c）+4 （d）．With these ar－ rangements，howevar，the distances $0-0$ would be short（ $\approx 2.4 \AA$ ）．

    With $d$ ，positions for the oxygen atoms could be chosen，allowing reasonable distances and giving octahedra of oxygen atoms around Tit ．Arrangement $d$ was，therefore，preferred to the arrangements $a, b$ and $c$ ．

    The following parameters were assumed for oxygen atoms in contact with $\mathrm{Ti}_{1}$ or $\mathrm{Ti}_{2}$ ：

    $$
    \left(z_{\mathrm{I}_{4}}=0.372\right) \quad \begin{aligned}
    & 8 \mathrm{O}_{1} \text { in } 8(\mathrm{~h}) z=0 \\
    & 8 \mathrm{O}_{4} \text { in } 8(\mathrm{~g}) z=0.436 \\
    & 8 \mathrm{O}_{5} \text { in } 8(\mathrm{~g}) z=0.308 \\
    & 8 \mathrm{O}_{6} \text { in } 8(\mathrm{~h}) z=0.128 \\
    & 8 \mathrm{O}_{7} \text { in } 8(\mathrm{~h}) z=-0.128
    \end{aligned}
    $$

    Even if these parameters are varied considerably around the values given， room for the remaining 80 is laft only in the positions 4 （c）and 4 （d）$\left(0_{2}, 0_{3}\right)$ ． The positions arrived at might also be described with space group $\mathrm{D}_{2 \mathrm{~h}}^{2 \mathrm{z}}-\mathrm{Fmmm}$ as follows：

    $$
    \begin{aligned}
    & 80_{8} \text { in } 8 \text { (i) } \pm 00 z z=0.436 \\
    & 8 \mathrm{O}_{4} \text { in } 8 \text { (i) } \pm 002 z=0.308 \\
    & 16 \mathrm{O}_{6} \text { in } 16 \text { ( } \mathrm{j} \text { ) } \frac{1}{4} \frac{1}{4} 2 \text {; 专交 } \bar{x} \text {; }
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & z=0.128
    \end{aligned}
    $$

    b. Auraromudes, Mixed bismuth oxides with layer lattices. II

    The distances and coordination will be:

    $$
    \begin{array}{cll}
    \mathrm{Bi}_{1}-4 \mathrm{O}_{1}=2.92 & \mathrm{Ti}_{2}-\mathrm{O}_{3}=2.10 \\
    \mathrm{Bi}_{1}-4 \mathrm{O}_{3}=2.72 & \mathrm{Ti}_{2}-\mathrm{O}_{4}=2.10 \\
    \mathrm{Bi}_{1}-4 \mathrm{O}_{5}=2.76 & \mathrm{Ti}_{2}-4 \mathrm{O}_{5}=1.92 \\
    \mathrm{Bi}_{2}-4 \mathrm{O}_{2}=2.79 & \mathrm{O}_{1}-4 \mathrm{O}_{1}=2.71 & \\
    \mathrm{Ti}_{2}-4 \mathrm{O}_{4}=2.79 & \mathrm{O}_{3}-4 \mathrm{O}_{1}=2.92 \mathrm{O}_{3}=2.10 \\
    \mathrm{Bi}_{2}-4 \mathrm{O}_{5}=2.29 & \mathrm{O}_{4}-4 \mathrm{O}_{2}=2.70 & \\
    & \mathrm{O}_{4}-4 \mathrm{O}_{5}=2.83 & \\
    & \mathrm{O}_{5}-4 \mathrm{O}_{5}=2.71 &
    \end{array}
    $$

    No new combination's were found if the space group $\mathrm{D}_{2 h}^{23}$ was assumed instead of $D_{2}^{7}$.
    

    Figure 3 a.
    

    Figure 3 b.

    Since $a=b$ and the positions of the 0 atoms must be chosen from space considerations, it does not matter whether space group $\mathrm{C}_{28}^{28} a$ or $b$ is assumed. $0_{20}^{18} b$ was assumed arbitrarily. It was found that oxygen atome could only be situated in the planes $x=0, x=0.25 \pm 0.02$, $x=\frac{1}{2}$ and $x=0.75 \pm 0.02$. Thus the following positions are possible:
    4 (a) $0 y 0$
    8 (b) 妾y $\frac{1}{4}$ dy
    8 (0) $0 y z ; 0 y \bar{z}$
    8 (d) $x y 0 ; \bar{x} v 0$
    $x \leq 0.25 \pm 0.02$
    16 (e) $x y z ; \bar{x} y \bar{z} ; \bar{x} y z ; x y \bar{z}$
    $x=0.25 \pm 0.02$

    Table 2
    Weissenberg Photographs of $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$. $\mathrm{Cu} K_{\alpha}$ radiation
    Zero Layer

    | 001 | Icale. | Iobs. | 201 | Icalo. | Iobs. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{array}{r} 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 30 \\ 32 \\ 34 \\ 36 \\ 38 \\ 40 \\ 42 \\ \hline \\ \hline 106 \\ \hline \\ \hline 1 \\ \hline 3 \\ \hline \end{array}$ | $\begin{array}{r} 56 \\ 61 \\ 12 \\ 58 \\ 450 \end{array}$ |  | 2 | 1.0 |  |
    |  |  | $\underline{m}$ | 4 |  |  |
    |  |  | m | 6 | 59 | m |
    |  |  | ${ }^{W}$ | 8 | 81 | m |
    |  |  | m | 10 | 12 | V\% |
    |  |  | , ${ }_{\text {vst }}^{\text {m }}$ + ${ }^{+}$ | 12 | 65 | W |
    |  | $\begin{array}{r} 450 \\ 88 \end{array}$ |  | 14 | 440 | m |
    |  | 30 | , m | 16 | 64 | OWW |
    |  | 19 | . $\mathrm{m}^{-1}$ | 18 | 31 | TVW |
    |  | 20027 |  | 20 | 10 |  |
    |  |  | - ${ }_{\text {at }}$ | 22 | 200 | 10 |
    |  | 120 | m | 24 | 28 |  |
    |  | 230 | m |  | 120 | Vw |
    |  | 62 | ${ }_{\text {w }}$ | 26 | 230 | st st |
    |  | 140 | vow | 28 30 | 62 | $\mathrm{m}^{-}$ |
    |  | 4.0 |  |  |  | mmm |
    |  | 300 | m | 32 <br> 34 <br> 1 | 12.0 |  |
    |  | ${ }_{110} 0$ | \% | 34 36 | 290 | V8t |
    |  | 93 |  |  | 8.0 |  |
    |  | Icalo. | Iobs. | 302 | Icalc. | Iobe. |
    |  |  |  |  | 69 | $m$ |
    |  | 52 | vst | 3 | 8.0 | - |
    |  | 7.0 | $\mathrm{m}^{\text {m }}$ | 5 | 18470 | $\mathrm{m}^{+}$ |
    |  | 17. |  |  |  |  |
    |  | 470 | V8t | 7 9 | 3.0 | - |
    |  | 2.0 | - | 11 | 22 |  |
    |  | 23 | $\underset{W}{W}$ |  |  | VW |
    |  | 46 |  | 13 | 130 | - |
    |  | 120 |  | 17 | 21 |  |
    |  | 23 |  | 17 | 93820 |  |
    |  | 98 | m | 19 |  | w |
    |  | 320 | st | 21 | 36 |  |
    |  | 3652 | m | 23 |  | VW |
    |  |  | m | 25 | 53. | - |
    |  | 0.6 | st | 29 | 270 | st |
    |  | 270 |  |  |  |  |
    |  | 18 | W | 31 |  |  |
    |  | 110 |  |  |  |  |
    |  | 140 |  |  |  |  |
    |  | 63 |  |  |  |  |
    |  | 76 | gt |  |  |  |
    |  | 44 |  |  |  |  |

    B. Aurmpluids, Mixed bismuth oxides with layer Lattices. II

    Table 2 (cont.)
    First Layer -

    | 111 | Icalc. | Iobs. | 317 | Icale. | Iobs. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 2 | 1.0 | - | 2 | 1.0 | - |
    | 4 | 12 | w | 4 | 12 | - |
    | 6 | 64 | m | 8 | 66 | W |
    | 8 | 220 | m | 8 | 180 | $\mathbf{w}^{+}$ |
    | 10 | 15 | $\mathrm{m}^{-}$ | 10 | 14 | - |
    | 12 | 57 | $\mathrm{m}^{-}$ | 12 | 68 | - |
    | 14 | 410 | m | 14 | 410 | $m$ |
    | 16 | '15 | - | 16 | 16 | - |
    | 18 | 41 | W | 18 | 40 | - |
    | 20 | 20 | w | 20 | 19 |  |
    | 22 | 220 | $8 t$ | 22 | 220 | m |
    | 24 | 2.0 | w | 24 | 3.0 | - |
    | 26 | 98 | st | 28 | 98 | $\mathrm{m}^{+}$ |
    | 28 | 210 | st | 28 | 220 | st |
    | 30 | 47 | m | 80 | 47 | m |
    | 32 | 74 | At | 32 | 67 | st |
    | 34 | 9.0 | w |  |  |  |
    | 36 | 310 | vet |  |  |  |
    | 38 | 4.0 | w |  |  |  |
    | 40 | 180 | vst |  |  |  |
    |  |  |  |  |  |  |
    | 102 | Ioalc. | Iobs, | 212 | Imalc. | Iobs. |
    | 5 | 17 | w | 1 | 67 | $m$ |
    | 7 | 470 | F8t | 3 | 8.0 | - |
    | 9 | 2.0 | VVw | 5 | 18 | Www |
    | 11 | 23 | m | 7 | 470 | $\mathrm{m}^{+}$ |
    | 13 | $\cdot 46$ | m | 9 | 2.0 | - |
    | 15 | 120 | $\mathrm{m}^{+}$ | 11 | 23 | Wrw |
    | 17 | 23 | W | 13 | 46 | Vw |
    | 19 | 98 | $\mathrm{ma}^{+}$ | 15 | 130 | VW |
    | 21 | 320 | st | 17 | 22 | - |
    | 23 | 36 | m | 19 | 80 | VWw |
    | 25 | 62 | m | 21 | 320 | m |
    | 27 | 0.6 | - | 23 | 36 | w |
    | 29 | 270 | st | 25 | 50 | m |
    | 31 | 19 |  | 27 | 0.8 | - |
    | 33 | 110 | st | 29 | 270 | st |
    | 35 | 140 | st | 31 | 18 | w |
    | 37 | 53 | m | 33 | 110 | st |
    | 39 | 75 | st | 85 | 140 | st |
    | 41 | 44 | st | 37 | 53 | m |

    ARKIV FÖR KEMI．Bd 1 mr 58

    ## Table 3

    Powder Photographs of $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{18}$ ．Cr $K$ radiation，orthorhombic description
    
    B. Aurivillidus, Mixed bismuth oxides with layer lattices. II
    

    Figure 4.
    One half of the pseudo-tetragonal unit coll of $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ (from $z \approx 0.25$ to $z \approx 0.75$ ). A denotes the perowskitio layer $\mathrm{Bi}_{8} \mathrm{Ti}_{8} \mathrm{O}_{10}^{2}, \mathrm{C} \mathrm{Bi}_{2} \mathrm{O}_{8}^{{ }^{+}}$layars and B unit cells of the hypothetical perowakite structure $\mathrm{BiTiO}_{\mathrm{a}}$.

    In figures 3 a and 3 b sections of ons fourth of the anit cell are made for $x=0$ and $x=0.26$. (The projeotions of the positions of the $\mathrm{Bi}_{1}, \mathrm{Bi}_{\mathrm{g}}$ and Ti atoms are denoted by: white ciroles, double ciroles and blsok circles respectively. The same scale is used as for figure 2). Regions where oxygen atoms might be situated are shown by shaded areas. In figure 3 a the positions of the Ti atoms are assumed to be: $00 \frac{1}{2}$ and $0 y$ y 0 y $\bar{z} y=0.62 z=0.139$ and in figare $3 \mathrm{~b}, 0 y 0 y=0.62$ and $\pm 00 z z=0.324$.

    As in the discussion above it was tried to find positions for the 0 atoms giving an octar hedral arrangement around $\mathrm{Ti}_{1}$ and $\mathrm{Ti}_{2}$. Only with O atoms situated in the positions 8 (d) $x \approx \frac{1}{4} y \approx y_{1}+\frac{1}{d}$ and 8 (c) $y \approx y_{1} z \approx 0.058$ would $\mathrm{T}_{1}$ be surrounded by regular octahedra (see figure 3). It was therefore assumed that these positions are ocoupied by oxygen atoms. Fror oxygen atoms in contact with $\mathrm{Ti}_{2}$, the point positions 8 (o) and 16 (e) are possible. With 80 situated at $8(c)$, every Ti atom is in contact with one oxygen atom; with 160 in $16(e), \mathrm{Ti}_{8}$ may be in contact with $20\left(e_{2}\right)$ or $40\left(y \approx y_{2}+\frac{1}{4} \approx z_{z}\right)$ (eq). Bear- (so as to form an octahedron around $\mathrm{Ti}_{1}$ ), the following arrangements giving. 6 O around $\mathrm{Ti}_{2}$ s-seamed possible:
    a. $80(c)+80(c)+160\left(e_{4}\right)$
    b. $160\left(e_{2}\right)+160\left(e_{4}\right)$.

    With b. no combination giving cotahedra of O around $\mathrm{Ti}_{2}$ could be found. With a., however, arrangements could be found allowing $\mathrm{Ti}_{2}$ to be aurrounded by an almost regalar octahedron. The following parsmeters for oygen atoms in contant with $\mathrm{Ti}_{1}$ or $\mathrm{Ti}_{2}$ wers assamed:

    $$
    \begin{aligned}
    & 80_{1} \text { in } 8(d) \quad x \approx \frac{1}{4} \quad y \approx y_{1}+\frac{1}{2} \\
    & 80_{2} \text { in } 8(c) \quad y \approx\left(y_{1}+y_{2}\right) / 2 \quad z \approx z_{2} / 2 \\
    & 80_{3} \text { in } 8(c) \quad y \approx y_{2} \quad z \approx 3 z_{2} / 2 \\
    & 160_{4} \text { in } 16(e) \quad x \approx \frac{1}{4} \approx x_{2}+\frac{1}{4} \quad z \approx z_{2}
    \end{aligned}
    $$

    For the remaining 80 there seemed to be room only in the position $8(b) y \approx \frac{1}{2}$. It is sean that these positions are basically the same as were arrived at when space group $D_{2}^{7}$ was : assumed, except for possible amall shifts in the $y$ direction.

    Thus no new arrangement was found by assuming $C_{20}^{48} a$ or $b$. In Table 2 (psendo-tetragonal indices) the intensities, calculated by means of the formala, $I=$ $=\left(10 \mathrm{~F} / 4 \mathrm{f}_{\mathrm{BI}}\right)^{2}$, are compared with the observed ones. Since the ratios $\mathrm{f}_{\mathrm{Ti}} / \mathrm{f}_{\mathrm{Bi}}$ and $f_{0} / f_{B i}$ vary with sin $\theta / \lambda$ they were interpolated for every reflection from values taken from the International Tables (3). Table 2 shows good agreement between the calculated and observed intensities.

    The following structure is thas proposed:

    $$
    \begin{aligned}
    & \mathrm{D}_{2 h}^{2 g}-\mathrm{Fmmm}
    \end{aligned}
    $$

    In figure 4 one half of the pseudo-tetragonal unit cell is pictured. The structure consists of $\mathrm{Bi}_{2} \mathrm{O}_{2}^{2+}$ layers alternating with $\mathrm{Bi}_{8} \mathrm{Ti}_{3} \mathrm{O}_{10}^{3-}$ layers. The ar: rangements of the atoms within the $\mathrm{Bi}_{2} \mathrm{Ti}_{9} \mathrm{O}_{10}^{8}$ layers seems to be the same as; that found for perowalkite structures, and it is easily found by calculation that the geometrical properties of the $\mathrm{Bi}^{3+}, \mathrm{Ti}^{4+}$ and $\mathrm{O}^{2-}$ ions make a perowskite structure possible. Thus the structure might be looked upon as a layer structure where perowskitic layers $\mathrm{Bi}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}^{2}$ - corresponding to a hypothetical perowskite structure $\mathrm{BiTiO}_{3}$ - alternate with $\mathrm{Bi}_{2} \mathrm{O}_{2}^{3+}$ layers. With the notations given by Lagrarcrantz and Sulden (5), the above structure might be: denoted by $\mathbf{X I I I}_{\text {I }}$.

    I wish to thank Professor L. G. Stulen for valuable discussions concerning this work.

    Stockholms Högskola, Institute of Inorganic and Physical Chemistry, 1949.

    REFERENCES. 1. Bannister, F. A. and Hey, M. H., Minar. Mag. 24 (1935), 49. 2. Sillén, L. G., Dissert. Stockholm 1940. - 3. Internationale Tabellen zur Bestimmung von Kristallstruktaren, Berlin 1935. - 4. Wells, A. F., Z. Krist. 96 (1937), 451. 5. Lagercrantz, A. and Sillén, L. G., Arkiv f. Kami eto. 25 (1947), 49.

    Tryckt den 10 januari 1050

    Uppsala 1950. Almquist \& Wiksells Boktryckeol AB
    512

    As are rat triplets taking thin it axis). with Cl using 1 starting tion. I of a ${ }^{\text {r }}$ amplitı ( $1+\cos$ The showin $_{j}$ observe networi $b$ axis i one for consiste lowing

    ## BRIEF ATTACHMENT X

    ## in the united states patent and trademark office

    In re Patent Application of
    Applicants: Bednorz et al.
    Serial No.: 08/479,810
    Filed: June 7, 1995

    Date: March 1, 2005
    Docket: YO987-074BZ
    Group Art Unit: 1751
    Examiner: M. Kopec

    For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION

    Commissioner for Patents
    P.O. Box 1450

    Alexandria, VA 22313-1450

    FIRST SUPPLEMENTAL AMENDMENT

    Sir:

    In response to the Office Action dated July 28, 2004, please consider the following:

    ## ATTACHMENT X

    # Mixed oxides with layer lattices 

    III. Structure of $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathbf{O}_{15}$

    By Benget Auriviluus.

    With 4 figures in the text
    $X$ ray studies on the compounds $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ (1) and $\mathrm{Bi}_{4} \mathrm{Ti}_{9} \mathrm{O}_{12}$ (2) have shown that the comparatively complicated chemical formulae of these compounds can be explained by simple layer struotures being built up from $\mathrm{Bi}_{8} \mathrm{O}_{2}^{3+}$ layers and perowskite layers. The unit cells are pictured schematically in Figs. 1 a and 1 c . It was found both for $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ and $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ that the symmetry was body-centered pseado-tetragonal and that the length of the a axes had the same value ( $3.8 \AA$ ) while the length of the $c$-axis was $25 \AA$ for $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ and $33 \AA$ for $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{18}$. In both structures the heavy atoms form approximately a "substructure" with a smaller body-centered tetragonal cell with $a=3.8$ A and $c=25 / 6 \AA$ for $\mathrm{CaBi}_{2} \mathrm{Nb}_{8} \mathrm{O}_{9}$ or $c=33 / 7 \AA$ for $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$.

    The $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers and perowskite layers lie perpendicular to the $c$-axis. Similar layer structures have been found for a number of bismuth oxicompounds ( $3,4,5$ ). The common structural element in all these compounds is quadratic $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers between which halides or certain radicals are inserted. This explains the fact that the $a$ axes of all these compounds are of about the same length. For a survey see (5).

    For the $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ type each parowskite layer has the composition $\left(\mathrm{CaNb}_{8} \mathrm{O}_{7}\right)_{n}$ and the height of the layer is equal to four distances $\mathrm{Nb}-0$ or approximately to the height of two $\mathrm{E}_{1}$ (perowskite) unit cells (see Fig. 1a). A compound with a somewhat similax structure has previously been investigated by Lagerorantz and Sulen (5). In this structure (see Fig. 1 b ), beyerite $\mathrm{CaBi}_{2} \mathrm{O}_{2}\left(\mathrm{CO}_{8}\right)_{2}$, the point positions corresponding to the positions of the Nb atoms in $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ are occupied by "rotating" $\mathrm{CO}_{3}^{2-}$ groups.

    For the $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ type the perowskite layers have the composition $\left(\mathrm{Bi}_{8} \mathrm{Ti}_{3} \mathrm{O}_{10}\right)_{\mathrm{I}}$ and the height of the layer is equal to six distances Ti-O or approximately to the height of three $E 2_{1}$ anit cells.

    The genaral formula for a compound built up in a way similar to $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}$ but where the height of the perowskite layer enclosed between a pair of $\mathrm{Me}_{2} \mathrm{O}_{2}$ layers is equal to the height of $m$ E2 cells, will be:

    $$
    \mathrm{Me}_{2} \mathrm{O}_{2}\left(\mathrm{Me}_{m-1}^{\prime} \mathrm{R}_{m n} \mathrm{O}_{8 m+1}\right) . \mathrm{Me}, \mathrm{Me}^{\prime}: \mathrm{Ca}_{r} \mathrm{Sr}, \mathrm{Ba} \mathrm{Bi}(\mathrm{~K}+\mathrm{Bi}) / 2 \text { etc. }
    $$

    $\mathrm{R}: \mathrm{Ti}, \mathrm{Nb}, \mathrm{Ta}_{1}(\mathrm{Nb}+\mathrm{Ti}) / 2$ etc.
    B. Aunrriluivs, Mixed oxides with layer lattices. III.
    

    Fig. 1. Sohematical pictures of the etructares af an $\mathrm{CaBi}_{2} \mathrm{Nb}_{9} \mathrm{O}_{9}$ b. $\mathrm{CaBj}_{2} \mathrm{O}_{8}\left(\mathrm{CO}_{8}\right)_{2}$ and c. $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$. The vertical lines indicate the lines 002 and $\frac{1}{2} \mathrm{t} 2$ in the unit celle. A denotes perowskitic ( $\mathrm{E} 2_{1}$ ) regions in the structures.

    It seemed of interest to investigate whether compounds could be synthesized with $m=4$. The present investigation shows that structures of the above type with $m=4$ exist.

    Mixtures of $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{BaCO}_{3}$ and $\mathrm{TiO}_{2}$, corresponding to the composition $\mathrm{BaBi} 4 \mathrm{Ti}_{4} \mathrm{O}_{15}$. were prepared and heated to $1100^{\circ} \mathrm{C}$. Single crystals, thin plates, were picked out and Weissenberg photographs were taken. These could be interpreted by means of a body-centered tetragonal cell with $a=3.86 \AA$ and $c=41.7 \AA$. The strong lines of the powder photographs (taken from preparations heated to $900^{\circ} \mathrm{C}$ (Au crucible) or $1100^{\circ} \mathrm{C}$ ( Pt crucible) were easily identified since they could all be described with the aid of the "sub-lattice" ( $a=$ $3.86 c=41.7 / 9$ ). If the $c$ axis were 9 fold even the weak lines could be explained (Table 3). In this way the cell edges were found to be $a=3.864 \AA$ and $c=41.76 \AA$. The observed density was 7.2 , which agrees fairly well with the assumption of 2 formula units/unit cell (calculated density 7.49).

    The Weissenberg photographs registered $0 k l, 1 k l, h \hbar l$ and $h, h+1, l$. In the Weissenberg and powder photographs there was nothing to indicate a lower Laue symmetry than $\mathrm{D}_{4}-4 / \mathrm{mmm}$. Except for the extinctions due to the bodycentering, $h k l$ occurring only for $h+k+l=2 n$, no systematic extinctions were found, which is characteristic of the space groups $\mathrm{C}_{45}, \mathrm{D}_{3}^{2,21}$ and $\mathrm{D}_{4}^{17}$. Fig. 2

    Fig. 3. Three dim, material was used the amplitudes are The vel
    

    Fig. 2. Patterson Harker funotion of $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ along 00 غ. All observed reflexions were used for this calculation.
    

    Fig. 8. Three dimensional Fourier cut along $00_{2}$ for $\mathrm{BaBl}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$. The same intensity material was used as for the Patterson Harker analysis pictured in Fig. 2. The signs of the amplitudes are the same as those obtained in the structure factor calculation for Table 2. The vertical arFows corfespond to the $z_{\mathrm{ry}}$ values actually assumed.
    B. ausiviuluos, Mixed oxides with layer lattices. III.
    shows the Patterson Harker function along $00 z$. For all observed reflexions the $\mathrm{F}^{2}$ values were estimated from: $\mathrm{F}^{2} \approx I_{\mathrm{obs}} \frac{\sin 2 \theta}{1+\cos ^{2} 2 \theta}$. As expected large peaks appear at $z \approx 1 / 92 / 93 / 9$ and 4/9.

    It is interesting to compare the cell dimensions found above with the ones which might be expected if the compound $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ is assumed to have a structure similar to that of $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{8}$ but with $m=4$. In this case the $a$ axis would have about the same value as found. The length of the $c$ axis might be estimated in the following way: The $c$ axis of $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}(m=2$ see (1)) is $25.11 \AA$; the value for $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{18}(m=3$ see (2)) is 32.83 , the difference is 7.72. If twice this value is added to the $c$ axis of $\mathrm{BaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}(m=2)$ the value $41.0 \AA$ is obtained. The value actually found was, as mentioned above, $41.76 \AA$.

    From the composition, cell dimensions, and crystal symmetry it seemed a prioni probable that the structure of $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ was the one we anticipated. Therefore, the parameters were worked out with the aid of the parameters found for

    ## Table 1

    Weissenberg photographs of $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{16}$. $\mathrm{Cu} K_{\alpha}$ radiation. For zero order photographs the regions of maximum absorption (see Wells (6)) are indicated by dotted lines. The intensities of 101,103 and 105 bave been taken from a zero order photograph, those of 1027-1049 from a first order photograph rotated around ( 100 ).

    | $b$ | 001 | 201 | 221 | 401 | 111 | 311 | 331 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 2 |  | 二 | ${ }^{\text {pW }}$ | - | vw | 二 | $\frac{\text { Vw }}{\text { VW }}$ |
    | 6 | vw | now | vw | - | w | - | vow |
    | 8 | m | m | w | - | $m$ | vow | vow |
    | 10 | m | m | w | - | st | vw | w |
    | 12 | w | now. | vw | - | Vow | - | w |
    | 14 | w | $\cdots$ | ${ }^{\text {vew }}$ | vxw | \% | vow | m |
    | 16 18 | \% ${ }_{\text {rit }}^{\text {vit }}$ | w | $\underset{\mathrm{gt}}{\mathbf{m}}$ | $\stackrel{\text { vew }}{\text { v/ }}$ | $\underset{\text { vst }}{\text { m }}$ | ${ }_{\text {w }}^{\text {w }}$ | ${ }_{\text {m }}^{\text {m }}$ |
    | 20 | st | w | w | VTw | w |  | - |
    | 22 | $\mathrm{m}^{+}$ | Ww | Oww | prw | vw | - | vw |
    | 24 86 86 | ${ }^{\mathbf{w}}$ | vow | VNW | - | $\stackrel{\text { vw }}{\text { v/ }}$ | - | $\underset{w}{\text { w }}$ |
    | 28 | st | $\mathrm{m}^{+}$ | $\mathrm{w}^{+}$ |  | m | vw |  |
    | 30 | w |  | ${ }^{\mathbf{w}}$ ' | $\mathrm{m}^{+}$ | - | vw |  |
    | 32 | w | $\mathbf{w}^{+}$ | ${ }^{\mathbf{w}}$ |  | m | w |  |
    | ${ }^{34}$ | m | m | $\mathrm{m}^{+}$ |  | $\mathrm{m}^{+}$ | m |  |
    | -36 | ${ }^{\text {st }}$ | st | st |  | ${ }^{\text {m }}$ | m |  |
    | 38 40 | ${ }_{\text {st }}^{\text {viw }}$ | $\overline{\text { st }}$ |  |  | \% ${ }_{\text {st }}^{\text {w }}$ | - |  |
    | 42 | vww | - |  |  | vw |  |  |
    | 44 | - | - |  |  | - |  |  |
    | 48 | m | m |  |  | ${ }^{\text {st }}$ |  |  |
    | 48 50 | ${ }^{\mathbf{w}}{ }^{+}$ | m |  |  | st |  |  |
    | 62 | ${ }^{\mathbf{w}}$ |  |  |  |  |  |  |

    $\mathrm{Bi}_{3} \mathrm{NbTiC}$ to be: 2 The pc

    4 Ti in : $\frac{1}{2} 0\left(\frac{1}{2}-z_{3}{ }^{\circ}\right.$ 40 in $\pm$ $z_{1} \approx 1 / 9$

    These at same values ones only $i$ be an inoorr

    The par of the Ba $1000+00$ agreement $\pm 0.004, z_{d}$
    
    $\mathrm{Bi}_{3} \mathrm{NbTiO}_{9}$ and $\mathrm{Bi}_{4} \mathrm{Ti}_{8} \mathrm{O}_{12}$. The positions of the heavy atoms might be expected to be: 2 Ba in $000,4 \mathrm{Bi}$ in $\pm 00 z_{1}, 4 \mathrm{Bi}$ in $\pm 00 z_{2}$.

    The positions of the Ti and O atoms might be expected to be:
    4 Ti in $\pm 00 z_{3}, \quad 4 \mathrm{Ti}$ in $\pm 00 z_{4}, \quad 20$ in $00 \frac{1}{2}, \quad 80$ in $\pm\left(0 \frac{1}{2}\left(\frac{1}{2}-z_{3}\right)\right.$, $\left.\frac{1}{2} 0\left(\frac{1}{2}-z_{3}\right)\right), \quad 80 \mathrm{in} \pm\left(0 \frac{1}{2}\left(\frac{1}{2}-z_{4}\right), \quad \frac{1}{4} 0\left(\frac{1}{2}-z_{4}\right)\right), \quad 40$ in $\pm 00\left(z_{3}+z_{4}\right) / 2$ 40 in $\pm 00\left(z_{3}-\left(z_{4}-z_{3}\right) / 2\right), \quad 40$ in $0 \frac{1}{2} \frac{1}{4}, \frac{1}{2} 0 \frac{1}{4}$ $z_{1} \approx 1 / 9 \quad z_{2} \approx 2 / 9 \quad z_{3} \approx 0.350 \quad z_{4} \approx 0.450$

    These atomic positions would give rise to high peaks in the Patterson-Harker plot at the same values as actually found. The calculated area ratios agree, however, with the observed. ones only in as much as the biggest area is found for the peak at $1 / 9$. The reasons might be an incorrect choice of the zero level and errors in the estimation of the intensities.

    The parameters were varied around the above values for different positions of the Ba atoms: 2 Ba in $000,00 z_{1}$ or $00 z_{2}, 2 \mathrm{Ba}$ equally distributed over $\left(000+00 z_{1}\right),\left(000+00 z_{2}\right),\left(00 z_{1}+00 z_{2}\right)$ or $\left(000+00 z_{1}+00 z_{2}\right)$. The best agreement seemed to be for $z_{1}=0.106 \pm 0.001, z_{2}=0.221 \pm 0.001, z_{3}=0.352$ $\pm 0.004, z_{4}=0.452 \pm 0.004$ with 2 Ba equally distributed over $\left(000+00 z_{1}+\right.$
    B. aurnvinives, Mixed oxides with layer lattices. III

    Table 2
    Weissenberg photographs of $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$. $\mathrm{Cu} K_{c}$ radiation
    Icalc. $=\left(2.5 \mathrm{~F} / \mathrm{f}_{\mathrm{BI}}\right)^{1}$

    | 1 | $\begin{aligned} & \text { Iobs. } \\ & 101 \end{aligned}$ | $\begin{gathered} I_{\text {oalc. }} \\ 101 \end{gathered}$ | Iobs. <br> 211 | Icalc. 211 | $\begin{aligned} & \text { Iobs. } \\ & 301 \end{aligned}$ | $\begin{aligned} & I_{\text {cale }} \\ & 301 \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | m | 73 | w | 90 | VW | 94 |
    | 3 | VVW | 5.8 | VWw | 7.3 | - | 8.4 |
    | 5 | VWW | 4.8 | - | 5.8 | - | 8.8 |
    | 7 | w | 30 | vw | 81 | WWw | 32 |
    | $\theta$ | vst | 620 | . st | 610 | m | 630 |
    | 11 | - | 13 |  | 12 | - | 14 |
    | 13 | W | 25 | - | 24 | - | 24 |
    | 15 | $w^{+}$ | 62 | 一 | 60 | vow | 60 |
    | 17 | m | 94. | WW\% | 92 | vow | 90 |
    | 19 | st | 160 | vo | 170 | vow | 370 |
    | 21 | w | 15 | - | 12 | vww | 12 |
    | 23 | w | 18 | - | 18 | VWW | 18 |
    | 25 | m ${ }^{+}$ | 120 | vw | 120 | Vw | 120 |
    | 27 | st | 820 | m | 320 | W | 320 |
    | 29 | m | 45 | vow | 45 | vw | 44 |
    | - 31 | m | 180 | W | 160 | vw | 160 |
    | 38 | vw | 66 | vvw | 66 | VW | 86 |
    | 35 | - | 13 | - | 12 | - | 12 |
    | 37 | $\mathrm{m}^{+}$ | 300 | m | 300 | m | 300 |
    | 38 | - | 12 | w | 13 | m | 13 |
    | 41 | w | 15 | w | 14 | $\mathbf{w}^{+}$ | 16 |
    | 43 | $\mathbf{w}^{+}$ | 200 | $m$ | 200 |  |  |
    | 45 | m | 180 | $\mathrm{m}^{+}$ | 180 |  |  |
    | 47 | - | 18 |  |  |  |  |
    | 49 | st | 250 |  |  |  |  |
    | 51 | - | 3.6 |  |  |  |  |
    | $l$ | Iobs. 001 | $\begin{aligned} & I_{\text {cale. }} \\ & 001 \end{aligned}$ | Iobs. 111 | - Icalc. $111$ | Iobs. $221$ | $\begin{aligned} & \text { Icale. } \\ & 221 \end{aligned}$ |
    | 2 |  |  | - | 0.5 | vw. | 0.6 |
    | 4 |  | ${ }^{\circ}$ | VW | 4.8 | - | 5.3 |
    | 6 | vw | 21 | W | 23 | VW | 24 |
    | 8 | m | 110 | m | 100 | W | 110 |
    | 10 | m | 62 | st | 280 | w | 88 |
    | 12 | w | 12 | FYW | 6.3 | VW | 9.6 |
    | 14 | w | 14 | W | 18 | Ww | 14 |
    | 16 | st | 83 | m | 79 | $\mathrm{m}^{+}$ | 81 |
    | 18 | vet | 440 | vat | 480 | st | 450 |
    | 20 | st | 170 | W | 36 | w | 120 |
    | 22 | $\mathrm{m}^{+}$ | 100 | vw | 79 | Wry | 92 |
    | 24 | w | 81 | vw | 86 | Now | 78 |
    | 26 | w | 39 | w | 36 |  | 39 |
    | 28 | st | 280 |  |  |  |  |
    | 30 | w | 2.6 |  | 11 | W | 1.4 |
    | 32 | w | 11 | m | 20 | ${ }^{\mathbf{w}}$ | 12 |
    | 34 | m | 140 | In | 110 | $\mathrm{m}^{+}$ | 140 |
    | 36 | st | 240 | m ${ }^{+}$ | 240 | 日t | 240 |
    | 88 | Now | 19 | w | 35 | - | 21 |
    | 40 | st | 380 | st | 280 | st | 340 |
    | 42 | VWW | 11 | VW | 22 |  |  |
    | 44 | - | 3.2 | - | 4.8 |  |  |
    | 46 | m | 240 | st | 230 |  |  |
    | 48 | ${ }^{\mathbf{w}}$ | 69 | st | 46 |  |  |
    | 50 | $\mathbf{w}^{+}$ | 53 | m | 110 |  |  |
    | 52 | $\mathbf{w}^{+}$ | 280 |  |  |  |  |

    $00 z_{3}$ ). Oth seen the thr following M over the po From Tal $\approx I_{22 l} \approx I_{4}$ be expected $00 z, \frac{1}{2} \frac{1}{2} z$, for the rows senberg pho the observec more clearly $\geq 3039$. TH the $z$ parame structure fac are 222:22. reflexions the be introduces the agreemen-

    Table 3
    Powder photographs of $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ Cr $K_{\alpha}$ radiation.
    
    $00 z_{2}$ ). Other distributions of Ba should, however, not be excluded; as will be seen the three dimensional Fourier cut along $00 z$ (see Fig. 3) seems to favour the following Me arrangement: $4 \mathrm{Bi} \pm 00 z_{2}$ and ( $2 \mathrm{Ba}+4 \mathrm{Bi}$ ) equally distributed over the positions 000 and $\pm 00 z_{2}$.
    From Table 1 it is seen that roughly for the same value of $l: I_{00 l} \approx I_{203}$ $\approx I_{22 l} \approx I_{60 b}, I_{11 l} \approx I_{81 l} \approx I_{38 l}, I_{10 l} \approx I_{21 l} \approx I_{30 l} \approx I_{38 l} \approx I_{41 l}$ as might be expected from the above atomic positions with atoms only on the lines $00 z, \frac{1}{2} \frac{1}{2}, 0 \frac{1}{2} z$ and $\frac{1}{8} 0 z$. Table 2 gives calculated and observed intensities for the rows $00 l, 10 l, 11 l, 21 l, 22 l$ and $30 l$. It was found from the Weissenberg photographs that $0028 \$ 0030$ and $1037>1039$ (see Table 2) but the observed ratios do not seem to be as large as those calculated. This is more clearly seen for the rows $40 l$ and $30 l$ where $4028<4030$ and 3037 $\geq 3039$. These discrepancies could neither be removed by small variations in the $z$ parameters nor by assuming other distribations of the Ba atoms for the structure factor calculations. Other discrepancies found from Tables 1 and 2 are 222:224, 332:334, 0050:0052 and 1148:1152. However, for most reflexions the agreement is quite good and considering the errors which might be introduced by absorption effects and errors in the ratios $f_{T 1} / f_{B 1}$ and $f_{0} / f_{B 1}$ the agreement might on the whole be classified as fairly good.

    If 1 the at $\frac{1}{2} \frac{1}{2} 0 ;$
    $\frac{1}{4} \frac{8}{3} z$
    $8(j)$ $8(\mathrm{j}){ }^{2}$
    $8 \mathrm{Me}_{2}$

    The
    $\mathrm{O}_{1}$ -
    $\mathrm{O}_{3}$ -
    $\mathrm{O}_{3}-\mathrm{s}$
    $\mathrm{O}_{5}-4$

    One h :
    I wi
    Stoc.

    REFF:
    499. -
    G., Dis
    N:O 20,

    The following structure is therefore proposed:

    ## $\mathrm{D}_{\mathrm{L}}^{12}-I 4 / \mathrm{mmm}$

    (000, $\left.\frac{1}{2} \frac{1}{2} \frac{1}{2}\right)+$
    

    | $4 \mathrm{Me}_{2}$ in $4(e)$ | $z=0.106$ |
    | :--- | :--- |
    | $8 \mathrm{O}_{4}$ in $8(\mathrm{~g})$ | $z=0.148$ |
    | $4 \mathrm{Mi}_{2}$ in $4(e)$ | $z=0.352$ |
    | $4 \mathrm{O}_{6}$ in $4(e)$ | $z=0.302$ |
    | $4 \mathrm{Me}_{8}$ in $4(e)$ | $z=0.221$ |
    | $4 \mathrm{O}_{6}$ in $4(\mathrm{~d}) 0 \frac{1}{2} 4 ; \frac{1}{2} 0 \frac{1}{4}$ |  |

    Ba and Bi equally distributed over all Me positions.
    If the atructure is described by means of an orthorhombio space group ( $D_{m}^{28}$ ), as used for the struotures of $\mathrm{Bi}_{8} \mathrm{NbTiO}_{9}$ and $\mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$, the positions will be: $\mathrm{D}_{2 \mathrm{i}}^{28}-\mathrm{Fmmm}$ ( 000 ; $\left.\frac{1}{2} \frac{1}{2} 0 ; 0 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} 0 \frac{1}{2}\right)+4 \mathrm{Me}_{1}$ in $4(a) 000,4 O_{1}$ in $4(b) 00 \frac{1}{2}, 160_{2}$ in 16 (j) $\frac{1}{4} \frac{1}{4} x_{j} \frac{1}{4} \frac{1}{4} \bar{F}$;
     8 (i) $z=0.106,160_{4}$ in $16(j) z=0.148,8 \mathrm{Ti}_{2}$ in 8 (i) $z=0.352,8 O_{5}$ in 8 (i) $z=0.302$,
    
    The distances ( $\AA$ ) and coordination will be:
    $\mathrm{O}_{1}-8 \quad \mathrm{O}_{2}=2.78 \quad \mathrm{O}_{2}-4 \quad \mathrm{O}_{8}=2.73 \quad \mathrm{Me}_{2}-4 \mathrm{O}_{8}=3.10 \quad \mathrm{Ti}_{1}-\mathrm{O}_{8}=2.09$
    $0_{3}-4 \mathrm{O}_{\mathrm{g}}=2.84$
    $\mathrm{O}_{4}-4 \mathrm{O}_{4}=2.73 \quad \mathrm{Me}_{2}-4 \mathrm{O}_{3}=2.75$
    $\mathrm{Ti}_{1}-4 \mathrm{O}_{2}=1.93$
    $0_{3}-40_{4}=2.84$
    $\mathrm{O}_{6}-4 \mathrm{O}_{6}=2.73 \quad \mathrm{Me}_{2}-4 \mathrm{O}_{4}=2.61$
    $\mathrm{Ti}_{1}-\mathrm{O}_{1}=2.00$
    $\mathrm{O}_{5}-4 \mathrm{O}_{6}=2.91$

    $$
    \begin{array}{rrrr}
    \mathrm{Me}_{1}-8 \mathrm{O}_{2}=2.78 & \mathrm{Me}-4 \mathrm{O}_{6}=2.28 & \mathrm{Ti}_{9}-\mathrm{O}_{3}=2.09 \\
    \mathrm{Me}_{1}-4 \mathrm{O}_{1}=2.73 & M e_{3}-4 \mathrm{O}_{5}=2.89 & \mathrm{Ti}_{8}-4 \mathrm{O}_{4}=1.93 \\
    & \left(\mathrm{Me}_{3}-4 \mathrm{O}_{4}=3.64\right) & \mathrm{Ti}_{2}-\mathrm{O}_{5}=2.09
    \end{array}
    $$

    One half of the anit cell is shown in Fig. 4.
    I wish to thank Professor L. G. Sulkan for valuable discassions on this work.
    Stockholms Högskola, Institute of Inorganic and Physical Chemistry. May 1950.

    REFERENCES. 1. Aurivililus, B., Arkiv Kemi 1 (1950) 463. - 2._- Mbid, 1 (1950) 499. - 3. Bannister, F. A. and Hey, M. H., Miner. Mag. 24. (1935) 49. - 4. Sileén, L. G., Dissert., Stookholm 1940. - 6. Lagercrantz, A. and Sillén, L. G., Arkiv Kemi 25 N:o 20, 1948. - 6. We1ls, A. F., Z. Krist. 96 (1937) 451.

    ## Tryckt den 14 oktober 1950

    Uppsala 1950. Almqqist \& Wiksalls Boètryekeri AB

    ## BRIEF ATTACHMENT Y

    ## IN THE UNITED STATES PATENT AND TRADEMARK：OFFICE

    In re Patent Application of
    Applicants：Bednorz et al．
    Serial No．：08／479，810
    Filed：June 7， 1995
    For：NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE，METHODS FOR THEIR USE AND PREPARATION

    ## Commissioner for Patents

    P．O．Box 1450Alexandria，VA 22313－1450
    Date：March 1， 2005
    Docket：YO987－074BZ
    Group Art Unit： 1751
    Examiner：M．Kopec

    ## FIRST SUPPLEMENTAL AMENDMENT

    Sir：

    In response to the Office Action dated July 28，2004，please consider the following：

    # The structure of $\mathrm{Bi}_{2} \mathbf{N b O}_{5} \mathrm{~F}$ and isomorphous compounds 

    By Bengt. Aurivinhius

    With 1 figure in the text.

    X-ray studies made previously on the compounds $\mathrm{CaBi}_{2} \mathrm{Nb}_{2} \mathrm{O}_{9}, \mathrm{Bi}_{4} \mathrm{Ti}_{3} \mathrm{O}_{12}$ and $\mathrm{BaBi}_{4} \mathrm{Ti}_{4} \mathrm{O}_{15}$ (1) showed that they have very similar structures. The symmetry is tetragonal or pseudotetragonal, and the structures are each built up of quadratic $-\mathrm{Bi}_{2} \mathrm{O}_{\mathrm{g}}$ layers alternating with perovskite layers, the latter having different heights in the three different cases. The generalized formula for the compounds might be written $M e_{2} \mathrm{O}_{2}\left(M e_{m-1}^{\prime} R_{m} \mathrm{O}_{8 m+1}\right)$ where $M e^{\prime}$ is the 12 coordinated metal atom in the perovskite layers and $R$ the 6 coordinated atom. The formulae for the above compounds, $\mathrm{Bi}_{2} \mathrm{O}_{2}\left(\mathrm{CaNb}_{2} \mathrm{O}_{7}\right), \mathrm{Bi}_{2} \mathrm{O}_{2}\left(\mathrm{Bi}_{2} \mathrm{Ti}_{8} \mathrm{O}_{10}\right)$ and $\mathrm{Bi}_{2} \mathrm{O}_{2}\left[\left(\mathrm{BaBi}_{2}\right) \mathrm{Ti}_{4} \mathrm{O}_{13}\right]$ thius have $m$ values of 2,3 and 4 . The simplest case, $m=1$, would correspond to the formula $M e_{8} \mathrm{O}_{8}\left(\mathrm{RO}_{4}\right)$ and to a structure built up of $M e_{2} \mathrm{O}_{2}$ layers and layers of $R \mathrm{O}_{8}$ ootahedra each octahedron sharing four corners. Compounds of this type have, however, not been successfully synthesized as yet.

    The present paper deals with the compounds $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}, \mathrm{Bi}_{2} \mathrm{TaO}_{5} \mathrm{~F}$ and $\mathrm{Bi}_{8} \mathrm{TiO}_{4} \mathrm{H}_{2}$, which correspond to the simplest case, $m=1$ above, except that some of the 0 atoms are replaced by F atoms. The formulae of the compounds might thus be written: $\mathrm{Bi}_{\mathrm{g}}(\mathrm{O}, \mathrm{F})_{2} \mathrm{Nb}(\mathrm{O}, \mathrm{F})_{4}$ etc.

    ## Preparation, powder photographs and analyses

    $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ : When a mixtare of $\mathrm{BiF}_{3}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ in the mol ratio 4:1 was heated in air at $800^{\circ} \mathrm{C}$ for a short time, a few single crystals (very thin plates) were obtained. Powder photographs of this sample indicated a tetragonal unit cell with the same cell dimensions as would be expected for the above general type when $m=1$. The best conditions for the formation of this phase were then studied by heating 2.5 g mixtures ( $2 \mathrm{BiF}_{8}+1 / 8 \mathrm{Nb}_{8} \mathrm{O}_{5}$ ) in air at $640^{\circ} \mathrm{C}$, this low temperature being chosen to reduce the volatility of the $\mathrm{BiF}_{3}$. The reaction times were varied from $5-40$ hours, and powder photographs were taken of each product. For reaction times of 7-15 hours the lines of the above tetragonal phase predominated in the powder photographs, the few extra lines were very weak (see Table 1).
    The fluorine content was found to vary from $4.0 \%$ ( 7 hours) to $2.4 \%$ ( 15 hours), whereas the caloulated value for $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ is $3.2 \%$. No variation in the size of the cell with the fluorine content was found, and it therefore seems probable that the composition of the phase is constant and that the observed variation in the $F$ content is due to the presence of small imparities which are not visible in the powder photo-
    B. AURiviwhus, The structure of $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ and isomorphous compounds

    Table I
    Powder photographs of $\mathrm{Bi}_{8} \mathrm{NbO}_{5} \mathrm{~F}$ (sample with $2.8 \% \mathrm{~F}$ ) Or $K$ radiation $\lambda$ or $_{r} K_{a}=2.2909 \AA$

    | $h k l^{\prime}$ | $10^{4} \cdot \sin ^{2} \theta_{\text {cala }}$ | $10^{4} \cdot \sin ^{8} \theta_{\text {oba }}$ | Iobe |
    | :---: | :---: | :---: | :---: |
    | 103 | 1319 | 1332 | st |
    | 006 | 1708 | 1711 | m |
    | 110 | 1784 | 1795 | m |
    | 112 | 1974 | 1989 | vow |
    | 105 | 2078 | 2083 | \%w |
    | 114 | 2543 | 2547 | m |
    | - | $\because$ | $2785{ }^{\circ}$ | vow |
    | 008 | 3036 | 3033 | W |
    | 11- | - | 3093 | Vw |
    | 116 | 3492 | 3490 | st |
    | 200 | 3588 | 3567 | st |
    | 202 | 3768 | 3754 | vw |
    | - | - | 3808 | vw |
    | \{ 1000 | 4734 |  | vw |
    | 100 | 4748 \} | 4737 | st |
    | 118 | 4820 | 4827 |  |
    | 213 | 4888 | 4891 | st |
    | 206 | 5278 | 5292 | m |
    | $210^{\prime \prime}$ | 5647 | 5658 | w |
    | 1110 | 6527 | 6529 | VW |
    | $\begin{array}{lll}10 & 11 \\ 00 & 12\end{array}$ | 6831 | 6630 | W |
    | 00 220 | 6830 | 6841 | w |
    | 222 | 7137 | 7139 | w |
    | 301 | 7327 8076 | 7330 | vw |
    | $\{219$ | 8303 \} | 8 880 | vow |
    | $\left\{\begin{array}{lll}20\end{array} 0\right.$ | 8311 \} | 8304 | st |
    | 303 | 8456 | 8456 |  |
    | 1112 | 8614 | 8611 | m |
    | 226 | 8845 | 8844 | m |
    | $\left\{\begin{array}{lllll}1 & 0 & 13 \\ 3 & 1 & 0\end{array}\right.$ | 8908 ) | 8910 | m |
    | 312. | 9111 | 9119 |  |
    | 3.05 | 9215 | 9195 | VW |
    | 0014 | 9287 | 9292 | VW |

    graphs. To cheok that the $\mathrm{Bi} / \mathrm{Nb}$ ratio had not changed essentially during the heating, a complete analysis was made on one sample ( 9 hours heating). The following values were obtained as the mean of three analyses: Bi: $68.0 \pm 0.6 \%, \mathrm{Nb}: 14.2 \pm 0.6 \%$, F : $3.7 \pm 0.2 \%$.

    The values calculated for $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ are:
    $\mathrm{Bi} \cdot 68.5, \mathrm{Nb} \cdot 15.2 \%, \mathrm{~F}: 3.2 \%$.
    From these figures it seems probable that the formala of the compound is $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$.
    $\mathrm{Bi}_{9} \mathrm{TaO}_{5} \mathrm{~F}$ was prepared in"exactly the same way as $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$. No analysis was made since the powder photographs were similar to those of $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ and niobium and tantalum compounds are usually isomorphous.

    Fig. 1. C
    $\mathrm{Bi}_{\mathrm{a}} \mathrm{TiC}$ 2:1 (tota photogra: assuming the same phase are of the mj variation are 7.8 \% fluorine a of $\mathrm{Bi}_{2} \mathrm{NbC}$ $\mathrm{Bi}_{8} \mathrm{TiO}_{4} \mathrm{~F}_{8}$

    Method with NaO (3). The di

    Bismit was deterr precipitate as such.

    The dime with focusi
    

    Fig. 1. One half of the unit cell of $\mathrm{Bi}_{2} \mathrm{NbO}_{6} \mathrm{~F}$. A denotes the region of $\mathrm{Nb}(\mathrm{O}, \mathrm{F})_{4}$, ootahedra and $B$ the $\mathrm{Bi}_{\mathrm{g}}(\mathrm{O}, \mathrm{F})_{2}$ layers.
    $\mathrm{Bi}_{2}{ }^{2} \mathrm{TiO}_{4} \mathrm{~F}_{9}$ : Mixtures of bismuth fluoride and titanium oxide in the mol ratio 2:1 (total 2.3 g ) were heated in air at $640^{\circ}$ for various lengths of thime. The powder photographs obtained from samples heated for 3 or 5 hours could be interpreted by assuming a mixture of BiOF (2) and a phase whose cell dimensions were nearly the same as those of $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$. (See Table 2, where the reflexions from the BiOF phase axe designated by $b$ and those from the other phase by $a$ ). The fluorine contents of the mixed samples were found to be $6.4 \%$ ( 5 hours) and $8.4 \%$ ( 3 hours) but no variation of the cell size with the fluorine content was found. The calculated values are $7.8 \%$ for BiOF and $6.7 \%$ for $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2}$. From the original $\mathrm{Bi} / \mathrm{Ti}$ ratio, from the fluorine analysis and from the similarity of the powder photographs with those of $\mathrm{Bi}_{8} \mathrm{NbO}_{5} \mathrm{~F}$ (Tables 1 and 2), it was concluded that the formula of the phase is $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2}$.
    the heating, swing values $2 \pm 0.6 \%, \mathrm{~F}$ :
    $\mathrm{BBi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$.
    No analysis $\mathrm{NbO}_{5} \mathrm{~F}$ and

    Methods of analysis: Fhuorine. The samples were first decomposed by fusing with NaOH , and were then distilled with $\mathrm{HClO}_{4}$ as described by Wriand and WInTrer (3). The distillate was titrated with $\mathrm{Th}\left(\mathrm{NO}_{8}\right)_{4}$ using Na -alizarinsulphonate as indicator.

    Bismuth and Niobium. The samples weate brought into solution, and niobium was determined as described in Scott's "Standard Methods" (4). Bismath was first precipitated as $\mathrm{Bi}_{2} \mathrm{~S}_{8}$, which was then redissolved, converted to $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and weighed as such.

    ## Unit cells and space group

    The dimensions of the unit cells were determined from powder photographs taken with focusing cameras of the Phragmén type (Tables I and 2). The radiation used

    Table 2
    Powder photographs of $\mathrm{Bi}_{8} \mathrm{TiO}_{4} \mathrm{~F}_{2}$ (mixed with BiOF ) $\mathrm{Cr} K$ radiation ( $\lambda_{\text {Cr }} K_{a}=2.2909 \AA$ ). a denotes the $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2}$ phase and $b$ the BiOF phase

    |  | phase | $10^{6} \sin ^{2} \theta_{\text {calo }}$ | $10^{4} \sin ^{2} \theta_{\text {obs }}$ | $I_{\text {obs }}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | 101 | $a$ | 957 | 941 |  |
    | 101 | $b$ | 1270 | 1265 | vow |
    | $\{103$ | $a$ | $1351)$ | 1265 |  |
    | 002 | $b$ | 1352 \} | 1354 | st |
    | 006 | $a$ | 1771 | 1767 |  |
    | 110 | a | 1816 | 1811 | m |
    | 110 | $b$ | 1864 | 1858 | \% |
    | 112 | $a$ | 2013 | 1998 | vow |
    | 105 | $a$ | 2138 | 2132 | w+ |
    | 102 | $b$ | 2284 | 2288 | vwow |
    | 114 | $a$ | 2603 | 2601 | m |
    | 112 | $\bar{b}$ | - | 3074 | WW |
    | 107 | a | 3216 | 3231 | W |
    | 116 | a | 3318 | 3320 | vw |
    | 200 | $a$ | 8587 | 3600 | st |
    | 200 | $b$ | 3631 | 3624 | st |
    | 202 | $a$ | 3728 | 3744 | W |
    | 103 | $b$ | 3974 | 3822 | w |
    | - | - | - | 3882 4352 | w |
    | 204 | $a$ | 4418 | 4352 | Vow |
    | 211 | $a$ | 4538 | 4590 | Vow |
    | - | - | - | 4674 | $w$ |
    | 1 100 | $a$ | 4893 ) |  | VW |
    | $\{113$ | $b$ | $4906\}$ | 4904 | st |
    | $\left(\begin{array}{llll}0 \\ 0 & 0 \\ 2113\end{array} 10\right.$ | $a$ | 4919 |  | st |
    | 213 202 | a | 4982 | 4978 | st |
    | 202 | $b$ | 6080 | 5084 | w |
    | $\{206$ | ${ }^{\boldsymbol{a}}$ |  |  |  |
    | $\left\{\begin{array}{llll}0 & 0 \\ 0\end{array}\right.$ | $b$ | 5408 \} | 5418 | m+ |
    | 215 | $a$ | 6769 | 5788 | m |
    | 212 | $b$ | 6012 | 6025 | m |
    | 104 | $b$ | 6340 | 6353 | w |
    | $\{203$ | $b$ | 6770 |  | w |
    | 208 | $a$ | 6779 \} | 8786 | $m$ |
    | 1011 | $a$ | 6860 | 8869 |  |
    | 217 | $a$ | 6950 | 6050 | ${ }_{\text {mow }}^{\text {m }}$ |
    | 0012 | $a$ | 7084 | 7075 | m |
    | $\left\{\begin{array}{l}22\end{array}\right.$ | $a$ | 7262 ) | 7262 |  |
    | $\left\{\begin{array}{l}114 \\ 220\end{array}\right.$ | b | 7272 | 726 | m |
    | $\{222$ | $a$ | 7455 | 7456 | \% |
    | 213 | $b$ | 7702 | 7709 |  |
    | - | - | - | 8049 | m |
    | 301 | $a$ | 8210 | 8210 | WW |
    | - | - |  |  | VW |
    | $\{218$ | $a$ |  | 8352 | VW |
    | $\left(\begin{array}{lll}20 & 10\end{array}\right.$ | a | 8550 | 8524 | st |
    | 303 | a | 8613 | 8603 |  |
    | 301 | b | 8796 | 8725 | m |
    | 222 | b | 8814 | 8807 |  |
    | 1112 | a | 8800 | 8000 | ${ }_{m}$ |

    พas 1 be int

    The The agrees calculs Zarc was ni than 1 $h+k+$ Pow and fre
    $\mathrm{Bi}_{2} \mathrm{~N}$
    unit ce the ma: for $l$ od the Pat sity val here) sh of other position or 000 . gave thi
    No de
    For B
    occupy t
    was obts

    Table 2 (continued)
    idiation iOF phase

    | hthl | phase | $10^{4} \sin ^{2} \theta_{\text {calc }}$ | . $10^{4} \sin ^{2} \theta_{\text {obs }}$ | $I_{\text {obs }}$ |
    | :---: | :---: | :---: | :---: | :---: |
    | 220 | - a | 9033 | 9027 |  |
    | 310 | $a$ | 9078 | 9072 | W |
    | 204 | $b$ | 9136 | 9186 | W |
    | 312 | a | 9275 | 9272 | m |
    | 310 | $b$ | 9319 | 9319 | w |
    | $\left\{\begin{array}{l}1105 \\ 305\end{array}\right.$ | $b$ | 9382 ) | 9384 | w |
    | $\{305$ | $a$ | 9400 \} | 9384 | m |

    was $\operatorname{Cr} K$ ( $\lambda_{C r K_{a}}=2.2909 \AA$ ). As mentioned above the powder photographs could be interpreted by assuming tetragonal anit cells; the cell dimensions are given below.

    | $\cdot$ | $a(\AA)$ | $c(\AA)$ |
    | :---: | ---: | ---: |
    | $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ | $\ldots \ldots \ldots \ldots$ | 3.835 |
    | $\mathrm{Bi}_{2} \mathrm{TaO}_{5} \mathrm{~F}$ | 16.63 |  |
    | $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2} \ldots \ldots \ldots \ldots \ldots$ | 3.829 | 16.64 |
    |  | 3.802 | 16.33 |

    The errors in these figures are estimated to be $\pm 0.1 \%$.
    The obsarved density was 8.0 for $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ (preparation with $2.8 \% \mathrm{~F}$ ), which agrees fairly well'with the assumption of 2 formula units par unit cell, giving a calculated density of 8.26 .
    Zero and first order Weissenberg photographs around the $a$ axis were taken. There was nothing in the Weissenberg photographs to indicate a Laue symmetry lower than $D_{\text {ah }}-4 / \mathrm{mmm}$. The only extinctions found were that $h, k, l$ were absent for $h+k+l$ odd, which is characteristic of the space groups $C_{40}^{9}, D_{2 d}^{9} D_{2 d}^{11}$ and $D_{1 h}^{17}$.
    Powder photographs only were taken of the compounds $\mathrm{Bj}_{2} \mathrm{TaO}_{5} \mathrm{~F}_{2}$ and $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2}$, and from these it was concluded that these substances are isomorphous with $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$.

    ## Positions of the metal atoms

    $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ : With 2 formula units per unit cell there are 4 Bi and 2 Nb atoms per anit cell. The intensities of the spots in the Weissenberg photographs seemed in the main to depend only on the $l$ values. Thus for $l$ even $I_{001} \approx I_{112} \approx I_{20 l}$ etc. and for $l$ odd: $I_{102} \approx I_{212} \approx I_{202}$ etc. With these intensity values a good approximation of the Patterson-Harker function along $00 z$ could be obtained by using only the intensity values of $h 0 l$ and $h 1 l$. The Patterson-Harker function thus calculated (not given here) showed only one, big, maximum, at $z=0.34$. This maximum, and the absence of others, could be explained only by assuming that 4 Bi atoms are situated at the positions $\pm 00 z$ with $z=0.17$ or $z=0.33$, and the Nb atoms at the positions $00 \frac{1}{2}$ or 000 . Arbitrarily choosing 000 as the position for Nb , trial and error calculations gave the value 0.325 for the Bi parameter.
    No determination of $z_{B i}$ was made for $\mathrm{Bi}_{2} \mathrm{TaO}_{5} \mathrm{~F}$.
    For $\mathrm{Bi}_{2} \mathrm{TiO}_{9} \mathrm{~F}_{\mathrm{g}}$ the powder photograph data were used to determine the Bi parameter. Assuming the Ti atoms to be eituated at 000 and the O and the F atoms to occupy the same positions as given below for $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$, the value $z_{B i}=0.327 \pm 0.006$ was obtained from trial and error calculations.
    B. AURXVLuLUS, The structure of $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ and isomorphous compounds

    Weissenberg photographs
    Zero layer
    

    ## Positions of the $\mathbf{O}$ and the $\mathbf{F}$ atoms

    The positions of the 0 and the $F$ atoms could not be distinguished either from the diffraction data, or from space considerations because of the similarity in the reflecting power and ionic radii of $\mathrm{O}^{2-}$ and $\mathrm{F}^{-}$. The problem is therefore treated as though 0 and $F$ were the same atomic species. In the following, the 0 and the $F$ atoms are denoted by ( $\mathrm{O}, \mathrm{F}$ ) and the discussion relates to $\mathrm{Bi}_{8} \mathrm{NbO}_{5} \mathrm{~F}$ for which $z_{B t}$ could be accurately determined from the Weissenbarg photographs.
    It seemed reasonable to assume that the Nb atoms are surrounded by a regular or nearly regular octahedron of $(0, F)$ atoms with distances $\mathrm{Nb}-(0, F) \approx 2.0 \AA$. Neglecting the polar space group $C_{\text {ep }}^{9}$, these conditions are fulfilled only if $4(0, \mathrm{~F})$ atoms, here called $(0, F)_{1}$, are situated at the positions $\pm 00 z$ with $z \approx 0.12$, and $4(0, F)$ atoms, $(0, F)_{2}$, at the positions $0 \frac{1}{2} 0, \frac{1}{1} 00$. Assuming the distance $(0, F)-$ $(0, F)$ to be $\geq 2.5 \AA$ and the distance $\mathrm{Bi}-\left(\mathrm{O}, \mathrm{F}^{\prime}\right)$ to be $\geq 2.2 \AA$ there is only room for the remaining $4(0, F)$ atoms, $(0, F)_{8}$, at the positions $0 \frac{1}{2} \frac{1}{2}, \frac{1}{2} 0 \frac{1}{2}$.
    

    The co

    The pro ties for ty derived as

    The line indicated E the agreen
    
    either from the arity in the reefore treated as ae O and the F F for which $z_{B i}$

    3d by a regular $(0, F) \approx 2.0 \AA$ only if $4(0, F)$ th $z \approx 0.12$, and listance ( $0, \mathrm{~F}$ )is only room for

    The coordination and distances in $\AA$ will be:

    $$
    \begin{array}{ll}
    \mathrm{Bi}-4(0, \mathrm{~F})_{3}=2.29 \\
    \mathrm{Bi}-4(0, \mathrm{~F})_{2}=2.9 & \mathrm{Nb}-2(0, \mathrm{~F})_{2}=2.0 \\
    (\mathrm{O}, \mathrm{FH})_{3}-4(\mathrm{O}, \mathrm{~F})_{8}=2.71 & \mathrm{Nb}-4(\mathrm{O}, \mathrm{~F})_{2}=1.92 \\
    (0, \mathrm{~F})_{2}-4(0, \mathrm{~F})_{8}=2.9 & (0, \mathrm{~F})_{2}-4(0, \mathrm{~F})_{2}=2.7 \mathrm{i} \\
    \hline
    \end{array}
    $$

    The proposed structure is given in the summary. Calculated and observed intensities for the reflexions in the Weissenberg photographs are given in Table 3. I calc is derived as follows:

    $$
    I_{\text {calc }}=\frac{1+\cos ^{2} 2 \theta}{1600 \cdot \sin 2 \theta} \cdot F^{2} \text { where } F=\Sigma f \cos 2 \pi(h x+k y+l z) .
    $$

    The lines of maximum absorption in the Weissenberg photographs (see 5) are indicated by dotted lines in Table 3. If the absorption effects are taken into account, the agreement between calculated and observed intensities is quite good.

    Even if the $(0, F)_{1}$ atoms (see above) are assumed to occupy such a positio that the distance $\mathrm{Bi}-4(0, \mathrm{~F})_{1}$ is as small as possible $\left[z(0, F)_{1}=0.15,(0, F)\right.$ $\left.(\mathrm{O}, \mathrm{F})_{8}=2.5, \mathrm{Nb}-2(\mathrm{O}, \mathrm{F})_{1}=2.5, \mathrm{Bi}-4(\mathrm{O}, \mathrm{F})_{1}=2.7\right]$, the distance $\mathrm{Bi}-4(0, \mathrm{~F})_{1}$
     layers alternating with octahedral layers having the composition $\mathrm{Nb}(\mathrm{O}, \mathrm{F})_{4}$, both layers being perpendicular to the c-axis. It might be pointed out that the structurest of $\mathrm{Bi}_{2}(\mathrm{O}, \mathrm{F})_{2} \mathrm{Nb}(\mathrm{O}, \mathrm{F})_{4}$ is basically of the same type as the " $X_{1}$ structures", $M e_{2} \mathrm{O}_{8} X$ previously investigated by Sinien (6). Thus the octahedral sheets $\mathrm{Nb}(0, F))_{4}$ correspond to single layers of halogen atoms, $X$, in $M e_{8} \mathrm{O}_{\Omega} X$.

    ## Discussion of the distribution of the 0 and the $F$ atoms

    As seen above, the distance $\mathrm{Bi}-4(\mathrm{O}, \mathrm{F})_{3}$ is $2.29 \AA$ for $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$. For $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{3} \mathrm{~S}^{2}$ the corresponding distance is calculated to be $2.26 \pm 0.06 \mathrm{~A}$. These distances are very nearly the same as the corresponding distances, $\mathrm{Bi}-4 \mathrm{O}$, within the $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers of other bismuth oxicompounds (6). This need not, however, necessarily mean that the $\mathrm{Bi}_{8}\left(0, \mathrm{~F}_{\mathrm{g}}\right.$ layers (see the figure) are free from F atoms, since compounds with $\mathrm{Bi}_{2}(\mathrm{O}, \mathrm{F})_{8}$ layers which certainly contain F atoms have not been investigated hitherto, and thas the distances within such layers are unknown.

    For the present it seems therefore best to make no special assumptions as to the distribution of the 0 and $F^{\prime}$ atoms.

    ## SUMMARY

    The crystal structure of $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$ has been investigated by means of Weissenberg and powder photographs. From powder photographs the compounds $\mathrm{Bi}_{2} \mathrm{~T}_{8} \mathrm{O}_{5} \mathrm{~F}$ and $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2}$ have been found to be isomorphous with $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$. The following structure is proposed for $\mathrm{Bi}_{2} \mathrm{NbO}_{6} \mathrm{~F}$ :
    $D_{1 \mathrm{~h}}^{17}-14 / \mathrm{mmm}$
    (000, $\left.\frac{1}{4} \frac{1}{4} \frac{1}{8}\right)+$
    2 Nb in 2 (a):000
    4 Bi in $4(\mathrm{e}): \pm 00 z \quad z=0.325 \pm 0.001$
    $4(\mathrm{O}, \mathrm{F})_{1}$ in 4 (c) : $0 \frac{1}{2} 0, \frac{1}{2} 00$
    $4(0, F)_{8}$ in $4(\mathrm{e}): \pm 00 z$
    $4(0, F)_{8}$ in $4(\mathrm{~d}):$ : $0 \frac{1}{2} 4, \frac{1}{2} 0 \frac{1}{2}$
    The cell dimensions are $a=3.835 \AA, c=16.63 \AA$ for $\mathrm{Bi}_{2} \mathrm{NbO}_{5} \mathrm{~F}$. The positions of the metal atoms were determined from the diffraction data, those of the ( $0, \mathrm{~F}$ ) atoms from space considerations. Although it does not seem improbable that 0 atoms alone occupy the positions $0 \frac{1}{2}, 7,7, \mathrm{Bi}^{2}$ and O thas forming $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers as in other bismuth oxicompounds, nothing can be definitely stated as to the distribntion of the 0 and $F$ atoms.

    The structure is built up of quadratic $\mathrm{Bi}_{2}(0, \mathrm{~F})_{8}$ layers alternating with octahedral sheets having the composition $\mathrm{Nb}(0, F)_{4}$ (see figure) and the formula might thus be written: $\mathrm{Bi}_{2}(\mathrm{O}, \mathrm{F})_{2} \mathrm{Nb}(\mathrm{O}, \mathrm{F})_{4}$. The structure is formally related to a series of
    such a position $=0.16,\left(0, F_{1}\right)-4$ $3 i-4(0, F)_{1}$ will efore seems ap: $2 p$ of $\mathrm{Bi}_{2}(\mathrm{O}, \mathrm{F})_{2}$ $\mathrm{Nb}\left(\mathrm{O}, \mathrm{F}_{\mathrm{k}} \mathrm{s}_{4}\right.$, both 2at the structure tures", $M e_{3} \mathrm{O}_{2} \mathbb{Z}$ J, F ) 4 correspond

    ## toms.

    '. For $\mathrm{Bi}_{2} \mathrm{TiO}_{4} \mathrm{~F}_{2}$ se distances are rithin the $\mathrm{Bi}_{2} \mathrm{O}_{\mathrm{a}}$ lecessarily mean ince compounds oen investigated ptions as to the

    3 of Weissenberg ${ }_{8} \mathrm{Bi}_{3} \mathrm{TaO}_{5} \mathrm{~F}$ and following struc-
    previously investigated structures of general formula $\mathrm{Me}_{2} \mathrm{O}_{2}\left(M e_{m-1}^{\prime} R_{m} \mathrm{O}_{3 m+1}\right)$ and represents the simplest case of this series, i.e. $m=1$.

    University of Stockholm, Institute of Inorganio and Physical.Chemoistry, May 1952.

    RAFFERENOESS. 1. Aurivillius, B., Arkiv Kemi 2 (1950) 519. - 2.-_, Arkiv Kami zfineral. Geol., 26 B (1948) n:o 2. - 3. Willard, H. H. and Winter, O. B., Ind. Eng. Chem. Anal. Ed. 5 (1933) 7. - 4. Standard Methods of Chemical Analyzis by W. W. Scott, fifth edition, odited by N. H. Furman, New York 1925, p. 335 and p. 338. - 6. Wells, A. F., Z. Krist. 96 (1937) 451. - 6. Sillén, L. G., Dissart. Stookholm 1940.

    The positions of re of the $(0, F)$ sle that 0 atoms $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers as to the distribu-
    with octahedral
    Tryckt den 24 november 1952
    uula might thus 1 to a series of

    The content enclosed with or attached to this notice has been reproduced from that publication by permission of the copyright owner. It may not be further reproduced or publicly displayed without express permission of the copyright owner. Any unauthorized reproduction or use may subject you to financial and other penalties.

    ```
 R dqmorris@us.ibm.com/--354936Daniel P. Morrís
 ?DER ARKIV FOER KEBM VOL 5
 FIHOR Aurivillus, B.,
 LGE 39-EOA
 IY
 ZAR 1952
 SSN 03656128
 JDEN BLK_02/17/05_0365-6128_307395
 IFCKSSUM 00090130048007110
 [WINGG ```

